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1. INTRODUCTION

Technological innovation has profoundly reshaped the in-
dustrial landscape, integrating advanced automation and
artificial intelligence into manufacturing processes. Among
the most promising developments is Human-Robot Collab-
oration (HRC), a paradigm that combines the distinctive
abilities of human workers, such as dexterity and decision-
making, with the precision, strength, and repeatability of
robots. Unlike traditional industrial robots, collaborative
robots, or cobots, are designed to safely share workspaces
with humans, enhancing workflow efficiency without the
need for physical barriers.

A particularly significant area for HRC is collaborative
assembly. Assembly processes typically involve long se-
quences of subtasks, alternating between heavy manipula-
tions and delicate operations. These processes demand effi-
cient coordination between humans and robots, continuous
monitoring of actions, and dynamic task planning to man-
age the sequential dependencies and constraints. However,
most existing frameworks rely on strict predefined plans
(Fusaro et al., 2021; Darvish et al., 2018; Johannsmeier
and Haddadin, 2016) or explicit communication between
partners (Roncone et al., 2017; Shah et al., 2011; Milliez
et al., 2016), which can reduce naturalness, flexibility, and
overall collaboration efficiency. In real human teams, inten-
tions are often inferred by observing actions rather than
through constant verbal exchanges, and ideally, robots
should exhibit similar adaptive capabilities.

This work introduces the Extended User-aware Hierarchi-
cal Task Planner (E-UHTP), a novel planning framework
designed to support flexible, robust, and communication-
free collaboration in realistic assembly environments. E-
UHTP enables collaborative robots to plan and adapt in
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response to human behavior, while explicitly addressing
two key limitations of existing approaches: the lack of
support for joint human-robot actions, and the inability to
manage task execution failures. By incorporating mecha-
nisms for synchronized operations and autonomous failure
handling, E-UHTP enhances both the expressiveness and
resilience of collaborative planning.

E-UHTP builds upon the foundational User-aware Hier-
archical Task Planning (UHTP) framework (Ramachan-
druni et al., 2023), which marked an important step toward
natural human-robot collaboration by allowing the robot
to observe the human partner and plan its actions without
relying on predefined paths or explicit communication.
UHTP relies on the representation of collaborative as-
sembly tasks through Hierarchical Task Networks (HTNs)
(Erol et al., 1994), which provide a structured and inter-
pretable means to model sequential and parallel task de-
pendencies. The robot continuously monitors the human’s
actions and autonomously selects its next step based on
the evolving task state and constraints, promoting flexible
interaction.

Nevertheless, UHTP assumes flawless execution and inde-
pendent task execution, making it ill-suited for realistic
settings that involve joint operations or unexpected dis-
ruptions. Moreover, the manual definition of HTNs can
be labor-intensive and demands domain expertise, partic-
ularly for complex assemblies involving a large number of
interdependent actions.

To overcome these limitations, E-UHTP contributes three
main advancements. First, it includes an automated
method for deriving HTNs from annotated video demon-
strations, streamlining the creation of hierarchical task
representations. Second, it extends the planner to sup-
port joint actions, enabling robots to participate in syn-
chronized or complementary activities with their human



partners. Third, it incorporates a failure management
mechanism that allows the robot to autonomously detect,
respond to, and replan around errors or unforeseen events
during task execution.

The proposed system retains the optimization-based, in-
terpretable nature of UHTP while significantly enhancing
its flexibility and robustness in dynamic collaborative set-
tings. Simulated assembly experiments confirm that the
extended framework improves task success rates, adapt-
ability, and efficiency compared to baseline approaches.
Together with random toy cases, we simulate the assembly
of an IKEA chair as one of the use cases for the proposed
algorithm, whose HTN is reported in Fig. 2.

2. PROBLEM STATEMENT AND BACKGROUND

In this Section, we first formalize the collaborative assem-
bly problem we aim to solve, then we review HTNs, the
representation formalism at the core of our method.

2.1 Problem Statement

Assembly tasks can be seen as a hierarchical set of actions,
hereafter denoted as primitive actions, which must be
executed in compliance with a set of ordering constraints.
We assume two agents concur to complete the task: a
human operator and a robot. Each agent can perform a
subset of the primitive actions required to complete the
assembly. We assume actions to be either individual or
joint. Individual actions can be executed by a single agent,
either the human or the robot. Joint actions must be
executed by both agents together. We assume the human
operator to be an uncontrolled agent, to which the robot
should adapt.

Formally, we denote with Ah and Ar the finite sets of
primitive actions that can be performed individually by
the human and the robot, respectively. We enrich Ah and
Ar with an idle action, to account for agent wait time.
The set of joint actions, instead, is denoted as Aj . While
Ah and Ar are not mutually exclusive, namely there are
individual actions that both agents can perform, actions
in Aj cannot be contained in either Ah or Ar. For later
convenience, we define as concurrent the actions ac ∈ Ah∩
Ar, namely the actions that can be performed both by the
human and the robot.

We attribute to each action ah ∈ Ah, ar ∈ Ar and aj ∈ Aj

a cost c(ah), c(ar), c(aj), respectively. Concurrent actions
ac ∈ Ah∩Ar has different costs if they are executed by the
human or by the robot, which will be denoted as ch(ac)
and cr(ac), respectively. For the sake of simplicity, in this
work, we define the cost function only in terms of execution
time.

The goal of the task planning algorithm is to find the robot
plan that minimizes the overall task cost. Let πh and πr

be the sequences of actions performed by the human and
the robot. Note that each ah ∈ Ah, ar ∈ Ar can only be
present either in πh or πr, while each aj ∈ Aj must be
present in both πh and πr. The overall task cost is defined
as

ct =
∑
a∈πr

c(a) +
∑
a∈πh

c(a) (1)

The challenge in the considered setup is that the human
actions are not controllable by the system. For this reason,
when planning, all the possible human choices should be in
principle considered. To simplify the setup, we introduce
some assumptions. For any ac, we assume to know the
probability of it to be performed by the human, and denote
it with ph(ac), such that ph(ac) ∈ (0, 1). Accordingly, we
define the probability of ac to be performed by the robot
as pr(ac) = 1−ph(ac). Note that such probabilities can be
inferred based on prior knowledge, and can be eventually
adapted online from run to run.

Finally, we assume a monitoring system to be available,
which observes human actions and also provides informa-
tion on actions’ success or failure. Regarding handling of
failures, we assume each action a to have a corresponding
failure recovery action af , which must be executed after a
failed.

2.2 Hierarchical Task Networks

Hierarchical Task Networks are a well-established formal-
ism for representing procedural knowledge, particularly
suited for planning problems. An HTN decomposes a com-
plex assembly task into a hierarchy of simpler subtasks.
The network typically consists of non-primitive tasks,
which need further decomposition, and primitive tasks,
which correspond to executable actions. Subtasks can be
ordered, imposing sequential constraints, or unordered,
allowing for parallel execution or flexible ordering.

Fig. 1. Example HTN. Nodes represent tasks (internal
nodes) or primitive actions (leaves). Ordering con-
straints are expressed through Partially Oriented
(PO) or Fully Oriented (FO) nodes.

HTNs can be represented as trees. A pictorial example
of HTN is reported in Figure 1. The root represents the
overall assembly goal. Internal nodes can be non-primitive
tasks requiring decomposition or control nodes specifying
execution constraints. We utilize two primary control
nodes: Fully Ordered (FO) nodes, whose children must
be executed sequentially from left to right, and Partially
Ordered (PO) nodes, whose children can be executed
in any order or potentially in parallel, provided their
individual preconditions are met. Primitive actions form
the leaves of the tree. An assembly is considered completed
when all the primitive actions have been completed.



3. EXTENDED USER-AWARE HIERARCHICAL
TASK PLANNER

In this Section, we present our contributions, the E-UHTP
framework. In particular, in Section 3.1 we detail the E-
UHTP task planner we propose. Then, in Section 3.2 we
describe an automatic HTN generation algorithm, which
we use to derive HTNs from assembly videos.

3.1 E-UHTP Implementation

As anticipated, the challenge when planning in the con-
sidered setup is the human not being controllable. The
challenge is further exacerbated by the occurrence of fail-
ures, which cannot be predicted but need to be taken
into account. The core idea of E-UHTP is to plan robot
actions by considering the current human’s action as well
as all their possible future choices, while reacting in case
of failures’ occurrence.

The workflow of the algorithm is reported in Algorithm 1.

Algorithm 1. E-UHTP program flow

1: function E-UHTP(H)
2: HEUHTP ← Extend(H)
3: ah ← idle
4: ar ← idle
5: while HEUHTP is not empty do
6: a′h ← ActivityRecognition()
7: if a′h ̸= ah then
8: if ah succeded then
9: HEUHTP .Remove(ah)

10: PruneBranches(HEUHTP , a′h)
11: else
12: HEUHTP .HandleFailure(ah)
13: end if
14: ah ← a′h
15: end if
16: if robot is idle then
17: if ar succeded then
18: HEUHTP .Remove(ar)
19: PruneBranches(HEUHTP )
20: else
21: HEUHTP .HandleFailure(ar)
22: end if
23: if ah ∈ Aj then
24: ar ← ah
25: else
26: ar ← SelectMinAction(HEUHTP )
27: end if
28: Execute(ar)
29: end if
30: end while
31: end function

HTN Extension Similarly to what proposes the UHTP
framework (Ramachandruni et al., 2023), the standard
HTN structure described in Section 2 is first extended by
assigning potential actors (human or robot) to primitive
actions, and by adding costs to each node, which produces
a novel extended HTN which we call HEUHTP . In detail,
if an action is concurrent, the corresponding primitive

action in the HTN is replaced by a novel type of node
called Decision (D) node (see Figure 2), with agent-specific
primitive action nodes as children. Moreover, in order
to address joint actions, in the E-UHTP framework we
introduce an additional agent, hereafter denoted as joint.

Fig. 2. Example HTN representing a chair assembly.
Nodes represent tasks (internal nodes) or primitive
actions (leaves). Ordering constraints are expressed
through Partially Oriented (PO) or Fully Oriented
(FO) nodes.

Concerning cost computation, note that the overall task
cost in (1) requires knowing the entire sequence of action
taken by both the agents, which is not possible in the
considered setup. We can only estimate the cost based
on the available information. To this aim, we first assign
a cost to each node in the HTN. Costs are computed
recursively bottom-up, from leaves to root. For each node
n we compute three costs: agent-specific costs ch(n) and
cr(n), that encodes the cost for each single agent executing
the node, and a total cost ctot(n), which combines agent-
specific costs and is exploited to select the robot action.

For Primitive nodes, the cost is the expected time duration
for the corresponding agent, and zero for the other. The
total cost corresponds to the non-zero agent-specific cost.
The cost of a D node are the probability-weighted sum
of its children’s costs. Assume nd to be the decision node
generated by the concurrent action ac. Then,

ctot(nd) = ph(ac)c
h(ac) + pr(ac)c

r(ac)

while

ch(nd) = ph(ac)c
h(ac) and cr(nd) = pr(ac)c

r(ac).

The costs of FO node, instead, is the sum of its children’s
costs, that is

ctot(nf ) =
∑
n

ctot(n),

while

ch(nf ) =
∑
n

ch(n) and cr(nf ) =
∑
n

cr(n),

where nf represents a FO node, and the set {n|n ∈ nf}
is the set of children of nf . Finally, the costs of a PO
node np requires considering the possibility of actions to
be executed contemporary. First, we compute the agent-
specific costs as for the FO nodes, namely as the sum of



the agent-specific costs of the node’s children. Regarding
the total cost, we compute the lower bound of ctot(np) as

lb(np) = max({ctot(n)|n ∈ np}, ch(np), cr(np))

The intuition behind this is that performing actions con-
temporary should take at least the time required by the
slowest action, and cannot be faster than single-agent
execution times.

cr = ctot = c

Then, we compute the upper bound as if the children of
np were executed sequentially, that is

ub(np) =
∑
n

ctot(n).

Finally, the total cost is estimated as the average

ctot(np) =
lb(np) + ub(np)

2
.

Robot Actions Planning When the human successfully
completes an action (see algorithm 1, line 7-14), the ex-
tended HTN is updated by removing branches correspond-
ing to the completed action and any now invalid alterna-
tive. Specifically, all the primitive nodes containing the
completed action ah are removed from HEUHTP , together
with any decision branch that is inconsistent with a′h, using
the pruneBranches function described (Ramachandruni
et al., 2023).

Similarly, when the robot becomes idle, if its last ac-
tion has been successfully completed, the HEUHTP task
model is updated. Then, if the human is not triggering a
joint action, the robot’s next action is selected, through
SelectMinAction (see algorithm 2), by evaluating all the
currently available robot actions. Valid actions include
any action ar ∈ Ar, that is reachable by following the
first child of FO nodes and any child of PO or D nodes.
Executing each available action air would lead to a different
HTNHi, which can be obtained fromHEUHTP by pruning
the decision branches inconsistent with the execution of
air. For each Hi, the corresponding cost can be computed
using the methodology described above. Then, comparing
the total cost of the root nodes ctot(r

i), with ri being the
root of Hi, E-UHTP selects the next robot action as

ar = min
ai
r

ctot(r
i).

Algorithm 2. Pseudocode for the SelecMinAction function.

1: function selectMinAction(HEUHTP )
2: ar ← getValidRobotActions(root(HEUHTP ))
3: H′ ← [ ]
4: for all ar in ar do
5: Htmp ← copy(HEUHTP )
6: pruneBranches(Htmp, ar)
7: aggregateCosts(Htmp)
8: H′.add(Htmp)
9: end for

10: imin ← argmini ctot(root(H′[i]))
11: return ar[imin]
12: end function

The innovation of the method described above is repre-
sented by the combination of the action optimization and
the HTN tree pruning. Optimization over entire trees,

indeed, could become particularly expensive, in particu-
lar for long-lasting and complex assemblies. Removing all
the impossible sequences each time an action is selected
represents a simple yet effective solution to maintain the
complexity tractable. We stress the fact that, so far, the
functioning of the E-UHTP framework closely resembles
that of (Ramachandruni et al., 2023). In the next para-
graphs, we describe how we integrated joint actions and
failure handling.

Failure Recovery Failure Recovery is implemented to
handle unexpected action failures. As anticipated, we as-
sume failures to be detected by the monitoring system.
Furthermore, for the sake of simplicity, we assume that
each primitive action has a corresponding recovery action
to be executed in case of failure. The problem of making
the robot autonomous in deciding how to handle failures
is an attractive yet very complex aspect, which is left as
possible future work. To handle failures, we introduce a
novel node type called Recovery (R) node. Upon failure
detection, the failed action node is temporarily removed
from the HTN, and an R-node is inserted into the HTN
as a child of the failed action’s parent. This R-node has
its own associated cost and duration and may represent
tasks like picking up a dropped part or correcting a mis-
alignment. The completion of the recovery task triggers
the re-insertion of the original failed action node into the
HTN, allowing it to be attempted again when its require-
ments are met. The framework ensures that subsequent
dependent actions cannot proceed until the recovery and
the original action are successfully completed. Note that
the mechanism described above and implemetned through
the HandleFailure function in algorithm 1, makes the
HTN vary dynamically, according to the outcomes of the
monitoring system, which introduces more flexibility and
robustness to the framework. This mechanism can be eas-
ily extended to handle any kind of unpredictable event,
such as human changes of mind or agents’ inabilities to
complete a task.

Joint Actions Joint Actions are incorporated to account
for tasks requiring simultaneous effort. We assume that
only the human agent can initiate a joint action. When
the human initiates a joint action (see algorithm 1, lines
23-24), and robot is idle, it immediately starts executing
the same joint action, synchronized with the human. If the
robot is busy with another task, it completes the ongoing
task first and then joins the human in to perform the joint
action. Failures during joint actions are handled by the
standard recovery mechanism, potentially requiring both
agents to perform the recovery together.

3.2 HTN Construction from Annotated Videos

Automating HTN generation reduces manual effort and
can capture realistic task structures. Our approach takes
as input a dataset of annotated videos representing suc-
cessful assembly executions. Each video is represented as
a sequence of tuples, where each tuple contains the actions
being performed simultaneously by the human and the
robot, or ‘idle’ if an agent is inactive. Each action is
described by its name, its duration in time units, and
the agent performing it. Joint actions are represented by
identical action names for both agents in a tuple.



In the following we will consider a chair assembly example.
The chair assembly is constituted by 5 primitive acions:

A0: Attach left leg;
A1: Attach right leg;
A2: flip seat;
A3: Attach back;
A4: Attach back to seat;

A possible HTN representing the task is reported in Fig. 2.
An example of tuple representing a part of an annotated
video is reported below.

(["attach left leg",[3],["human"]],
["attach right leg",[2],["robot"]])

The algorithm proceeds in two main stages. First, it
extracts action requirements, that is, for each primitive
action observed in the dataset, the algorithm determines
the set of other actions that must be completed before
it can start. To this aim, for each video sequence, a
list of actions completed so far is maintained. When
an action occurs, the set of already completed actions
represents the potential set of preconditions. By analyzing
multiple videos showing different valid execution paths,
the algorithm identifies the necessary preconditions for
each action as the intersection of the sets of completed
actions observed just before the action starts. An example
of the results returned by this process is reported below for
one of the actions of the chair example. The list reports
the action name, the nominal durations extracted from
the videos, the agents able to perform the action, and the
requirements.

["attach back to seat",
[5,7],
["human","robot"],
["attach right leg",
"attach left leg",
"attach back",
"flip seat"]]-

Second, the algorithm constructs the HTN tree structure
based on the requirements. Note that, while the require-
ments set derived from an HTN is unique, multiple valid
HTN structures might be possible from a given set of
requirements, depending on how subtasks are grouped.
Our approach constructs one of the possible HTNs. The
construction proceeds bottom-up from the leaves (primi-
tive actions). Actions with no requirements can be placed
first. Actions whose requirements are fully met by the
actions already placed can then be added. If an action has
been seen to be performed by both a human and a robot,
a decision node is created. When multiple actions become
available simultaneously (i.e., their requirements are met
by the same set of completed actions), they are grouped
under a PO node if their requirements do not impose a
sequence between them, signifying potential parallelism.
If the requirements dictate a specific order, instead, they
are placed sequentially under a FO node. This process
recursively builds the tree until the root node, representing
the final assembly goal, is reached.

4. EXPERIMENTAL EVALUATION

We conducted simulation experiments to validate the
proposed methods. To simulate the assembly tasks, we
modeled the human as a random agent. The duration of
the actions is modeled as a Gaussian distribution with
nominal values of the action duration as mean and a
standard deviation set to 5 % of the nominal duration.

4.1 Failure Recovery Robustness Evaluation

To assess the robustness introduced by the failure recovery
mechanism, we simulated task executions under varying
conditions of uncertainty. We considered the chair assem-
bly task, systematically increasing the probability of fail-
ure for each primitive action from 10% up to 50%. For each
probability level, 100 runs were performed, recording the
total task completion time. Table 1 reports the completion
times. As expected, the mean and variance of the comple-
tion time increase with higher failure probabilities, reflect-
ing the time spent on recovery actions and re-attempts.
Despite the increased execution time, the extended UHTP
framework successfully completed the assembly task in all
simulation runs across all tested failure rates and task
complexities. This demonstrates that the implemented
recovery process ensures task completion, enhancing the
framework’s robustness.

Table 1. E-UHTP Completion Time at Differ-
ent Failure Probabilities on the Chair Example

Failure Prob[%] 10% 20% 30% 40% 50%

Completion Time [s] 27 28 34 40 46

4.2 Planning Policy Comparison

We evaluated the efficiency of the E-UHTP framework
against two baseline policies: a Greedy policy, where
the robot selects the available action with the lowest
immediate cost (duration), and a Random policy, where
the robot randomly selects among its currently available
actions.

We ran 1000 simulations for each policy on three different
tasks: the chair assembly and two randomly generated
tasks with 16 and 32 actions, respectively, featuring vary-
ing requirement complexities. Within the randomly gener-
ated tasks, we also randomly included joint actions. Table
2 presents the mean task completion times. Across all
tested scenarios, the E-UHTP policy consistently achieved
the lowest average completion time. While the Greedy
policy performed better than Random, it was often sub-
optimal, as minimizing immediate cost does not guarantee
minimizing total assembly time. The E-UHTP policy’s
ability to consider the aggregated cost of the remain-
ing task tree allowed for making more globally efficient
decisions, effectively coordinating with the unpredictable
human agent to minimize overall duration. The standard
deviation was also generally comparable or lower for E-
UHTP, suggesting consistent robustness to randomization.

5. CONCLUSIONS

This paper addressed key challenges in task representa-
tion and planning for human-robot collaborative assembly



Table 2. Task Completion Time Comparison

Policy 16 Actions 32 Actions Chair

Greedy 178.75 ± 11.10 340.71 ± 14.21 22.52 ± 0.65
Random 187.38 ± 12.33 344.26 ± 14.60 22.95 ± 0.42
E-UHTP 172.26 ± 7.08 331.10 ± 11.32 22.16 ± 0.26

within a communication-free setting. We introduced two
main contributions to enhance the flexibility and robust-
ness of such systems. First, we developed and validated an
algorithm capable of automatically constructing Hierar-
chical Task Network representations from annotated video
demonstrations. Second, we presented an extension of the
state-of-the-art UHTP framework, named E-UHTP. E-
UHTP incorporates mechanisms for handling joint actions
and for recovering from action failures. The framework
maintains the core UHTP principle of optimizing robot
actions based on aggregated costs while treating the hu-
man as an unpredictable agent, thus avoiding restrictive
human modeling or explicit communication requirements.
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