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Abstract

The Radar dEtection TRansformer (RETR) has recently been introduced to fuse multi-view
millimeter-wave radar heatmaps using a detection transformer framework and a simple ge-
ometric learning approach for indoor radar perception. A key part of RETR is its tunable
positional encoding (TPE), which adjusts the weight of depth positional embeddings across
different views to improve feature matching. However, the original design fixes the TPE ratio
before training. Differentiable Positional Encoding (DiPE) was proposed to overcome this
limitation for bounding box detection by automatically adjusting the TPE ratio with dual
differentiable masks on depth and angular positional embeddings. In this paper, we build on
the existing DiPE approach and propose a segmentation pipeline that extends its applica-
tion to human instance segmentation directly from radar signals. Our method integrates the
established DiPE mechanism into a framework for segmentation, working with either fixed
(e.g., sinusoidal) or learnable positional embeddings, and is optimized end-to-end with a seg-
mentation loss. Evaluation on the open-sourced MMVR dataset shows that our segmentation
pipeline achieves improved performance compared to conventional methods.
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Abstract—The Radar dEtection TRansformer (RETR) has re-
cently been introduced to fuse multi-view millimeter-wave radar
heatmaps using a detection transformer framework and a simple
geometric learning approach for indoor radar perception. A key
part of RETR is its tunable positional encoding (TPE), which
adjusts the weight of depth positional embeddings across different
views to improve feature matching. However, the original design
fixes the TPE ratio before training. Differentiable Positional
Encoding (DiPE) was proposed to overcome this limitation for
bounding box detection by automatically adjusting the TPE ratio
with dual differentiable masks on depth and angular positional
embeddings. In this paper, we build on the existing DiPE
approach and propose a segmentation pipeline that extends its
application to human instance segmentation directly from radar
signals. Our method integrates the established DiPE mechanism
into a framework for segmentation, working with either fixed
(e.g., sinusoidal) or learnable positional embeddings, and is
optimized end-to-end with a segmentation loss. Evaluation on
the open-sourced MMVR dataset shows that our segmentation
pipeline achieves improved performance compared to conven-
tional methods.

Index Terms—Indoor radar perception, instance segmentation,
radar detection transformer, positional encoding.

I. INTRODUCTION

Radar provides robust and reliable detection in low light,
adverse weather and hazardous conditions at a lower cost
than cameras and LiDAR. Its applications have expanded from
outdoor automotive sensing [1]-[5] to indoor scenarios such as
elder care, energy management, and navigation [2], [6]-[8].
However, the extraction of fine-grained semantic features from
radar signals remains challenging. Early works relied on low-
resolution point clouds with angular resolutions around 15°,
which were mostly confined to simple classification tasks [9]—-
[12]. More recent approaches exploit richer representations
such as radar heatmaps and even raw ADC data from high-
resolution radar sensors—featuring angular resolutions near
1.3° or below—to support advanced tasks like object detec-
tion, pose estimation, and segmentation [13]-[17].

In particular, the Radar Detection Transformer (RETR) [18]
uses the Detection Transformer (DETR) [19] framework to
fuse multi-view radar features with learnable object queries.
In this framework, the tunable positional encoding (TPE) can
be tuned to prioritise depth embeddings. Furthermore, this TPE
has been replaced by the Differentiable Positional Encoding
(DiPE) [20] scheme to automatically adjust the balance be-
tween depth and angular embeddings for bounding box (BBox)
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Fig. 1. End-to-End Radar human segmentation: It receives the multi-view
radar heatmaps and is sent to the transformer together with DiPE, which has
learnable parameters and can adjust the importance of the spatial axis. The
segmentation head, which receives the decoder output, predicts the human
mask. Each module is fully differentiable and is trained end-to-end.

prediction. While DiPE has proven effective in refining radar-
based object detection, its design has been limited to BBox
estimation, thereby limiting its application to tasks that require
more detailed scene understanding.

In this paper, we propose an enhanced end-to-end segmen-
tation pipeline that extends the DiPE framework to perform
instance segmentation of human directly from radar signals.
Unlike the original DiPE used in RETR for BBox regression,
our approach integrates segmentation-specific mechanisms to
accurately predict instance segmentation masks as illustrated
in Fig. 1. By employing an extended DiPE scheme, our method
dynamically modulates the relative contributions of depth and
angle information during training, ensuring finer extraction
of semantic features essential for segmentation tasks. Fur-
thermore, our pipeline benefits from end-to-end optimization
with a dedicated segmentation loss, thereby providing robust
performance in diverse indoor environments. Evaluation on the
MMVR dataset [17] indicates that our proposed segmentation
pipeline achieves improved segmentation accuracy compared
to conventional methods.

II. PROBLEM FORMULATION
A. Multi-View Radar Heatmaps

Multi-View Radar Heatmaps are generated from raw data
captured by two radar arrays: a vertical linear array and a hor-
izontal one, as illustrated in Fig. 2. By sampling multiple re-
flected pulses across the array elements, a 3D raw data cube is
constructed for each array, organized along ADC (intra-pulse)
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Fig. 2. Generation of multi-view heatmaps from raw radar data.

samples, pulse (inter-pulse) samples, and array elements. A
3D fast Fourier transform (FFT) converts the data cube into
corresponding 3D radar spectra across the range, Doppler
velocity, and spatial angle (azimuth for the horizontal array
and elevation for the vertical one). To enhance the signal-to-
noise ratio (SNR), the 3D radar spectra are integrated along the
Doppler domain, generating two 2D radar heatmaps (range-
azimuth and range-elevation) in the polar coordinate system.
These heatmaps are then transformed into the radar Cartesian
coordinate system, where Ypor(m) € RWxD represents the
horizontal-depth radar heatmap and Yo (m) € R¥*P the
vertical-depth heatmap for the m-th frame where W, H and
D denote the number of cells of width (horizontal), height
(vertical) and depth, respectively. To incorporate temporal
information, M consecutive radar frames are grouped together
as Yyor € RM*WXD and vertical Yyer € RM*HXD

B. Radar-Based Human Instance Segmentation

Given the multi-view radar heatmaps Yy, and Y., our
goal is to segment human subjects in the image plane by
leveraging both heatmaps as inputs,

Fimage = p]’.‘Oj image (T (f (Ylwrv YVer))) ’ (1)

where Fip.g, denotes segmentation masks (pixels) in the
image plane, f denotes the object detection module in the radar
coordinate system, 7 denotes the radar-to-camera coordinate
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transformation, and proj;,.,. denotes the 3D-to-2D image
projection.

III. END-TO-END RADAR HUMAN SEGMENTATION

The end-to-end radar segmentation pipeline is illustrated in
Fig. 3. It extends the radar detection transformer (RETR) [18]
by incorporating optimally tuned positional encoding for hu-
man segmentation tasks. Specifically, it consists of transformer
encoder and decoder modules that include self-/cross-attention,
a tunable positional encoding, a radar-to-camera geometry
transformation, and a 3D-to-2D projection. Since the multi-
view radar features lack positional information and the self-
attention is permutation-invariant, positional encoding is con-
catenated to the context (feature) embeddings at the input of
each encoder and decoder layer. The DiPE further optimizes
the tunable ratio between the angular positional embedding
dimension and the depth positional embedding dimension for
the human segmentation task. In the following, we introduce
each module in detail.

A. Backbone

Taking the two radar heatmaps Yy, and Y. as inputs,
a backbone network (e.g., ResNet [21]) generates horizontal-
view and vertical-view radar feature maps separately:

Zyor = backbone (Yyor) ,

Z,er = backbone (Yyer), 2)
where learnable parameters in the backbone are shared across
both views. Each featlge map is gen%rateDd as L multi-scale
feature maps in RC*51 %5 or RE*5 %< by using feature
pyramid network where C, s and [ € {1,---, L} represent
the number of channels, downsampling ratio over the spatial
dimension and the pyramid level, respectively.

B. Top-K Selection

Since the transformer encoder expects a sequence of fea-
tures as input, we map the above feature maps into a sequence
of 2K multi-view radar features:

Hy,r = Selector (Zyoy) € REXK
H,.. = Selector (Zye;) € RE*K, 3)
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Fig. 3. The end-to-end radar human segmentation pipeline with differentiable positional encoding (DiPE): 1) Encoder: Top-K features selection and DiPE
to assist feature association across the two radar views; 2) Decoder: the association between object queries and multi-view radar features; 3) Segmentation
Head: enhanced object queries are enforced to estimate binary pixels as the segmentation masks of human subjects in the image plane.



where K < min{WD/s?, HD/s?}. We further pool these
2K multi-view radar features

H’ = [Hyor, Hyer) € ROZH “)
as the input to the transformer encoder module.

C. Transformer Encoder and Decoder

The 2K multi-view radar features can be considered as a
sequence of 2K input tokens for the transformer encoder. For
the [-th encoder layer, we have

H'*! = encoder (Hl) , 1=0,1,--- ,Leecis — 1. (5

The encoder is mainly to process the multi-view radar input
sequences (i.e., 2K selected radar features) and generate rich
contextual representations by leveraging self-attention and
feed-forward transformations and capture feature correspon-
dence across the two radar views.

For each decoder layer, it takes N object queries: Q' €
RE*XN as its input, and consists of a self-attention layer, a
cross-attention layer and a feed forward network (FFN). It
updates all queries

Q! =decodergeis (Ql) ) ©)
Ql+1 =decoder yoss (Ql7HLself) ) Q)

via multi-head self-attention and cross-attention, respectively,
where [ = 0,1, -+, Leyoss — 1.

D. Differentiable Positional Encoding (DiPE)

Positional encoding is essential for providing spatial infor-
mation to each feature (embedding h € H! or decoder em-
bedding q € Q'). We adopt DiPE as the positional encoding,
leveraging the shared depth axis between the two radar views
as an inductive bias to emphasize depth importance and reduce
redundant correlations. DiPE first generates the positional em-
beddings of dimension dy.s for each axis (vertical, horizontal,
depth) in advance. Then, using the parameters 6, we generate
a mask m (¢; @) and apply the dual masking:

P = Myya1 (0) ©d + (1 — Myua1 (0)) © ag, (®)

where mgy,; (0) = {m (1;0),....,m (dpos; 0) }T is the vector
collected with each dimension ¢, 1 is a vector with all elements
of 1, ® represents Hadamard product, and £ is an operation
that flips the order of the vector’s elements: a”) = a(dws+1=1),
And the mask m (7; ) is specifically defined to be differen-

tiable [20]: .

Tirerem )
where @ = {i > 0,7} are offset and temperature parameters.
The attention weight is based on the dot-product between

query (q) and key (k):
(Mguar () © dq + (1 —mga (0)) © af,q)

(Maya1 (0) © dg + (1 — mgya1 (0)) © asx)
- N _

= (dq +agq — af,q) (dk +asx — af,k) (10)
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Fig. 4. Illustration of the segmentation head and reconstruction modules.

where X = mgya1 (6) ©x. Eq. 10 contains blended components
according to .

E. Segmentation Head and Reconstruction

We extend RETR for instance segmentation by incorporat-
ing a dedicated segmentation head that operates on the decoder
outputs. Fig. 4 illustrates the overall design, consisting of four
main components: 1) a cross-attention layer, 2) an FPN-style
CNN, and 3) a lightweight U-Net [22], and 4) BBox and
Class prediction modules. Each refined query q € QFeross
is processed through a cross-attention layer to generate low-
resolution attention heatmaps for individual objects.

Z = Attcross (q7 Zver) P (11)

where Z., is the vertical feature map, which emphasizes the
subject’s height dimension, and is fed into a feature pyramid
network (FPN) FPN(-). By aggregating multi-scale vertical
features from layers (Res5 to Res2), the FPN not only refines
the resolution but also handles the transformation from the
radar plane to the image plane. However, since the FPN alone
has limited capacity to produce high-resolution masks, we
append a light U-Net Unet(-) as the reconstruction to further
enhance the coarse masks:

m = sigmoid (Unet (FPN (2, Znor, [Zver]))) (12)

where m is a predicted binary mask and [Zyey] denote the
multi-scale vertical feature maps obtained by Backbone. Our
model outputs a single binary mask for each query with above
sigmoid function. Following the BBox prediction in the radar
domain, we apply the Radar-to-Camera transformation and
project the 3D box onto the image plane. The corresponding
image-region ground-truth (GT) mask is then cropped and
used to supervise the predicted mask for that specific query.

F. Loss Function

We adopt a combination of Dice/F-1 loss [23] and focal
loss [24] for training the segmentation head. Let m,, € [0, 1]
be the GT label and 7, € [0,1] in {rhi}ilil be the predicted
probability for pixel p. Dice loss and focal loss are defined as:

2Zp My My

»Cdice =1~ Ep m, T Zp mp T i (13)
£foca1 - - Z {a mp<1 - mp)’y log(mp)
p
+(1 = a) (1 —my) (M) log(1 —1my,)}, (14)



TABLE I
DETECTION RESULTS ON MMVR. RFMASK DOES NOT HAVE PE. FOR RETR WITH TPE, Trained @& CORRESPONDS TO A RATIO o.

Model PE Trained 6 = {,LL, T} ‘ AP AP50 AP75 AR1 AR10 IoU
RFMask - - 31.37 61.50 27.48 33.23 38.41 65.30
DETR Sinusoid - 29.38 62.31 25.35 31.32 43.06 70.15
RETR with TPE Sinusoid 0.60 / - 46.75 83.80 46.06 42.19 57.39 77.21
RETR with TPE Learned 0.60 / - 46.71 82.27 45.09 41.61 56.22 76.1
RETR with DiPE (Ours) Sinusoid 0.90/0.94 47.09 84.15 46.14 44.43 59.18 77.55
RETR with DiPE (Ours) Learned 0.67 / 0.32 47.75 83.72 46.31 42.11 56.37 77.01

where € is a small constant for numerical stability, « is a bal-
ancing parameter that adjusts the importance between positive
and negative samples, and v is a focusing parameter that down-
weights the loss contribution of well-classified examples. The
final segmentation loss is the sum of these two terms:

Lseg = Laice + Lsocal- (15)
IV. EXPERIMENTS
A. Experimental Setup
Our experiments utilize the indoor radar dataset

MMVR [17], following the same protocol as in [18],
[20]. MMVR comprises multi-view radar heatmaps collected
from 25 human subjects across 6 rooms over 9 days. In this
work, we focus on data from Protocol 2 (P2), which contains
a total of 237.9K frames capturing multiple subjects. The
training, validation, and test splits are defined according to
the S1 split provided in the MMVR dataset.

Two different positional encoding strategies are investigated:
a sine/cosine encoding method, denoted as Sinusoid, and
a learnable embedding approach, denoted as Learned. For
baseline comparisons, we consider RFMask [16], DETR [19],
and RETR [18]. Specifically, in the implementations of DETR
and RETR, the embedding dimension is set to dpos = 256,
and a ratio of a = 0.6 is employed as established in [18]. All
other hyper-parameters, including the learning rate and early
stopping criteria, are adopted from [18].

Performance is evaluated from multiple perspectives. For
segmentation, we assess instance segmentation performance
by evaluating the Intersection over Union (IoU) [25] between
predicted masks and GT masks. IoU is the ratio of the overlap
to the union of a predicted BBox A and annotated BBox B

as:
_ AN Bl

IoU(A, B) = AUB|

(16)

B. Results

Table I presents a comprehensive comparison of detection
models, where the detection results (AP metrics) are directly
quoted from Table 1 in [20]. In the table, “PE” indicates the
type of positional encoding used, and “Trained 6 = {u, 7}”
represents the learned parameters obtained after training. For
RETR with TPE, the value of the ratio « is reported as
u, whereas for DiPE, both the pre-scaling value p and the
blending parameter 7 are provided. The segmentation perfor-
mance, evaluated using the IoU metric, further supports the
benefits of DIiPE. The higher IoU scores achieved by DiPE

RETR w/ DIiPE  RETR w/ TPE

Fig. 5. Visualization of human segmentation in the image plane. Each row
represents a different environment. GT denotes ground-truth for comparison
of predicted masks. Our RETR w/ DiPE can predict the human shape more
accurately.

compared to the baseline models indicate that our approach not
only improves detection accuracy but also yields more precise
instance segmentation by ensuring a better overlap between
the predicted masks and GT.

Fig. 5 shows the visualization results of the segmentation.
For RETR w/ TPE, the segmentation results are significantly
distorted, with human shapes appearing overly smoothed or
stretched, losing important shape details. On the other hand,
our RETR w/ DiPE is more accurate and preserves the human
shape better compared to RETR w/ TPE. This shows that
our RETR w/ DiPE method provides a more accurate and
realistic human segmentation, outperforming RETR w/ TPE
in preserving the correct shape and details of human figures.

V. CONCLUSION

We introduced an end-to-end radar human segmentation
pipeline that takes the multi-view radar heatmaps as input
and estimates binary masks for each human subject in the
image plane. Our pipeline leverages the query-based detection
frameworks such as DETR and RETR and integrates the
differentiable positional encoding to enhance the segmentation
performance. Evaluations on the MMVR dataset confirm the
effectiveness of the proposed pipeline.
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