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Abstract

We propose Hierarchical Audio Codec (HAC), a unified neural speech codec that factorizes its
bottleneck into three linguistic levels—acoustic, phonetic, and lexical—within a single model.
HAC leverages two knowledge distillation objectives: one from a pre-trained speech encoder
(HuBERT) for phoneme- level structure, and another from a text-based encoder (LaBSE)
for lexical cues. Experiments on English and multilingual data show that HAC’s factorized
bottleneck yields disentangled token sets: one aligns with phonemes, while another captures
word-level semantics. Quantitative evaluations confirm that HAC tokens preserve naturalness
and provide interpretable linguistic information, outperforming single-level baselines in both
disentanglement and reconstruction quality. These findings underscore HAC’s potential as
a unified discrete speech representation, bridging acoustic detail and lexical meaning for
downstream speech generation and understanding tasks.
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Abstract

We propose Hierarchical Audio Codec (HAC), a unified neu-
ral speech codec that factorizes its bottleneck into three lin-
guistic levels—acoustic, phonetic, and lexical—within a single
model. HAC leverages two knowledge distillation objectives:
one from a pre-trained speech encoder (HuBERT) for phoneme-
level structure, and another from a text-based encoder (LaBSE)
for lexical cues. Experiments on English and multilingual
data show that HAC’s factorized bottleneck yields disentan-
gled token sets: one aligns with phonemes, while another cap-
tures word-level semantics. Quantitative evaluations confirm
that HAC tokens preserve naturalness and provide interpretable
linguistic information, outperforming single-level baselines in
both disentanglement and reconstruction quality. These find-
ings underscore HAC’s potential as a unified discrete speech
representation, bridging acoustic detail and lexical meaning for
downstream speech generation and understanding tasks.

Index Terms: RVQ, GAN, Audio Codec, Speech Tokenization

1. Introduction

Neural speech codecs (NSCs) are a family of neural network ar-
chitectures that convert speech signals into discrete token repre-
sentations [1-4]. These discrete tokens can then be leveraged in
various downstream tasks, ranging from spoken language mod-
eling [5] and speech-to-speech translation [6] to text-to-speech
synthesis [7] and speech understanding in large language mod-
els. Broadly, NSCs can be classified into phonetic (P-NSC) and
acoustic (A-NSC) approaches.

A P-NSC follows a two-stage pipeline: (1) a pre-trained
transformer encoder (e.g., HuBERT [8]), trained via self-
supervised learning (SSL), outputs contextual acoustic frame
embeddings; and (2) those embeddings, selected from the layer
that performs best on a phoneme recognition task, are quantized
using k-means vector quantization (VQ) to produce discrete to-
kens [9]. Because these tokens align closely with underlying
phoneme labels, P-NSCs excel at tasks requiring high-level lin-
guistic structure [6, 10]. However, speech generated from P-
NSCs tends to sound robotic and lacks speaker diversity [5].

By contrast, A-NSCs aim for high-fidelity speech recon-
struction through a low-bitrate compression model, often based
on the residual VQ-generative adversarial network (RVQ-GAN)
framework. An encoder maps input speech to acoustic frame
embeddings which are then quantized into discrete token se-
quences across multiple VQ layers. A decoder reconstructs
the speech from these tokens, preserving detailed acoustic nu-
ances, resulting in more natural-sounding speech with broad
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Figure 1: Diagram of our proposed Hierarchical Audio Codec
(HAC). HAC encodes the input speech signal x into a multi-
level set of disentangled discrete tokens (lexical QQi, phonetic
Qp, and acoustic Qq) capturing distinct aspects of the audio.
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speaker variation. Nonetheless, because A-NSCs focus on fine-
grained acoustic details, they often lack coherent linguistic and
grammatical structure. Prominent examples of A-NSCs include
SoundStream [1], Encodec [2], and Descript Audio Codec [3].

Recent work, such as SpeechTokenizer [11], addresses the
limitations of standalone P-NSCs and A-NSCs by combining
phonetic and acoustic tokens within a single framework. How-
ever, these two-level solutions omit an important lexical repre-
sentation, which captures word-level or subword-level semantic
and syntactic information. In contrast, our proposed Hierarchi-
cal Audio Codec (HAC) introduces this third level of abstrac-
tion, lexical, alongside phonetic and acoustic tokens, enabling it
to jointly model higher-level linguistic structure, mid-level pho-
netic details, and fine-grained acoustic nuances. Learning this
extra lexical layer is particularly valuable for downstream tasks
such as spoken language modeling, speech-to-speech transla-
tion, and voice-enabled question answering, where a richer,
word-oriented representation can substantially improve seman-
tic coherence and contextual accuracy. By disentangling the to-
ken space across these three levels, HAC combines the strengths
of existing two-level models with a deeper linguistic under-
standing, all within a unified architecture that eliminates the
need for external token merging.

2. Hierarchical Audio Codec (HAC)

HAQC, illustrated in Fig. 1, consists of a down-sampling CNN
encoder (ENC), two transformer encoders (TrfENC, ;), a fac-
torized bottleneck consisting of three VQ modules (VQphn,
RVQacoust, and VQlex), and an up-sampling CNN decoder
(DEC). HAC is trained using tuples (z, yai), where z € RT
is a speech utterance and ya is its force-aligned text transcript.



HAC maps «x to z, a reconstruction of = through the following
steps:

Z = ENC(x),
Zq.,Qa = RVQacoust(Z),
2q,,Qp = VQphn(TrfENC,(Z)),
Zo,, Qi = VQlex(TrfENC,(Z)),
2 =2q, +Za. + Za;
& = DEC(Zq),

where Z, Zq,, Za,, Zq, € RF*P and Zg,, Zq,, and
Zq, are the codebook entries corresponding to token sets Q. €
{1,..., AN Q, e {1,...,P},and Q, € {1,...,L}T,
respectively. Here, F' is the number of acoustic frames, and D
is the frame embedding dimension. To maximize codebook uti-
lization, the VQ layers follow the low-dimensional code lookup
process described in [3]. RVQacoust module performs residual
vector quantization (RVQ) and consists of N VQ layers, each
with a codebook size of A. VQphn and VQ1ex consist of a single
VQ layer with codebook sizes P and L, respectively.

HAC is trained in an adversarial framework, where the
HAC generator is paired with a discriminator as described
in [3]. The overall training objective includes: 1) a frequency-
domain reconstruction loss to ensure faithful spectral recovery,
2) an adversarial loss to encourage natural-sounding outputs,
and 3) codebook learning losses to update the codebook entries.
These objectives are described in detail in [3]. To ensure that
each token set encodes the intended type of information, we
introduce knowledge distillation (KD) losses on the phonetic
and lexical bottlenecks: 1) Lkp-pnn encourages () to represent
phoneme-level features, and 2) Lkp.Lex encourages @Q; to rep-
resent word-level (lexical) information. By providing the de-
coder with phonetic (Zq,) and high-level lexical (Zq,) infor-
mation, the acoustic bottleneck RVQacoust is free to focus on
fine-grained acoustic details, critical for high-fidelity signal re-
construction.

Following [11], we compute the KD losses as follows:

ZQP = ZQpAIH ZQl = ZQLAZ:

D’

1 .5
LKD-Phn = o Zlog(a(cosslm(ZQp [:, d], Zhber[:, d]))),
d=1
1 D// _
LKDLex = o Zlog(o(cos,sim(ZQl [:, d], Zise:, d]))),
d=1

Zhuberl = AVg(HuBERT(a:)), Zlabse = Avg(LaBSE(yali)),

where D’ and D" are the embedding dimensionalities of Hu-
BERT and LaBSE, respectively, cos_sim(-) is the cosine sim-
ilarity, o(-) is the sigmoid function, A, and A; are projection
matrices for dimension matching, and Avg(-) averages repre-
sentations over all layers of HuBERT or LaBSE [12].

While we explore other settings in Section 3, our best-
performing HAC model has the following hyperparameters: 1)
Training input: each speech recording z is 3.8 seconds long and
has a 16 kHz sampling rate; 2) Downsampling factor: ENC re-
duces the input time resolution by a factor of 320; 3) Frame
embedding dimensionality: D = 1024; 4) Phonetic and lexi-
cal codebooks: both VQphn and VQlex use a single VQ layer
with codebook size 16,384 (14-bit), and codebook entries are
128-dimensional; and 5) Acoustic codebook: RVQacoust has
N = 7 VQ layers, each with codebook size A = 1024, and

each codebook entry is 8-dimensional. Each acoustic frame is
represented by 9 tokens (the 7 acoustic tokens plus 1 phonetic
token and 1 lexical token). The ENC and DEC follow the same
CNN architecture described in [3]. TrfENC,; has 4 layers, 8
attention heads, model embedding dimensionality of 768, and
feed-forward dimensionality 3072. Layer-normalization is ap-
plied to each layer’s input, and the encoder has learnable con-
volutional positional embeddings [13].

HAC is optimized on eight A40 GPUs with a total batch
size of 60 seconds. We use the AdamW optimizer with a learn-
ing rate le-4, 81 = 0.8, and 2 = 0.9. We train the model for
400K iterations and decay the learning rate at every step with
v = 0.999996.

3. Experiments

We train English-language models on the LibriSpeech dataset
[14], consisting of 960 hours of transcribed English speech, and
multilingual models on the VoxPopuli dataset [15], which in-
cludes 1.7K hours of transcribed speech across 16 languages.
For evaluation, we use forced-aligned test sets from Lib-
riSpeech and Multilingual LibriSpeech (MLS) [16]. The MLS
corpus contains eight languages: English (EN), French (FR),
German (DE), Italian (IT), Polish (PL), Portuguese (PT), Span-
ish (ES), and Dutch (NL). We obtain forced alignments using
the Montreal Forced Aligner [17]. We train this aligner for lan-
guages other than English on a subset of each respective MLS
training set.

Below, we summarize the models trained in this work. Each
model name encodes its key features, including codebook size,
the teacher model for KD, and whether a transformer encoder is
employed.

ST-10-HuB-en (Baseline): This is our English (en) base-
line, SpeechTokenizer (ST) [11]. It is based on an RVQ-GAN
framework trained with a generative objective and the phonetic
KD loss (Lkp.phn) described in Section 2. ST’s RVQ bottleneck
consists of 9 VQ layers. The model distills from HuBERT-Base
by matching the first VQ layer’s quantized frame embeddings
to the averaged HuBERT-Base embeddings. Each VQ layer has
a 10-bit codebook of dimensionality 1024. ST extends Encodec
[2] (an earlier RVQ-GAN for audio compression) by adding the
Phoneme level KD loss to Encodec’s original generative and
codebook learning objectives. Like Encodec, ST updates its
codebooks via exponential moving average (EMA) and period-
ically re-initializes them to maximize utilization. To have a fair
comparison with other models, we train the baseline using our
codebase, instead of using the publicly available checkpoint.

DAC-10-HuB-en: This model adds the phonetic KD loss
to DAC [3], an improved version of Encodec that uses low-
dimensional code lookups for improved codebook utilization
and reconstruction. Like the baseline, it has 9 10-bit VQ layers
but has a codebook dimensionality of 8, much lower than the
baseline. Since a very low-dimensional codebook is less ideal
for KD, we increase the first VQ layer’s dimensionality to 128
while keeping the remaining layers at 8 dimensions. Further-
more, unlike ST-10-HuB-en, where the phonetic VQ layer (the
KD student) is part of the RVQ module, in DAC-10-HuB-en, we
factor out this layer, leading to slightly improved token qual-
ity and reconstruction performance. DAC-14-HuB-en: This
variant extends DAC-10-HuB-en by increasing the phonetic VQ
layer’s codebook size from 10-bit to 14-bit, enabling a larger vo-
cabulary of phoneme-level tokens. DAC-14-HuB-T-en: Build-
ing on DAC-14-HuB-en, this model adds a transformer encoder
(TrfENC,, described in Section 2) before the factored-out pho-
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Figure 2: ABX error rate across different models and scenarios.
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Figure 3: Phoneme Normalized Mutual Information (PNMI)
across different models and languages.

netic VQ layer, allowing the VQ layer to capture richer con-
text before quantization. DAC-14-mHuB-T-en: This version
uses multilingual HUBERT (mHuBERT) [18] as the teacher for
phonetic KD loss. It follows the same architecture as DAC-14-
HuB-T-en but replaces HuBERT-Base with a multilingual vari-
ant. DAC-14-mHuB-T-L16: A multilingual DAC model that
is trained on both VoxPopuli and LibriSpeech. It retains the 14-
bit phonetic VQ layer and uses mHuBERT, matching DAC-14-
mHuB-T-en’s setup, but extends training across 16 languages.
HAC-14-SAMU-HuB-T-en: This is the Hierarchical Au-
dio Codec (HAC) variant with 9 VQ layers, of which two are
factored out of the RVQ module. Both factored-out layers have
14-bit codebooks of dimensionality 128; the remaining lay-
ers have 10-bit codebooks of dimension 8. For the lexical-
level KD loss (Lxp-Lex), we use SAMU-XLS-R (SAMU) [19]
as the teacher. SAMU is a language-agnostic semantic speech
encoder obtained by distilling LaBSE into a speech model.
SAMU removes the need for forced-aligned transcripts when
computing the lexical KD loss. Meanwhile, phonetic KD loss
still uses HuBERT-Base. HAC-14-LaBSE-HuB-T-en: Identi-
cal to HAC-14-SAMU-HuB-T-en, except the lexical KD loss
is computed directly from LaBSE embeddings that correspond
to force-aligned transcripts rather than from SAMU. HAC-14-
SAMU-mHuB-T-L16: A multilingual HAC model, extending
HAC-14-SAMU-HuB-T-en to 16 languages. It uses mHuBERT
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Figure 4: F1I Scores of VQ tokens when treated as word detec-
tors on the LibriSpeech corpus.

for phoneme-level KD and SAMU for lexical-level KD. HAC-
14-LaBSE-mHuB-T-L16: The multilingual version of HAC-
14-LaBSE-HuB-T-en. It uses LaBSE for lexical-level KD and
mHuBERT for phoneme-level KD.

Figures 2 and 3 evaluate how well the phonetic VQ layer
(attached to Lkp-pnn) captures phoneme-level information.

Figure 2 compares various models on the ABX discrimina-
tion task [20], where three samples (A, B, and X) are presented,
A and B differ (e.g., distinct phonemes), and X matches either
A or B. The ABX error rate is the proportion of incorrect clas-
sifications. We consider two setups: (1) Context-Independent
(CI), where A and B are different phonemes in isolation, and
(2) Context-Dependent (CD), where A and B are triphones to
account for coarticulation. The ABX triples are extracted from
the LibriSpeech test sets (clean & other), available in abxLS,
an evaluation task in the zero-resource-speech benchmark [21].
All models outperform the reference MFCC-based error rate,
with DAC and HAC outperforming the baseline ST-10-HuB-
en. Among the DAC variants, DAC-14-HuB-en performs better
than DAC-10-HuB-en, likely due to its higher bitrate. Intro-
ducing a transformer encoder before the student VQ layer as
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Figure 5: Layer-wise Phoneme Normalized Mutual Information
for different models.

in DAC-14-HuB-T-en further reduces ABX error. HAC mod-
els show slightly higher ABX errors than DAC possibly be-
cause juggling both phoneme-level (Lkp-pnn) and lexical-level
(Lkp-Lex) losses introduces additional training complexity. We
also report ABX error rates using HuBERT (HuB) and mHu-
BERT (mHuB) embeddings for reference.

Figure 3 shows results for Phoneme Normalized Mutual
Information (PNMI) [8], which measures the mutual informa-
tion between tokens and true phoneme labels, normalized by
phoneme label entropy. Values range from 0 (no correspon-
dence) to 1 (perfect alignment). We evaluate PNMI across
eight MLS languages. The multilingual DAC-14-mHuB-T-L16
model achieves the highest average PNMI, followed by the
HAC multilingual variants; ST-10-HuB-en ranks lowest. Con-
sistent with the ABX results, adding a transformer encoder be-
fore the phonetic VQ layer (e.g., DAC-14-HuB-T-en vs. DAC-
14-HuB-en) significantly boosts PNMI. English performance
is strongest overall, reflecting its greater share of training data
compared to other languages.

Figure 4 explores how well the tokens align with word la-
bels. We extract tokens from the VQlex layer for HAC models.
For DAC and ST models, we use the phonetic VQ layer. Fol-
lowing [22], we compute the F1 score for each (word, token)
pair to see if the discovered tokens capture lexical items. Fig-
ure 4 plots how many tokens achieve an F1 score above various
thresholds. HAC models exhibit a clear advantage, producing
substantially more word detectors than their DAC or ST coun-
terparts. HAC-14-LaBSE-HuB-T-en attains the highest number
of strong word detectors, leveraging LaBSE-based text embed-
dings for lexical-level KD. HAC-14-SAMU-HuB-T-en ranks a
close second; notably, it does not require text transcripts to com-
pute the KD loss because it uses SAMU, a language-agnostic
semantic speech encoder. Multilingual HAC models perform
slightly worse, as expected given that evaluation is on English
words only.

Figures 5 and 6 provide evidence of how different VQ lay-
ers in HAC encode distinct linguistic abstractions.

Figure 5 compares layer-wise PNMI for HAC (HAC-10-
SAMU-HuB-T-en), DAC (DAC-10-HuB-T-en), and ST (ST-10-
HuB-T-en). VQ layers 1 and 2 in HAC refer to the lexical (at-
tached to Lkp.Lex) and phonetic (attached to Lkp-pnn) VQ layers,
respectively. In DAC and ST, VQ layer 1 refers to the phonetic
layer. All models show partial disentanglement: phonetic lay-
ers yield higher PNMI, whereas other layers do not align with
phoneme labels. Notably, HAC’s lexical VQ layer (Layer 1)
also exhibits some phoneme alignment but remains less phone-
mically oriented than the phonetic layer. Overall, DAC and
HAC achieve stronger disentanglement than ST.

Figure 6 shows correspondence between tokens from dif-
ferent layers of HAC and the word labels. We observe that the
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Figure 6: FI Scores of VQ tokens from different VQ layers of
HAC when treated as word detectors.

Table 1: Reconstruction metrics across different models.

Model Mel-D | STFT-D ] SI-SDR [dB]1 ViSQOL ¢
ST 0.64 1.42 6.24 3.89
HAC 0.58 1.37 7.42 434
DAC 0.55 1.34 7.82 4.50
DAC (Orig) 051 1.29 8.01 4.55

layer VQ1lex has significantly more codebook entries that act as
word detectors compared to other layers. Some codebook en-
tries of the VQphn layer act as word detectors, and virtually no
codebook entries from the RVQacoust module of HAC act as
word detectors.

Finally, Table 1 compares the reconstruction quality of dif-
ferent models on LibriSpeech clean test set using standard re-
construction metrics (see Section 4.4 of [3] for details). Both
DAC and HAC outperform the baseline ST and achieve recon-
struction quality on par with DAC (Orig.) [3], an RVQ-GAN
trained solely on generative losses. For brevity, DAC refers to
DAC-10-HuB-T-en, ST to ST-10-HuB-en, and HAC to HAC-
10-SAMU-HuB-T-en throughout the table.

4. Conclusions

This paper introduced Hierarchical Audio Codec (HAC), a fac-
torized RVQ-GAN framework that unifies acoustic, phonetic,
and lexical token sets within a single model. Through dedi-
cated knowledge distillation losses from speech-focused (Hu-
BERT) and text-based (LaBSE) encoders, HAC learns comple-
mentary token groups at different levels of linguistic abstrac-
tion. Specifically, the acoustic tokens capture the fine-grained
spectral details needed for natural-sounding speech reconstruc-
tion, while the phonetic tokens align closely with underlying
phoneme sequences, and the lexical tokens detect word-level
distinctions. Experiments demonstrate that this disentangled
multi-level representation not only preserves high-fidelity au-
dio quality but also offers strong linguistic and semantic inter-
pretability across various languages. Overall, our results high-
light the potential of factorized tokenization to bridge the gap
between high-fidelity audio compression and linguistically rich
speech representations.
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