MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

HASRD: Hierarchical Acoustic and Semantic Representation
Disentanglement

Hussein, Amir; Khurana, Sameer; Wichern, Gordon; Germain, Frangois G; Le Roux, Jonathan

TR2025-122  August 20, 2025

Abstract

Effective speech representations for spoken language models must balance semantic relevance
with acoustic fidelity for high- quality reconstruction. However, existing approaches struggle
to achieve both simultaneously. To address this, we introduce Hierarchical Acoustic and Se-
mantic Representation Disentanglement (HASRD, pronounced “hazard”), a framework that
factorizes self-supervised learning representations into discrete semantic and acoustic tokens.
HASRD assigns the semantic representation to the first codebook, while encoding acoustic
residuals in subsequent codebooks. This preserves ASR performance while achieving high-
quality reconstruction. Addi- tionally, we enhance HASRD’s encoder efficiency, improving
ASR performance without compromising reconstruction quality. Compared to SpeechTok-
enizer, HASRD achieves a 44% relative WER improvement, superior reconstruction quality,
and 2x lower bitrate, demonstrating its effectiveness in disentangling acoustic and semantic
information.

Interspeech 2025

(© 2025 ISCA. Personal use of this material is permitted. Permission from ISCA must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






HASRD: Hierarchical Acoustic and Semantic Representation Disentanglement

Amir Hussein'?, Sameer Khurana', Gordon Wichern', Francois G. Germain', Jonathan Le Roux"

Mitsubishi Electric Research Laboratories, USA
2Johns Hopkins University, USA

ahussei6@jhu.edu, {wichern,germain, leroux}@merl.com

Abstract

Effective speech representations for spoken language models
must balance semantic relevance with acoustic fidelity for high-
quality reconstruction. However, existing approaches struggle
to achieve both simultaneously. To address this, we introduce
Hierarchical Acoustic and Semantic Representation Disentan-
glement (HASRD, pronounced ‘“hazard”), a framework that
factorizes self-supervised learning representations into discrete
semantic and acoustic tokens. HASRD assigns the semantic
representation to the first codebook, while encoding acoustic
residuals in subsequent codebooks. This preserves ASR per-
formance while achieving high-quality reconstruction. Addi-
tionally, we enhance HASRD’s encoder efficiency, improving
ASR performance without compromising reconstruction qual-
ity. Compared to SpeechTokenizer, HASRD achieves a 44%
relative WER improvement, superior reconstruction quality,
and 2x lower bitrate, demonstrating its effectiveness in disen-
tangling acoustic and semantic information.

Index Terms: self-supervised learning, speech recognition,
vector quantization, neural audio codecs

1. Introduction

The remarkable performance of large language models has in-
spired the development of spoken language models (SLMs)
that leverage discrete speech representations [1-3]. SLM use
cases range from cross-modal conversational abilities, enabling
them to understand and generate multimodal content, to vari-
ous speech-related tasks such as automatic speech recognition
(ASR), speech translation (ST), and spoken language under-
standing [3, 4]. Discrete speech representations for SLMs are
broadly categorized into semantic and acoustic tokens [2, 5].
Prior work [5, 6] highlights the importance of balancing seman-
tic content and acoustic fidelity to support both language mod-
eling and high-quality synthesis. Semantic tokens are derived
by pre-training a transformer encoder via self-supervised learn-
ing (SSL) typically based on masked prediction [7-9], followed
by vector quantization. While effective for ST and ASR [6, 10,
11], semantic tokens often degrade synthesis quality and lack
fine acoustic details compared to neural audio codecs [5, 12]. In
contrast, acoustic tokens are produced by neural audio codecs
trained for reconstruction [13, 14], which use hierarchical quan-
tization such as residual vector quantization (RVQ) to preserve
audio fidelity [15, 16], but lack semantic structure. This trade-
off motivates the need for a unified architecture that supports
both accurate recognition and high-quality resynthesis.
Recently, researchers proposed jointly learning semantic
and acoustic discrete representations by distilling semantic in-
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formation into the first codebook of a neural codec, while using
the remaining codebooks for acoustic reconstruction [5, 15, 17].
While this improves semantic content, performance on semantic
tasks still degrades compared to the teacher model. Moreover,
state-of-the-art codecs [16] achieve high reconstruction quality
by using codebooks with small latent dimensionalities, optimiz-
ing codebook utilization. However, this design makes distilla-
tion within such constrained latent spaces particularly challeng-
ing. A closely related work [18], developed concurrently with
ours, focuses on voice conversion by disentangling content (K-
means quantized SSL) from speaker variation (SSL residual af-
ter content subtraction). However, it assumes that a single SSL
layer captures both content and acoustic information, and it re-
mains unclear how well the learned representation performs on
semantic tasks such as ASR.

To address the aforementioned limitations, we propose a
unified model that disentangles and jointly learns semantic and
acoustic speech tokens. Unlike prior work, our approach aims to
preserve performance on semantic tasks while achieving high-
quality reconstruction. To this end, we introduce a novel hier-
archical disentanglement framework inspired by the concept of
RVQ. Prior research has demonstrated that SSL representations
are well-suited for semantic tasks and can also facilitate speech
resynthesis [19-22]. Motivated by this, we factorize SSL rep-
resentations into discrete semantic and acoustic tokens, where
the semantic layer forms the first RVQ codebook, and the re-
maining codebooks encode the acoustic residual via a recon-
struction objective. Our key contributions are: 1) HASRD, a
novel framework for learning disentangled acoustic and seman-
tic representations, 2) an efficient CNN encoder that reduces
computational complexity while maintaining high reconstruc-
tion quality in neural codecs, and 3) an improved design of SSL
that utilizes random projection quantization, leading to better
quantized representations. Additionally, we provide an in-depth
analysis of information disentanglement, highlighting the con-
flicting objectives of acoustic and semantic representations and
explaining how optimizing one often degrades the other.

2. Proposed Approach

For discrete speech representations to be effective for SLMs,
they must capture semantic information while preserving acous-
tic details to enable high-quality speech synthesis. However,
these objectives often conflict, as enhancing one can degrade
the other, making it challenging to learn a single representation
that balances both, as illustrated in Section 4.3. To overcome
this challenge, we propose a two-stage approach that combines
1) SSL pretraining with a masked language modeling (MLM)
objective and 2) continued training with residual vector quan-
tization (RVQ) and reconstruction objective. This framework
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Figure 1: Proposed HASRD framework for hierarchical disentangling of acoustic and semantic representations

enables good word error rate (WER) performance, strong com-
pression, and high-quality reconstruction.

2.1. Semantic Pre-Training

We adopt SSL pre-training with an MLM objective. Our CNN
encoder design is inspired by the Descript Audio Codec frame-
work [16]. Given computational constraints, we first enhance
the efficiency of the CNN encoder. Instead of raw audio, our
system first computes an F'-dimensional log mel-spectrogram
X € RT*F as input. The encoder consists of two 1D-CNN
blocks with strided convolutions, each containing three residual
units with 1D dilated convolutions. We use the Snake activa-
tion function [16] for nonlinearity. To further reduce the num-
ber of parameters, we employ depthwise separable convolutions
[23], a special case of grouped convolution where the number
of groups matches the number of channels. To better capture
semantic information, we enhance the CNN encoder by stack-
ing Conformer modules with multi-head attention (MHA) on
top of the CNN blocks, and we pre-train it with an MLM ob-
jective. Following BestRQ [24], we apply a random projection
quantizer to the stacked fbank feature sequence X e RT'*F /,
where T' = T' /4 and F’ = 4F, with a single codebook to gen-
erate labels Y for masked speech features. The stacked features
at each frame are quantized to the nearest codebook entry using
the standard cosine-distance-based code lookup. Note that the
time resolution 7" matches the output of the CNN encoder in
our SSL model. The SSL model is trained to predict labels for
the masked regions using unmasked features as context, guided
by quantizer-provided labels:

> log P(ym | Xym), )
meM

where M denotes the set of masked positions and X\ o4 the
unmasked features.

ﬁMLM = -

2.2. Hierarchical Information Disentanglement

It has been shown that the representations of specific SSL layers
are well-suited for semantic tasks, while others are more effec-
tive for acoustic-related tasks such as speech resynthesis [11,
19, 20]. Motivated by this observation, we hypothesize that
SSL representations can be factorized into semantic and acous-
tic representations. Let {H,...,Hy}, where H,, € RV*P,
denote the latent representations with temporal dimension U
(after CNN downsampling) and latent dimension D, obtained
from the pre-trained SSL layers described in Section 2.1. Since
it is not known which representation is best suited for learn-
ing acoustic tokens, we propose to introduce learnable weights
that adaptively combine the representations as shown in Fig. 1.
Specifically, we compute the full representation H as a convex
combination H = Ziv:l anH,, where oy, is a learned nor-
malized scalar weight. We identify the index ns € {1,..., N}
of the best performing representation for the ASR task, and de-

fine the corresponding representation H* = H,,_ as the se-
mantic representation. The corresponding quantized semantic
representation is then obtained as H~ = kmeans(H?®), where
k-means is trained offline as described in Section 3. The acous-
tic representation H® € RY*? is obtained by removing the se-
mantic component from a projected version of the full represen-
tation H using a learnable transformation matrix W &€ RP*D,
intended to align the semantic part of H with H’ for optimal
removal:
H* =HW-H’ ¥)
During the continued training stage, the encoder (CNN + Con-
former) is frozen. To ensure that the decoder reconstruction
relies on the semantic quantized representation H’, we adopt a
multistage hierarchical quantization approach inspired by RVQ.
Specifically, we treat H’ as the output of the first quantization
codebook of an RVQ, and quantize the residual H* obtained by
Eq. (2) using subsequent RVQ codebooks, denoting by ﬁfn the
output of each quantization stage m, m = 1,..., M — 1. The
final quantized representation is then computed as:
M-1
H=H + ) H,. 3)
m=1

The resulting H is passed to the decoder, which mirrors the en-
coder’s design but employs 1D transposed convolutions to pro-
gressively upsample the feature sequence into a waveform.

2.3. Discriminators and Reconstruction Loss Functions

Our approach adopts the discriminators and loss functions pro-
posed in [16]. Specifically, we employ a combination of mul-
tiscale (MSD) [25] and multiperiod (MPD) waveform discrim-
inators [26], alongside a complex short-time Fourier transform
(STFT) discriminator operating at multiple timescales. To fur-
ther enhance perceptual quality, we integrate a multiband, mul-
tiscale STFT discriminator with an L1 feature matching loss
[16]. For reconstruction, we optimize an L1 loss on mel spectro-
grams, leveraging multiple window lengths and mel-bin config-
urations to capture both fine and coarse spectral details. Code-
book learning combines commitment and codebook losses, with
gradient propagation handled via the straight-through estimator.

3. Experimental Setup

Data & Pre-processing: We train our models on the Lib-
riSpeech dataset [27], following [5]. For acoustic training, we
adopt the DAC framework [16], extracting random 5-second
segments (vs. 0.38 s in DAC) from each utterance, zero-padding
shorter ones for uniform batch sizes. This extended duration
captures richer context and improves semantic representation.
Unless stated otherwise, we use nine codebooks: DAC employs
nine RVQ codebooks, while HASRD combines one semantic
k-means codebook with eight acoustic RVQ codebooks. The
k-means model is trained offline on SSL latent representations



Table 1: Impact of the improved CNN encoder on reconstruction quality (mel distance, STFT distance, and perceptual quality via
VISQOL) and computational complexity (reduction of GPU memory usage and improvement of inference speed)

Model Segment Bitrate Train Params GPU-Mem Inference Mel| STFT| ViSQOL 1
DAC 04s 2.79kbps 100h  76.6M - - 0.75 1.55 4.22
DAC (baseline) 50s 279kbps 100h  76.6M - - 0.66 1.45 4.45
DAC+fbank 50s 2.79kbps 100h  68.0M —25% x2 0.66 1.50 4.50
DAC+fbank+SepConv 50s 2.79kbps 100h  48.0M —25% x3 0.68 1.52 4.45

using 10% of the train-clean-100 subset. For the ablation study
in Section 4.1, models are trained on the 100h train-clean-100
subset for 30K iterations; all other experiments use the full 960h
LibriSpeech dataset with 100K iterations. For SSL training,
data is prepared using Lhotse [28], enabling dynamic batching
by total batch duration. Audio is converted to 80-dimensional
mel-spectrograms via TorchAudio’s Kaldi filterbank', using a
25 ms window with 8 ms frame shift.

Encoder: Our encoder consists of a CNN module described
in Section 2.1 followed by Conformer layers for enhanced se-
mantic modeling. The CNN module consists of two 1D-CNN
blocks, each with a kernel size of 4, a stride of 2, and a latent di-
mension of 1024. This results in an overall downsampling fac-
tor of 4 x 160 = 512, where the factor of 160 originates from
the 8 ms frame shift during feature extraction. This matches the
downsampling of the DAC encoder. Each CNN block contains
three residual units, each with a 1D-CNN and dilation rates of
{1,3,9}. The Conformer module follows [29], with modifi-
cations to reduce parameters due to GPU memory constraints.
Specifically, we use 12 layers instead of 24 as in [24], increase
the number of attention heads from 8 to 12, and reduce both the
feedforward dimension from 2048 to 1024 and the attention di-
mension from 768 to 512. The encoder is pre-trained on the full
LibriSpeech dataset using the MLM objective. In our proposed
approach, we found that layer ns, = 8 yields the best ASR per-
formance, which we use as the semantic representation H*.
Decoder: The decoder follows [16], consisting of 4 1D-CNN
upsampling layers with strides [8, 8, 4, 2] and a latent dimension
of 1536. We also adopt the same multi-period and multi-scale
STFT discriminators from [16]. Acoustic training uses a batch
size of 8, while MLM training uses a batch duration of 600 sec-
onds per GPU across 8 A40 GPUs. SSL training is optimized
with AdamW, a learning rate of 0.0008, a Noam scheduler with
25K warmup steps, and gradient accumulation of 2. Recon-
struction training is optimized with AdamW, a learning rate of
1 x 10™* and exponential learning rate schedule.

Evaluation: We use ASR as the downstream task to evaluate
the quality of the semantic tokens learned by our model. We
use a 2-layer BLSTM with a hidden dimensionality of 1024 as
our ASR encoder. It is trained using tuples (z,y), where z is
the learned continuous or discrete representation outputted by
the pre-trained models, and y is the character transcript. The
model is trained using CTC [30] on the train-clean-100 subset
of LibriSpeech. We train the model for 30K iterations using the
Adam optimizer with a learning rate of le-4 and a batch size
of 32. We report the word error rate (WER) and character error
rate (CER) on the LibriSpeech test-clean subset.

For reconstruction evaluation, we compute the loss us-
ing log-mel spectrogram distances across window lengths
[32,64,128,256,512,1024,2048] with corresponding mel
bins [5, 10, 20, 40, 80,160, 320].  Additionally, we utilize
ViSQOL, a perceptually-motivated model for measuring audio

https://pytorch.org/audio/main/generated/
torchaudio.compliance.kaldi.fbank.html

Table 2: Comparative Analysis of Reconstruction Performance

Model (Enc.) Bitrate Params Mel | STFT | ViSQOL 1

SpeechTokenizer 6.0 kbps 103.7M 0.76  1.58 4.26
HASRD (BestRQ+) 3.1kbps 99.5M 0.64 1.48 4.50
HASRD (HuBERT) 4.5kbps 131.7M 0.76  1.57 4.30

quality, to provide a more comprehensive assessment of re-
construction performance. All hyperparameters and analysis
choices were selected on the dev-clean subset, while final re-
sults are reported on the test-clean subset of LibriSpeech.

4. Results
4.1. Improved Computational Efficiency of DAC

We conducted ablation studies on 100 hours of LibriSpeech
to evaluate the impact of our enhanced CNN encoder on re-
construction quality and efficiency using fbank inputs. Unlike
previous DAC models trained on 0.38-second audio segments,
we found that increasing the window size improves contextual
modeling and enhances reconstruction performance, as shown
in Table 1. Furthermore, DAC+fbank reduces GPU memory
usage by 25%, enabling a 3x increase in batch size compared
to raw audio. Inference speed also improves by 2x on CPU,
while the total model parameters decrease by 11.2%, as only
half of the encoder parameters are used. Furthermore, introduc-
ing depthwise separable convolutions exclusively in the residual
CNN layers enhances inference speed by 3x compared to the
baseline and further reduces parameters by an additional 29%
(compared to DAC+fbank), with only a minor degradation in
reconstruction quality relative to the DAC baseline. Finally, we
compare the reconstruction quality of our proposed representa-
tion factorization approach to SpeechTokenizer in Table 2. By
increasing the number of RVQ codebooks from 8 to 9, we raise
the bitrate to 3.1 kbps. Despite operating at half the bitrate
of SpeechTokenizer, our method consistently achieves supe-
rior performance, reducing the mel distance from 0.76 to 0.64,
STFT loss from 1.58 to 1.48, and improving the ViSQOL score
from 4.26 to 4.50. Additionally, we demonstrate the generaliz-
ability of our approach to other SSL models, such as HuBERT,
achieving reconstruction quality on par with SpeechTokenizer
using a configuration of 9 codebooks (8 RVQ + 1 k-means).

4.2. SSL Pre-Training

In this section, we evaluate the impact of enhancing the pro-
posed CNN encoder from Section 4.1 with attention mecha-
nisms and self-supervised pre-training, as shown in Table 3.
First, we highlight the limitations of state-of-the-art high-
fidelity codecs like DAC by assessing their representations on
the ASR task. It can be seen that fbank features achieve an
18.3% relative improvement in WER over DAC’s latent encoder
representation, and DAC’s discretized representation proves in-
effective, yielding a WER of 92%. Following the methodol-
ogy in [24], we first reproduce the BestRQ model and introduce



Table 3: Comparative analysis of WER/CER results. For HASRD, only the encoder is used for

ASR, but total parameters are reported for system-level comparison.

Table 4: Speaker similarity and
ASR performance using seman-

tic and acoustic tokens

Latent Quantized
Model Params  Norm CNN Module CER WER CER WER Tokens SIM1T WER]
Fbank R - - 11.8 35.8 R - Combined 0.92 24.2
DAC 76.6M - ID-CNN 146 438 526 926 Acoustic 0.67 70.2
BestRQ (baseline) [29] 106.0M  global 2D-CNN 49 173 128 383 Semantic  0.15 210
BestRQ+ 62.0M  global  ID-CNN+SepConv 3.7 132 126 374
BestRQ+ 62.0M  sentence 1D-CNN+SepConv 3.6 12.6 9.3 28.0
SpeechTokenizer 103.7M - - 6.5 21.5 7.1 23.0
HASRD (BestRQ+) 141.6M  sentence 1D-CNN+SepConv 34 12.0 6.4 21.0
HASRD (HuBERT) 131.7M - - 2.1 7.4 33 11.3
051 —e— Semantic with layer indexed 1 receiving the highest weight. Interestingly,
[ Acoustic the CNN representation has a relatively low weight. We hy-
s pothesize that the first attention layer effectively integrates the
o information encoded by the CNN while capturing contextual
2 dependencies and long-term relationships, reducing the direct
> contribution of the CNN representation. In contrast, for ASR,
5 the highest weights are observed in layers 7-9, with layer 8 be-
2 ing the most influential, aligning with our ASR experiments.
This analysis empirically demonstrates the inherent conflict be-
. tween acoustic and semantic objectives, where improving one
- N often degrades the other. Additionally, upon listening to the
001 . reconstructed speech using only semantic tokens (from the k-

0 2 a 6 8 10 I
Layer Index
Figure 2: Weights of latent representations of SSL in acoustic
(reconstruction) and semantic (ASR) tasks.

key improvements. Specifically, we replace the 2D-CNN pre-
encoder with our optimized 1D-CNN pre-encoder from Sec-
tion 4.1, with modifications on the encoder from Section 3.
These modifications result in a 23.7% relative WER improve-
ment while reducing the model size to 62M parameters. Addi-
tionally, we find that switching from global normalization to
sentence normalization reduces feature variance in the latent
space from an average of 6 to 1, further improving WER by
4.5% for latent representations and 14.4% for quantized rep-
resentations with k-means. Increasing the attention dimension
from 516 to 768 in HASARD (BestRQ+) yields additional rel-
ative WER improvements of 5% for latent representations and
25% for quantized representations compared to BestRQ-+, sur-
passing SpeechTokenizer. Notably, SpeechTokenizer suffers
significant WER degradation compared to its teacher model,
HuBERT base, due to the distillation process. In contrast, our
approach with Hubert, HASRD (HuBERT), effectively retains
the performance of pre-trained SSL models.

4.3. Information Disentanglement

In this section, we examine the disentanglement of acoustic
and semantic information in HASRD. A key advantage of our
method is its interpretability, as the acoustic representation is
formed as a convex combination of SSL latent representations,
with learned weights as described in Section 2.2. Figure 2 vi-
sualizes the weights « learned from the speech reconstruction
task and a separate set optimized on the ASR task (Section 3
Evaluation), showing the contributions of SSL latent represen-
tations to acoustic (reconstruction) and semantic (ASR) objec-
tives. The representations begin with the CNN encoder, corre-
sponding to index 0. The plot reveals that for speech recon-
struction, the first three attention layers contribute the most,

means codebook), we noticed that the speech remains intel-
ligible but exhibits a robotic quality, making speaker identi-
fication challenging. Conversely, when reconstructing speech
using only acoustic tokens (from the remaining RVQ code-
books), speaker identity is well-preserved, but intelligibility is
lost. We hypothesize that our disentanglement approach ef-
fectively separates semantic and speaker-specific information,
with the first codebook capturing linguistic content while the
acoustic codebooks encode speaker characteristics. To validate
this, we conduct a speaker similarity analysis using the ECAPA-
TDNN speaker verification model [31], measuring the cosine
similarity between reference and reconstructed speech repre-
sentations. Additionally, we evaluate ASR performance using
both acoustic and semantic tokens to assess their respective con-
tributions, as shown in Table 4. The results show that acoustic
tokens achieve a high speaker similarity score (0.67) but poor
ASR performance (72% WER), whereas semantic tokens yield
lower speaker similarity (0.15) but better ASR performance
(21% WER). This confirms that our approach effectively dis-
entangles semantic content (first codebook) from speaker infor-
mation (acoustic codebooks).

5. Conclusion

In this paper, we proposed a novel framework for learning hi-
erarchical disentangled acoustic and semantic representations.
Our approach effectively preserves semantic performance for
ASR while achieving reconstruction quality comparable to
state-of-the-art neural audio codecs like DAC. Additionally, we
introduced an efficient CNN pre-encoder that reduces compu-
tational complexity without sacrificing quality, and presented
an improved BestRQ design with better ASR performance and
enhanced quantized representations. Our analysis provided in-
sights into the inherent conflict between acoustic and semantic
objectives, demonstrating that our method successfully disen-
tangles speaker-specific details from linguistic content. Finally,
speaker similarity and ASR evaluations further validated the ef-
fectiveness of our disentanglement strategy.
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