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Abstract
The characteristics of a sound field are intrinsically linked to the
geometric and spatial properties of the environment surrounding
a sound source and a listener. The physics of sound propaga-
tion is captured in a time-domain signal known as a room im-
pulse response (RIR). Prior work using neural fields (NFs) has
allowed learning spatially-continuous representations of RIRs
from finite RIR measurements. However, previous NF-based
methods have focused on monaural omnidirectional or at most
binaural listeners, which does not precisely capture the direc-
tional characteristics of a real sound field at a single point. We
propose a direction-aware neural field (DANF) that more ex-
plicitly incorporates the directional information by Ambisonic-
format RIRs. While DANF inherently captures spatial relations
between sources and listeners, we further propose a direction-
aware loss. In addition, we investigate DANF’s ability to adapt
to new rooms in various ways including low-rank adaptation.
Index Terms: spatial audio, neural acoustic field, room impulse
response, Ambisonics

1. Introduction
Inferring how an acoustic signal emitted from a sound source is
received by a listener involves modeling the physically complex
propagation of that signal through their shared environment [1].
Even when the source and listener are in direct line-of-sight, re-
flections of the sound signal at various surfaces and objects add
significant contributions to what the listener hears. Precisely
capturing the acoustic properties of this process, which is typi-
cally done in the form of a room impulse response (RIR) to be
convolved with a dry signal at the source, is crucial for accurate
sound rendering, which in turn enables immersive experiences
in media, particularly in virtual and augmented reality [2, 3].

Because the process of recording RIRs can be time-
consuming and impractical in certain settings, there exists a
broad set of methods for simulating RIRs, typically either by
geometric acoustics [4–6] or by wave-based methods [7–10].
Each method has different benefits depending on the applica-
tion, but both require an accurate geometric and material speci-
fication of a given scene to produce accurate RIRs.

The problem of interpolating RIRs from a finite number of
measurements has been widely studied in a variety of settings,
including wave-based models [11, 12] and geometric models
[13, 14]. In the particular case of learning spatially continuous
RIRs for a scene with varying source/listener positions, inspi-
ration has been taken from novel-view synthesis from the vi-
sion community [15] to develop continuous representations of
acoustic scenes using neural fields (NFs) [16–20] and physics-
informed neural networks [21–23]. These methods draw from
prior work in omnidirectional single-channel IR estimation, in

which room acoustic metrics (such as T60, C50, and EDT) play
a large role in perceptual accuracy, and have mainly evaluated
binaural RIRs by averaging metrics across each channel. How-
ever, these approaches fail to account for inter-channel direc-
tional information, which are crucial not only for delivering im-
mersive audio experiences in mixed reality applications [2, 3]
but also for enhancing downstream tasks such as event local-
ization [24], especially when generalizing to multi-channel for-
mats beyond binaural audio.

In this work, we propose an NF that represents spatial RIRs,
allowing for direction-aware modeling of the room acoustics
over continuous source and listener locations. The proposed
NF, dubbed direction-aware neural field (DANF), incorporates
Ambisonic RIRs and captures the directivity of sound as illus-
trated in Fig. 1. Furthermore, to enhance its direction aware-
ness, we propose a loss function defined on an intensity vec-
tor [24,25]. Our experiments show that the intensity-vector loss
can improve not only the sound source direction accuracy but
also other single-channel RIR metrics. In addition, we explore
the adaptation of DANF to novel rooms from few measurements
and demonstrate its few-shot capability.

2. Ambisonics Room Impulse Responses
The transfer function characterizing the physical process of
sound propagation is commonly referred to as RIR. It is typi-
cally defined for given locations of the source and listener in a
particular acoustic environment [1]. An RIR can be treated as a
linear filter: by convolving it with an anechoic sound source,
we can mimic the acoustic properties of the source-listener-
environment configuration (referred to as a “scene”) in the ren-
dered sound. RIRs are most commonly recorded with omni-
directional microphones, which, by averaging out directional
information with equal weighting, remove any spatial cues in
their measurements.

A popular approach to capturing a sound field at a point is
to encode it into an Ambisonics format [1]. Ambisonics cap-
tures the local pressure gradient vector by projecting it onto a
spherical harmonic basis up to a given order n, where higher or-
ders correspond to harmonics with increased spatial resolution.
The number of harmonics, and corresponding encoding chan-
nels, needed to go up to order n is (n + 1)2, meaning the pop-
ular first-order Ambisonics (FOA) encoding features 4 chan-
nels: one omnidirectional channel w and 3 figure-of-8 channels
aligned with any 3 Cartesian directions, typically referred to as
x, y, and z, as shown in top parts of Fig. 1.

Each component is treated as a separate channel in a 4-
channel FOA signal. For a given omnidirectional source, a
listener records FOA signal u(t) = [w(t), x(t), y(t), z(t)]T,
where t = 1, . . . , T is the time sample index, and T is the
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Figure 1: Overview of the proposed DANF framework. The input is the environmental context in the form of K bounce points ck ∈ R3,
as well as the source and listener locations s, l ∈ R3, all of which are concatenated into spatial feature C̃ (denoted by operator ⊕)
used to create a spatial-temporal encoding E ∈ R3K×T . For the impulse generation module, the spatio-temporal embedding E and
the orientation of the listener θ ∈ [0, 2π) are decoded into an Ambisonics impulse response h ∈ R4×T .

number of time samples. To gain insight on the direction-of-
arrival (DoA) of sources in a scene, which tends to be asso-
ciated with the azimuth and elevation of maximum intensity of
the FOA signal u ∈ R4×T , an intensity vector is computed from
the complex time-frequency representation of each of the FOA
components [24, 25]. For example obtained using the short-
time Fourier transform (STFT) U ∈ C4×M×F , where M and
F denote the number of time frames and frequency bins, re-
spectively:

IV(U)(m, f) =

 Re(W (m, f)∗X(m, f))
Re(W (m, f)∗Y (m, f))
Re(W (m, f)∗Z(m, f))

 , (1)

where m denotes the time frame index, f the frequency bin
index, ∗ the complex conjugate, and Re the real component of a
complex number.

3. Methods
3.1. Neural Acoustic Fields

Prior approaches in neural acoustic fields establish the problem
of estimating an RIR h ∈ RN×T [17–19], where N denotes the
number of channels. Prior work has focused on the monaural or
binaural cases, and while some have allowed for different lis-
tener orientations θ ∈ [0, 2π), their training methods and eval-
uations did not consider inter-channel directional features that
would correspond to changes in listener orientation for fixed
source/listener positions. A neural field can be used to estimate
the binaural RIR h ∈ R2×T as a function of the listener position
l ∈ R3, the source position s ∈ R3, and some fixed environ-
mental context C:

h = NF(s, l, θ, C). (2)

In many neural acoustic fields, C is implicit, as a separate
NF will be trained for each environment. This environmen-
tal context can also be specified via a set of “bounce points”,
as in [17]: each environment’s geometry can be characterized
by capturing a set of uniformly sampled points along the sur-
face of each room’s mesh, defining the environmental context

as C = [c1, . . . , cK ] ∈ R3×K , with each bounce point ck being
normalized such that the origin is at the midpoint of the mini-
mum/maximum coordinates as defined by the dataset metadata.

3.2. Direction-Aware Neural Field

We propose to go beyond binaural RIR modeling, and model an
Ambisonic RIR h ∈ R4×T using a direction-aware neural field
(DANF) framework:

h = DANF(s, l, θ, C), (3)

where DANF is optimized based on reconstruction losses in-
cluding a direction-aware component, as described below and
shown in Fig 1.

We follow the architecture established in [17], which can be
split into a spatial embedding module and an impulse response
generation module. Using the principles of acoustic radiance
transfer, the spatial embedding module learns features derived
from the bounce points c1, . . . , cK ∈ R3, as well as the relative
location vectors from the bounce points to the listener [ck −
l]Kk=1 ∈ R3×K and from the bounce points to the source [ck −
s]Kk=1 ∈ R3×K .

Each of these feature sets is passed through a sinusoidal en-
coding and to a separate network (a 2-layer MLP for the bounce
points matrix C ∈ R3×K and a single layer MLP for the relative
location vectors) to obtain three separate spatial features, which
are concatenated into a single spatial feature C̃ ∈ R3K×D . We
then choose a set of time samples {ti}Ti=1 which we encode
via sinusoidal encoding and an MLP to create a set of time-
domain basis functions Q ∈ RD×T , which is multiplied with
our concatenated spatial features to produce a spatial-temporal
feature E ∈ R3K×T . This spatial-temporal feature can then be
concatenated with a learned encoding of the listener orientation
θ ∈ [0, 2π) at the impulse response generation module, which
predicts an N -channel impulse response via an MLP network.

3.3. Losses

A common way to assess the accuracy of an estimated signal ĥ
is via direct mean squared error (MSE) loss [16, 17]:

LMSE(ĥ, h) = ∥ĥ− h∥22. (4)



Other typical approaches approximate human perception and
utilize a time-frequency representation of the signal, such as
the STFT H . The magnitude STFT |H| and STFT phase
∠H are also often considered. Prior approaches in NFs uti-
lize some combination of time domain and time-frequency do-
main signal reconstruction losses, such as the STFT loss as de-
fined in [17], which is a combination of the magnitude loss,
Lmag = ∥|Ĥ| − |H|∥1, phase loss Lphase = ∥∠Ĥ −∠H∥2, and
spectral convergence Lsc =

∥|Ĥ|−|H|∥2
∥|H|∥2

:

LSTFT = Lmag + Lphase + Lsc. (5)

To account for interchannel information that indicates di-
rectivity, we apply a novel loss utilizing the intensity vectors
of the original and reconstructed RIRs. We integrate the inten-
sity vector IV(U)(m, f) in (1) along the frequency axis and the
time axis, leading to a vector I(h) ∈ R3. This averaged vector
contains information relating to the DoA of a signal received
from a single source to a listener [26]. We compute the IV loss
based on the cosine distance between these averaged intensity
vectors for the reference and estimated RIRs:

LIV(ĥ, h) =
1

2

(
1− ⟨I(ĥ); I(h)⟩

∥I(ĥ)∥ ∥I(h)∥

)
. (6)

4. Experiments
4.1. Dataset

To define our acoustic spaces, we use the Matterport3D-RGB
dataset, which contains high quality RGB-D images of multi-
room interior home environments [27]. We sample 5 environ-
ments segmented into individual rooms, resulting in 100 unique
rooms at varying volumes and acoustic properties. Within each
room, we uniformly sample a grid of points at a fixed height
of 1.5 m to avoid overlapping with furniture or other objects in
the room. From this grid, for each room, we uniformly sample
1000 source-listener pairs, with a uniformly sampled listener
orientation in [0, 2π). We use the SoundSpaces simulation plat-
form [28] to compute RIRs in FOA for each source-listener lo-
cation pair.

4.2. Single-Room Performance

To evaluate the model’s performance in accurately reconstruct-
ing spatial cues, we separately examined 10 distinct rooms at
varying volumes. For each room, we trained and evaluated a
separate DANF model using a set of 1000 source-listener pairs,
with 800 randomly assigned for training and 200 for testing.

Each model was trained on a weighted sum of the MSE
signal loss, the STFT loss, and the intensity vector loss:

Ltrain = LMSE + LSTFT + λLIV, (7)

where we set λ = 0 as a baseline with no intensity vector loss,
or λ ∈ {10γ | γ = −4, . . . , 4} to explore the effect of the
intensity vector loss on the model’s ability to accurately recon-
struct the directivity of a given RIR.

4.3. Room Adaptation

Prior work [17, 20] has shown NFs’ ability to be trained on
multiple scenes and still provide reasonable performance for
novel scenes by incorporating features from room geometry.
To demonstrate DANF’s ability to adapt to new rooms, we ini-
tially pre-train a model with RIRs from a wide range of rooms
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Figure 2: Single-room performance for different values of λ
(row) and metrics (columns). Each metric is normalized to [0, 1]
for ease of visualization.

Cpretrain. We then freeze all trainable parameters of the model
and choose a new room C′ /∈ Cpretrain with a corresponding set
of training and test data, with 800 and 200 samples each re-
spectively. To evaluate the model’s ability to adapt with limited
data access, we constrained the number of training samples to
[1, 80, 800].

We evaluated our model under three baselines settings: the
model with no adaptation to examine zero-shot performance
(Zero-Shot); a model initialized and trained from scratch with
limited data (Cold-Start); our pre-trained model fine-tuned with
the limited training set, updating all parameters (Warm-Start).

Additionally, we propose using low-rank adaptation
(LoRA(r)) [29] to fine-tune our models. LoRA updates a
weight matrix W ∈ Ri×j by an r-rank adaptation matrix de-
fined by matrices B ∈ Ri×r and A ∈ Rr×j , such that the
updated weights are given by W ′ = W + 1

r
BA. LoRA was

implemented for the weights of the MLPs after the spatial tem-
poral encoding E using the limited training set from C′, allow-
ing for adjustment of a lower number of parameters Np.

4.4. Evaluation

Following prior NF-based work for RIR reconstruction, we
evaluate our reconstructed RIRs on three acoustic parameters:
reverberation time (T60), clarity score (C50), and early decay
time (EDT) [16,17,20]. We evaluate our models on their ability
to reconstruct DoA via computing the cosine distance between
the intensity vectors of the target and estimated RIRs.

5. Results
5.1. Spatial Improvements

Our results show that the IV loss significantly improves DANF’s
ability to accurately reconstruct the directional characteristics of
Ambisonic-RIRs.

Figure 2 shows the correlations between the acoustic mea-
sures of the oracle and the rendered RIRs. We can see the ef-
fect of adding the IV loss as the estimates of the DoA azimuth
improve at increasing scales of λ. As λ increases, we see the
model overcompensate towards accurate DoA estimates, lead-
ing the non-directional acoustic measures to start to fail, most
performing worse than a baseline model at λ ≥ 103. We can see
the failure of the estimates of T60, C50, and EDT in Fig. 2, as
we see the model either significantly under-estimating or over-
estimating each parameter, despite strong DoA azimuth perfor-



Table 1: Comparison of few-shot learning techniques based on number of parameters Np, evaluating performance when fine-tuned on
1, 80, or 800 training samples.

1 training example 80 training examples 800 training examples

Np T60 C50 EDT DoA T60 C50 EDT DoA T60 C50 EDT DoA

Zero-Shot 0 4.78 14.07 474.24 111.10 - - - - - - - -
Cold-Start 3.5× 106 22.06 26.79 945.64 67.87 22.72 26.80 944.19 59.99 0.46 2.89 10.21 32.86
Warm-Start 3.5× 106 2.68 4.68 29.34 52.56 1.22 2.73 18.29 31.94 0.49 2.39 9.28 27.08
LoRA(3) 2.9× 104 2.34 6.36 39.88 67.32 1.44 3.75 21.51 33.68 1.40 3.29 20.52 34.12
LoRA(1) 9.6× 103 4.82 7.07 88.15 55.43 1.82 3.76 27.22 42.32 1.31 3.86 22.66 40.67
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Figure 3: Model performance on single rooms with varying in-
tensity vector loss weight λ, with the dashed line representing
no intensity vector loss, or λ = 0.

mance. On the top row, the model trained without the IV loss
resulted in inaccurate estimates of the DoA azimuth. With the
IV loss with λ = 10, the predicted RIRs were enforced to pre-
serve the original IVs and showed a better correlation in the az-
imuth of the sound source. The larger weight, λ = 104, further
improved the DoA performance but deteriorated the distribu-
tion of other acoustic measures. This result suggests that the
predicted RIRs focus on the direct sound and neglect the shape
of late reverberation.

Figure 3 depicts the acoustic measures and the DoA per-
formance with different weights for the IV loss in (6). We can
see that the addition of IV loss starts to improve model per-
formance at λ = 10−1 and continues to significantly improve
DoA estimation. The dotted lines correspond to the model with-
out the IV loss, i.e., λ = 0. Although too large a weight, e.g.,
λ = 104, degrades the non-directional acoustic measures (T60,
C50, EDT), we can see that the intensity vector with a moderate
weight, λ = 10, improves both room acoustic metrics and di-
rectional performance. As we add the IV loss in Table 2, we can
see the DoA error decrease significantly, showing that without
IV loss, the model either does not capture any spatial informa-
tion, or incorrectly resolves the directivity of the sound field in
the opposite direction.

5.2. Fine-tuning

We compare the performance of DANF pre-trained on a wide
variety of rooms, and fine-tuned either by warm-starting the
model on pre-trained weights, or adapting the model’s pre-
trained weights using LoRA. In addition to Cold-Start, we
demonstrate the model’s zero-shot performance as a baseline.
This model still leverages “bounce points” of the target room as
its environmental context.

Table 2: Per-room performance in terms of the error in T60 [%],
C50 [dB], EDT [ms] and DoA [degrees] for models trained
without (λ=0) and with (λ=10) IV loss. Lower is better.

T60 C50 EDT DoA

c λ=0 λ=10 λ=0 λ=10 λ=0 λ=10 λ=0 λ=10

0 4.61 5.35 3.85 4.03 58.42 46.84 158 7
1 1.26 1.10 2.86 1.74 16.91 23.55 68 35
2 7.42 0.87 4.34 3.97 104.94 38.77 99 21
3 0.11 0.08 0.84 0.90 23.21 18.91 57 35
4 0.24 0.24 1.80 4.23 49.14 81.99 58 46
5 0.37 0.39 3.02 2.29 10.08 9.75 157 19
6 1.09 1.00 1.95 2.32 27.29 27.35 83 76
7 0.12 0.10 1.35 1.09 31.95 24.57 112 41
8 0.19 0.21 1.11 0.90 11.46 13.83 34 14
9 0.53 0.60 4.67 6.57 234.95 310.06 85 69

We can see in Table 1 that with RIRs for a large number
of source-receiver pairs, training a model from scratch outper-
forms most fine-tuning measures. Conversely, in the low-data
regime, we see that warm-starting the model and LoRA are able
to more efficiently provide better estimates of a new environ-
ment’s acoustic properties. We see rank-3 LoRA achieving near
equivalent performance with warm-starting the model, despite
using less than 1% of the number of parameters as retraining
the full model, producing similar performance when fine-tuned
on a single measurement.

Furthermore, even in the low-data regime, all models do
relatively well at estimating the DoA characteristics of a room;
the spatial relationship between listener and source is generally
unaffected by the acoustic properties of the environment they
are in, so these relationships should translate relatively easily
from pre-trained models. All models adapting from pre-trained
model outperform the zero-shot case, demonstrating the effec-
tiveness of even the low-parameter LoRA approaches.

6. Conclusion
In this work, we presented DANF, a novel neural acoustic field
model for estimating direction-aware RIRs. To our knowledge,
DANF is the first NF model estimating Ambisonic-format RIRs.
By utilizing a directional intensity vector loss, DANF is able to
accurately capture not only the acoustic properties of the envi-
ronment, but also the direction-dependent acoustic properties.
This is a first-of-its-kind approach to capturing direction-of-
arrival (DoA) with an acoustic NF. Furthermore, we demon-
strate the model’s ability to adapt to new unseen environments
with limited training data. By utilizing fine-tuning strategies
such as LoRA, we can see that this model’s ability to adapt out-
performs training-from-scratch and zero-shot approaches.
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