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Abstract
Following the success of autoregressive (AR) language models
in predicting discrete tokens, it has become common practice
for autoregressive audio and speech models to use discrete to-
kens generated by a neural audio codec. However, recent work
has demonstrated that replacing discrete token probability mod-
eling in an AR model with a continuous diffusion procedure
can improve both model performance and efficiency for image
generation. In this paper, we explore applying such a diffu-
sion loss to replace discrete token modeling in an AR genera-
tive speech enhancement model. We explore several important
design choices, including comparing standard AR models with
masked AR models, and mel spectrograms with learned latents
as the continuous feature representation. Our results demon-
strate the potential of continuous AR speech enhancement, par-
ticularly in cases of severe noise.
Index Terms: Speech Enhancement, Diffusion Loss, Genera-
tive Modeling

1. Introduction
Improving the quality of recorded speech from a single-channel
microphone has numerous practical applications, from acting
as a front-end for downstream processing tasks such as speech
recognition, to improving perceptual quality for media appli-
cations, and even cleaning training data for other speech mod-
els. The range of situations where degraded speech can be re-
paired with high quality has increased significantly as the field
of speech enhancement has evolved from classical approaches
such as spectral subtraction [1] to powerful deep learning mod-
els such as time-frequency masking [2,3], spectral mapping [4],
or time-domain masking [5]. However, challenges remain, es-
pecially in the case of extreme degradations where it is difficult
for a discriminative model trained to always predict a single
clean speech target, to handle the intrinsic uncertainty of resyn-
thesizing clean speech from a very low-quality input.

This has led to a series of generative speech enhancement
approaches that resynthesize the clean speech conditioned on
either the noisy input signal or features of the noisy signal.
In addition to common degradations such as additive back-
ground noise and reverberation, generative models have exhib-
ited success restoring a much broader class of degradations, in-
cluding tasks such as declipping, bandwidth extension, and re-
moval of codec artifacts [6–8]. Most popular generative mod-
eling techniques have been previously applied to the speech
enhancement task, including generative adversarial networks
(GANs) [9,10], diffusion models [6,8,11–13], and flow-related
techniques [14,15]. Following the success of transformer-based
autoregressive (AR) large language models (LLMs) in generat-
ing text, these types of models have also been employed for
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Figure 1: Overview of various inference regimes for speech en-
hancement

speech enhancement [16–19].
A typical transformer-based language model generates se-

quences of discrete tokens, which while quite natural for text,
are a much less natural fit for continuous modalities such as au-
dio signals. Yet, neural codecs [20–24] based on vector quan-
tized variational autoencoders and residual vector quantization
(RVQ) have become the standard for obtaining discrete rep-
resentations for audio signals. While undoubtedly influential,
these approaches also have significant drawbacks that may limit
performance for speech applications, such as low codebook uti-
lization, fine resolution codebooks that may learn to quantize
only noise, and the non-differentiability of the vector quantiza-
tion operation [25, 26].

Similar drawbacks have also been observed when using dis-
crete representations for image generation, leading to the au-
thors of [27] to focus on replicating two advantages of discrete
representations when used for AR transformers: 1) a categorical
distribution that is easy to sample from, and 2) a well-defined
loss function (i.e., cross entropy). The authors then argue that
these benefits can also be achieved with continuous features
via a diffusion loss. As such, they propose replacing the dis-
crete classification head of a transformer with a small diffu-
sion model that generates the continuous feature, thus avoiding
the drawbacks of discrete features. Continuous AR transform-
ers have recently been successfully applied for speech [28–30]
and music [31] synthesis along with multimodal language mod-
els [32, 33].

This paper explores the application of these recent advances



in continuous AR transformer models to the speech enhance-
ment task. For the continuous features, we experiment with
1) predicting mel spectrograms directly and using a HiFi-GAN
model to generate the speech signal, or 2) predicting continu-
ous latent features learned by a variational autoencoder (VAE)
and using a decoder to convert these features to an audio signal.
In addition to the standard autoregressive next-step prediction,
we also explore masked approaches that simultaneously predict
multiple output tokens. Experiments demonstrate the effective-
ness of continuous AR models when compared to discrete, feed-
forward, and discriminative baselines.

2. Continuous autoregressive speech
enhancement

We introduce here the implementation of our continuous AR
speech enhancement framework, including the diffusion loss
and masked autoregressive (MAR) model. As shown in
Fig. 1(a), it essentially consists of an LLM-type model autore-
gressively running next-clean-token prediction on continuous
features, with a diffusion model supervising the prediction.

2.1. Continuous tokenizer

Our continuous autoregressive speech enhancement model is
built upon pre-trained tokenizers. We consider two feature do-
mains: 1) mel spectrogram with a HiFi-GAN as vocoder; and
2) a latent feature space learned from a VAE.
Mel spectrogram: The mel spectrogram is a versatile repre-
sentation that summarizes effectively the acoustic, semantic,
and speaker information of an audio signal, with some rela-
tionship to human perception. More recently, however, it has
been slightly losing ground to learned features in the context
of generative tasks. Tasks like speech synthesis tend to favor
more tailored features, such as HuBERT [34], for longer-span
phoneme consistency. Recent advances in next-token predic-
tion [26] have primarily benefited discrete audio tokens, outper-
forming traditional continuous representations like mel spectro-
grams. Nevertheless, the mel spectrogram is a very convenient
feature, as it is simple to extract and encoder-free. In this work,
we bring mel spectrogram features back to the next-token gen-
eration model. We compute mel-spectrogram features with 80
dimensions and a hop size of 256, leading to a 62.5 Hz frame
rate. A HiFi-GAN [35] pre-trained on 16 kHz speech1 is used to
vocode the mel spectrogram. When adapted to diffusion model-
ing, we convert mel-spectrogram features to dB and normalize
to zero mean with a range of [-1,1] for stable training.
VAE: The VAE produces bottleneck latent features with an ex-
plicit Gaussian prior and guarantees high reconstruction qual-
ity. It has been widely used as a tokenizer in latent genera-
tive models [36]. We train a speech-specialized VAE using
16 kHz speech waveforms, and design the latent features to have
a frame rate of 62.5 Hz.

2.2. Diffusion loss for next-token-generation

LLM-inspired next-token-generative models have been success-
fully applied to intrinsically non-discrete data modalities, such
as images and audio. So far, these models have been limited to
discrete features because discrete features naturally lead to cate-
gorical distributions that are straightforward to define, optimize,
and sample from for the purpose of probability modeling.

1https://huggingface.co/speechbrain/tts-hifigan-libritts-16kHz

The recently proposed diffusion loss [27] and diffusion
forcing [37] de-coupled AR models from vector-quantized fea-
tures. Combining the diffusion process with an AR model, the
diffusion models provide tractable posterior estimation for the
lower bound of the likelihood, making the AR model compati-
ble with arbitrary continuous distributions.

Specifically, an AR model produces intermediate features
zi for the next token, zi = fθ(x

<i), via a neural network
parameterized by θ (a transformer in this work), where i in-
dexes the order of the autoregression process. A forward diffu-
sion process is introduced to add noise to the clean next token
xi
0, leading to xi

t =
√
ᾱtx

i
0 +

√
1− ᾱtϵ at diffusion step t,

where ᾱt defines a noise schedule [38]. The intermediate fea-
ture zi is used to condition the denoising process. We use the
ϵ-parameterization loss for diffusion training, via a noise esti-
mator ϵϕ parameterized by ϕ [38]. When jointly training the
diffusion process with the AR model, the diffusion loss serves
as a parametric loss for the entire model:

L(xi, zi) = Eϵ,t(∥ϵ− ϵϕ(x
i
t|t, zi = fθ(x

<i))∥2). (1)

We also adopt the training trick suggested in [27], where we
randomly sample four different values of t at each training step
to increase the update frequency of the diffusion model.

2.3. Generalized autoregression

A standard AR model processes input samples causally in tem-
poral order. When using a transformer, this is implemented with
causal attention. Recent masked generative methods, such as
MaskGIT [39], use bi-directional attention in generative mod-
eling by iteratively masking subsets of tokens for parallel gener-
ation. The MAR model [27] bridges these two approaches, us-
ing bi-directional attention for AR modeling. It eases the strict
pre-defined order of an AR model to a randomized order during
training. At inference time, an order is randomly generated at
the beginning and fixed for the following sampling. In audio,
both MaskGIT and MAR can be used to consider future infor-
mation when making current predictions. But MAR still keeps
the autoregressive manner along a certain order and avoids it-
erative generation. Like other masked-based models, MAR can
generate more than one token for each sampling step. In this
work, we experimented with both standard AR and MAR to
understand the impact of bi-directional attention in speech en-
hancement tasks. We run 64 sampling steps for every 3-second
sequence during inference time for MAR models.

2.4. Relation to stochastic regeneration method (StoRM)

A particularly effective application of diffusion models for
speech enhancement is stochastic regeneration [40]. These
models combine diffusion models with a discriminative predic-
tor. As the predictor methods learn a mapping to the posterior
mean, they are incapable of reproducing fine-grained details.
A diffusion model applied on top of the predictor uses genera-
tive modeling to correct the bias, using a computationally heavy
diffusion-based model. Both our architecture and StoRM use a
diffusion model to generate the final enhanced output starting
from a previous model’s learned feature. However, our model is
conceptually very different from StoRM. The diffusion model
in this work is designed to be lightweight because it does not
serve as a primary generator; instead, it supervises the preced-
ing AR model’s generation. Meanwhile, the diffusion model
does not take any noisy component directly as input and thus is
agnostic to the enhancement process.



3. Baselines
We separately built three different types of baseline models with
the same model architecture, model size, and condition mecha-
nism as the main model.
Discrete autoregressive model (Fig. 1(b)) is built following
Genhancer [17] with BigCodec [41] as a replacement for its
original tokenizer DAC [22]. Designed as a non-streamable
codec, BigCodec leverages large-sized models to empower the
decoder, such that it can achieve high-quality audio reconstruc-
tion with a single codebook. In contrast to its multi-codebook
counterparts, BigCodec has only one token to predict for each
frame. It avoids the tedious design for multi-codebook gen-
eration, and greatly improves training and synthesis efficiency.
More importantly, we believe it provides a fairer comparison
to the continuous features, because the required number of AR
predictions remains similar.
Feedforward diffusion model (Fig. 1(c)) aims to understand
the effect of AR modeling in the presence of diffusion model-
ing, by eliminating AR modeling from the main model. From
an implementation perspective, it can be viewed as a feedfor-
ward model with diffusion loss. Compared with the common
diffusion-based speech enhancement models, this implementa-
tion features heavy condition processing with a relatively lighter
network within the diffusion model for score computing, akin
to one of the model variants proposed in UNIVERSE [6]. Note
that this baseline also differs from StoRM because this is an
end-to-end trained model, and the feedforward model doesn’t
directly output enhanced features.
Feedforward model (Fig. 1(d)) is transformer-powered but
does not involve any generative modeling. It takes noisy tokens
as input and outputs clean versions in one feedforward step. In
line with the conventional speech enhancement models, it han-
dles the speech enhancement task discriminatively, endeavoring
to learn noisy-to-clean feature mapping. We experimented with
feedforward models on both mel spectrogram and VAE features.

We also considered the following established baselines.
ConvTasNet [5] was used as a well-developed baseline of the
time-domain end-to-end approach. We follow the implementa-
tion in Asteroid [42], but modified the kernel size and stride
for the 1D convolution encoder to 32 and 16 samples, respec-
tively, to handle 16 kHz audio.
DCCRN [43] predicts a complex mask in the time-frequency
domain and has shown promising performance on several
benchmarks with a moderate model size. We again followed
the implementation in Asteroid.
StoRm [40] runs a diffusion model to regenerate enhanced
speech from the denoised output produced by a discriminative
predictor. We fine-tuned the provided Voicebank-DEMAND
checkpoints2 on our datasets.

4. Experiments
4.1. Model design

Conditioning: In line with Miipher [7] and Genhancer [17], we
include w2v-BERT [44] as a condition to the transformer mod-
els. The w2v-BERT feature is interpolated to the same length as
other features before being attached along the channel dimen-
sion. For the base model setups, we run cross-attention condi-
tioning for the AR models and prefix conditioning for MAR.
We compare additional options in the ablation study.

2https://github.com/sp-uhh/storm

Transformer: We use a decoder-only transformer with 16 at-
tention blocks. Each block contains a 12-head self-attention
layer. When conditioning with cross-attention, we reduce the
number of blocks to 12. The latent units have 768 dimensions.
Both type of transformers land at roughly 114M parameters.
Diffusion: We follow MAR’s [27] design for the diffusion
model, employing a simple MLP consisting of 3 residual blocks
and a width of 1024 channels. The condition z is added to the
time embedding of the diffusion step t, and conditions the MLP
in the layer normalization via AdaLN [45]. This model has 22M
parameters. We run 100 steps during inference.
VAE. We adapt the architecture of the audio convolution-based
VAE module of Stable Audio [36]3, and re-train a speech VAE
model. The downsampling rate of the 4 convolution blocks of
the encoder is [2, 4, 4, 8]. The bottleneck dimension is 64.

4.2. Training and Evaluation

Dataset: The training set of the speech enhancement models
combines WHAM! 16 kHz [46], Voicebank-DEMAND [47],
and mixtures of LibriTTS-R [48] speech and WHAM! noise,
with a signal-to-noise ratio (SNR) randomly sampled in
[-10,10] dB. Each training sequence is 3 seconds long. The
evaluation set includes 200 samples randomly selected from the
WHAM! test set and 200 from the LibriTTS-R+WHAM! test
set. The speech VAE is trained on LibriSpeech.
Training: All speech enhancement models are trained with
batch size 32 on four 48GB A40 GPUs, for 120K steps. The
VAE converged at around 100K steps, with a batch size of 8.
Ablations: We also experiment with several variants for the
AR and MAR models, as listed in Table 2. For the standard
AR models, we test 1) replacing diffusion loss with MSE loss;
2) conditioning by prefixing the noisy features to the input; 3)
switching from transformer to conformer by adding one convo-
lution block to the end of the attention layers; The kernel size
of the convolution layers is 31; 4) removing SSL features in the
condition. For the MAR model, we test 1) including a Masked
Autoencoder (MAE)-style [49] encoder transformer, with the
transformer dimension adjusted to 512 to maintain a similar
model size; 2) enforcing a temporal order.
Evaluation All the metrics are calculated using the
VERSA [50] toolkit. Word error rate (WER) uses whisper-
base4 for ASR and is computed on the LibriTTS-R+WHAM!
test set, using the original text transcripts.

5. Results
Generative vs. feedforward models: On average, generative
modeling does not necessarily lead to better speech enhance-
ment. From Table 1, we find that MAR and feedforward mod-
els overall outperform the AR models on both continuous tok-
enizers. When enforcing the temporal order in the MAR model
(Table 2), the performance also significantly drops for all met-
rics. Similarly, comparing AR base and AR w/ MSE loss, we
see that replacing generative modeling with discriminative MSE
loss does not impact performance. This indicates that temporal-
level AR generative modeling is not effective in this model.
We believe that, compared to feedforward models, AR models
spend too much computational power on self-attention model-
ing, which could help maintain speaker and content consistency
but does not directly contribute to the enhancement task.

3https://huggingface.co/stabilityai/stable-audio-open-1.0
4https://huggingface.co/openai/whisper-base



Table 1: Performance comparison of continuous autoregressive models and baselines.

Tokenizer WER % ↓ UTMOS↑ DNSMOS↑ PESQ↑ STOI↑ SPK SIM↑

Noisy input — 31± 40 1.36± 0.18 2.46± 0.20 1.11± 0.20 0.73± 0.09 0.78± 0.12
Clean — 3± 8 4.15± 0.19 3.67± 0.24 4.64± 0.00 1.00± 0.00 1.00± 0.00

ConvTasNet [5] — 35± 38 3.46± 0.51 3.28± 0.23 1.91± 0.37 0.93± 0.06 0.71± 0.13
DCCRN [43] — 43± 43 3.03± 0.56 3.35± 0.26 1.71± 0.33 0.89± 0.07 0.75± 0.12
StoRm [40] — 52± 50 3.05± 0.61 3.60± 0.20 1.34± 0.24 0.85± 0.10 0.70± 0.13

Feedforward + MSE
mel 28± 29 3.48± 0.40 3.58± 0.23 1.88± 0.33 0.10± 0.07 0.67± 0.13
VAE 29± 33 3.14± 0.52 3.49± 0.27 1.57± 0.28 0.88± 0.07 0.60± 0.13

Feedforward + diffusion VAE 33± 34 2.99± 0.55 3.43± 0.24 1.72± 0.30 0.88± 0.06 0.67± 0.11

AR
mel 45± 36 3.16± 0.36 3.52± 0.26 1.58± 0.28 0.11± 0.07 0.66± 0.14
VAE 70± 47 2.75± 0.61 3.46± 0.25 1.56± 0.29 0.83± 0.10 0.61± 0.14

BigCodec 58± 34 4.01± 0.30 3.62± 0.28 1.62± 0.33 0.87± 0.09 0.41± 0.10

MAR
mel 34± 34 3.46± 0.30 3.75± 0.19 1.54± 0.25 0.10± 0.07 0.61± 0.12
VAE 34± 34 2.70± 0.58 2.79± 0.18 1.37± 0.22 0.78± 0.12 0.45± 0.14

BigCodec 46± 38 3.91± 0.39 3.63± 0.26 1.74± 0.35 0.88± 0.07 0.39± 0.10

Table 2: Ablation study around the autoregressive models.

WER % ↓ UTMOS ↑ DNSMOS ↑ PESQ ↑

AR 45± 36 3.16± 0.36 3.52± 0.26 1.58± 0.28

AR w/ MSE Loss 46± 37 3.26± 0.36 3.33± 0.25 1.63± 0.31
AR w/ Prefix 58± 37 3.04± 0.41 3.55± 0.25 1.47± 0.23
AR w/ Conv 54± 37 3.02± 0.41 3.57± 0.29 1.54± 0.27
AR w/o SSL 66± 34 2.86± 0.42 2.79± 0.17 1.38± 0.25

MAR 34± 34 3.46± 0.30 3.75± 0.19 1.54± 0.25

MAR w/ MAE 30± 30 3.54± 0.31 3.81± 0.20 1.61± 0.26
MAR w/ Temporal 55± 44 2.98± 0.46 3.51± 0.28 1.46± 0.22
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Figure 2: Score difference on UTMOS, DNSMOS, PESQ, and
speaker similarity between models at different noise levels. The
horizontal axis indicates the noisy speech input SI-SDR [dB].
FF stands for feedforward, and BC stands for BigCodec.

Conversely, MAR performs similarly to the feedforward
models on average and has a clear advantage on the more
severely noisy cases, i.e., samples with low input SI-SDR, as
shown in Fig. 2a. We can observe different preferences from
each metric. In general, PESQ favors non-generative models,
while DNSMOS tends to rate generative models higher. Never-
theless, all the metrics indicate the same score difference pattern
along input SI-SDR. Clearly, when the input SI-SDR is lower
than zero, MAR(mel) outperforms FF(mel) on most metrics.
The performance discrepancy increases as the input SI-SDR
further decreases. This aligns with the motivation and obser-
vation of many other generative speech enhancement models.
Generative speech enhancement models are beneficial under se-

vere conditions where traditional discriminative models fail to
learn the mapping. It is also interesting to note that the MAE
encoder is helpful. While we did not further explore this di-
rection, it underlines the potential of a specialized transformer
encoder in this task, especially for mel-spectrogram features.

Notably, as all generative models (including the baseline
StoRm) suffer from higher WER, MAR + continuous features
achieve relatively low WERs, beating ConvTasNet and DC-
CRN, and are close to the feedforward models. We attribute
this to the bi-directional attention of MAR models.
Tokenizers Continuous features (mel spectrogram and VAE)
lead to better speaker similarity, and better WER in most cases.
The result on speaker similarity aligns with a comparison study
between mel spectrogram and Encodec features [51], which re-
ports that discrete features are slightly inferior in representing
speaker information. BigCodec excels at output quality, as re-
flected by UTMOS. We believe this is because all the tokens
from the BigCodec are trained from clean speech, and because
only one codebook is used, not much non-speech sound can be
coded in the codebook. However, on the flip side, the model
can be subject to more content errors and higher WER. Mel
spectrogram tends to preserve speaker features better than VAE
features. Because HiFi-GAN on mel does not preserve phase in-
formation, all the models involving mel spectrogram have low
STOI scores.

A similar pattern is observed from Fig. 2b, where the mel
spectrogram performs better than BigCodec on the low input
SNR cases. We believe this is because the continuous space is
capable of more complex modeling.

6. Conclusion
In this work, we explored continuous generative speech en-
hancement using diffusion loss and AR models. By design-
ing related baselines and exploring several important design
choices, we show that our generative speech enhancement is
particularly effective and valuable in severely noisy cases com-
pared to the discriminative and discrete counterparts. In the fu-
ture, we plan to further scale up continuous AR and MAR mod-
els for generative speech enhancement and explore additional
applications such as extreme restoration tasks or more challeng-
ing use cases involving multiple speakers and languages.
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