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Abstract
This paper presents two optimal measurement projection schemes for the factor-graph-based
Global Navi- gation Satellite System (GNSS) positioning with Real-Time- Kinematics (RTK).
While factor graph optimization (FGO) has demonstrated improved accuracy and robustness
in GNSS positioning compared to conventional filtering-based methods, the improvement has
a cost of increased computational com- plexity due to the fact that FGO processes the batch of
historical data simultaneously. Two measurement projection schemes are proposed to alleviate
the computational burden of FGO by optimally projecting the GNSS measurements into a
lower-dimensional subspace. Thereby, the dimensionality of the factor graph optimization is
significantly reduced with only minimally performance loss. Monte Carlo simulation results
demonstrate that the proposed measurement reduction schemes can achieve a significant
computational speedup for the FGO- based GNSS-RTK positioning while retaining high-
precision positioning performance.
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Optimal Measurement Projection in GNSS-RTK Factor Graph Optimization

Yingjie Hu, Stefano Di Cairano∗, Karl Berntorp

Abstract— This paper presents two optimal measurement
projection schemes for the factor-graph-based Global Navi-
gation Satellite System (GNSS) positioning with Real-Time-
Kinematics (RTK). While factor graph optimization (FGO)
has demonstrated improved accuracy and robustness in GNSS
positioning compared to conventional filtering-based methods,
the improvement has a cost of increased computational com-
plexity due to the fact that FGO processes the batch of
historical data simultaneously. Two measurement projection
schemes are proposed to alleviate the computational burden
of FGO by optimally projecting the GNSS measurements into
a lower-dimensional subspace. Thereby, the dimensionality of
the factor graph optimization is significantly reduced with only
minimally performance loss. Monte Carlo simulation results
demonstrate that the proposed measurement reduction schemes
can achieve a significant computational speedup for the FGO-
based GNSS-RTK positioning while retaining high-precision
positioning performance.

I. INTRODUCTION

High-precision positioning is vital for many positioning,
navigation, and timing (PNT) applications, including au-
tonomous vehicles, unmanned aerial vehicles (UAVs), and
aircraft. GNSS-RTK is widely used to achieve such accuracy
by leveraging pseudorange (code) and carrier phase measure-
ments. Pseudorange offers meter-level accuracy, affected by
atmospheric delays, clock biases, and multipath effects. In
contrast, carrier phase measurements provide sub-centimeter
accuracy but suffer from integer ambiguities due to the
unknown number of full carrier wave cycles during signal
transit. Resolving integer ambiguities is key to GNSS-RTK
positioning, but this process can be computationally complex
and sensitive to cycle slips, which are sudden jumps of the
integer ambiguities caused by the loss-of-lock of the carrier
signal tracking.

Prior work: Traditional ambiguity resolution follows a
two-step process: float ambiguities are first estimated, then
constrained to integer values (e.g., using LAMBDA method
[12]). After resolving integer ambiguities, receiver states
are updated using these integer estimates, enabling high-
precision positioning solutions. Filtering-based methods es-
timate the GNSS receiver states epoch-by-epoch. Alter-
natively, Factor Graph Optimization (FGO), a nonlinear
optimization framework, estimates the state trajectory by
processing the batch of historical epoch data simultaneously.
FGO exploits the full data batch, capturing temporal correla-
tions between measurements and states to produce globally
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consistent estimates [14]. FGO’s iterative optimization en-
ables it to handle nonlinearity more effectively over extended
Kalman filter (EKF) [15], and recent studies have adopted
FGO for GNSS-RTK positioning [11], [14].

Challenge: FGO’s batch optimization leads to high com-
putational cost, especially for large datasets. To address this,
algorithms like iSAM [8] and iSAM2 [7] are proposed to im-
prove the computational efficiency via incremental updates.
For long-duration tasks, sliding-window approaches [15] can
further reduce the computational burden by processing only
the data within the current sliding window at each time. The
window size represents a trade-off between performance and
computational load: a smaller window reduces computational
burden but limits the amount of data available for graph
optimization, potentially reducing FGO’s performance.

Contribution: This paper proposes two optimal measure-
ment projection algorithms for FGO-based GNSS-RTK po-
sitioning with sliding window implementation. The goal is
to reduce FGO’s computational load while preserving high
precision positioning performance. In GNSS positioning,
optimal estimators are designed to minimize the mean square
error (MSE) of the state estimates, with the best achiev-
able performance defined by the Cramer-Rao Lower Bound
(CRLB) [9]. Consequently, our measurement projection al-
gorithms aim to find the optimal linear projection operator
that minimizes the MSE of the state estimates when using
the projected measurements of reduced dimensions. On one
hand, the optimal projection ensures that the CRLB is only
minimally affected by the use of the projected measure-
ments, leading to nearly identical positioning performance
between the original and the projected measurements. On
the other hand, the reduced dimensionality of the projected
measurements decreases the computational complexity of
the FGO. Monte Carlo simulations validate the proposed
methods, showing significant computational savings with
minimal accuracy loss.

II. PROBLEM SETUP

To simplify the exposition, we assume GNSS code and
carrier phase measurements and ignore Doppler measure-
ments. Consider the following code and carrier phase mea-
surement models from satellite s to receiver r at time tk,

ρsr,k = rsr,k + c(δtr,k − δtsk) + Isr,k + T s
r,k + ϵsr,k

λϕs
r,k = rsr,k + c(δtr,k − δtsk)− Isr,k + T s

r,k + λNs
r,k + ηsr,k

(1)
where ρsr,k is the code measurement, ϕs

r,k is the carrier phase
measurement, and rsr,k = ∥pr,k − ps,k∥ is the geometric
range between receiver r and satellite s. pr,k,ps,k ∈ R3



denote the receiver and satellite positions, c is the speed of
light, δtr,k is the receiver clock bias, and δtsk is the satellite
clock bias. Isr,k denotes the ionospheric delay, T s

r,k is the
tropospheric delay, and λ represents the carrier wavelength.
Furthermore, Ns

r,k represents the carrier phase integer am-
biguity, and ϵsr,k and ηsr,k denote the measurement errors,
generally caused by multipath effects, NLOS receptions,
receiver noise, and antenna delay [14]. ϵsr,k and ηsr,k are
assumed to be white Gaussian noises, the variance of which
depends on the satellite elevation.

A single differencing (SD) operation is typically per-
formed between the measurements of receiver r and base
b to eliminate common-mode errors (e.g., ionosphere, tropo-
sphere, and satellite clock) within a local vicinity [5],

∆ρsbr,k = rsb,k − rsr,k + c(δtsb,k − δtsr,k) + ∆ϵsbr,k

λ∆ϕs
br,k = rsb,k − rsr,k + c(δtsb,k − δtsr,k) + λ∆Ns

br,k +∆ηsbr,k
(2)

Next, a second difference is performed between the reference
(pivot) satellite o and satellite s to remove the receiver clock
bias [2]. The resulting double-differenced (DD) code and
carrier phase measurements can be expressed as

∇∆ρsobr,k = ∇∆rsobr,k +∇∆ϵsobr,k

λ∇∆ϕso
br,k = ∇∆rsobr,k + λ∇∆Nso

br,k +∇∆ηsobr,k
(3)

where ∇∆rsobr,k = (rsb,k − rsr,k) − (rob,k − ror,k), and
∇∆Nso

br,k = ∆Ns
br,k − ∆No

br,k is the DD ambiguity. If M
pairs of DD code and carrier phase measurements are avail-
able at time tk (M+1 satellites o, s1, s2, · · · , sM are visible),
we can form the DD code and carrier phase measurement
equations

yρ,k = h(xk) + ϵk

yϕ,k = h(xk) + λnk + ηk

(4)

where the receiver state xk includes at least the receiver’s
position and velocity xk =

[
p⊤
r,k v⊤

r,k

]⊤
, nk ∈ ZM

is the DD carrier phase integer ambiguity vector, ϵk ∼
N (ϵk|0,Rρ,k) and ηk ∼ N (ηk|0,Rϕ,k), and

h(xk) =
[
∇∆rs1obr,k · · · ∇∆rsMo

br,k

]T
nk =

[
∇∆Ns1o

br,k · · · ∇∆NsMo
br,k

]T
ϵk =

[
∇∆ϵs1obr,k · · · ∇∆ϵsMo

br,k

]T
ηk =

[
∇∆ηs1obr,k · · · ∇∆ηsMo

br,k

]T
.

(5)

In this work, we use the constant-velocity (CV) model [4]
as follows to characterize the receiver motion.

xk+1 =

[
I dtI
0 I

]
xk +

[
dt2

2 I
dtI

]
wk (6)

where dt is the sampling period and wk is the Gaussian
process noise wk ∼ N (wk|0,Qk). Note that our proposed
methodology is not limited to linear motion models and more
sophisticated models can be used for the receiver dynamics.

III. THE BASELINE GNSS-RTK FGO

In this section, we briefly outline the GNSS-RTK FGO
algortihm presented in [6], which we will augment with the
optimal measurement projections in later sections. For more
details on the original algorithm, please refer to [6].

The baseline algorithm, illustrated in Fig. 1, consists of
two FGOs. It is implemented using a sliding window. Current
sliding window spans through time step k + 1 to k + T .
The first-stage FGO computes the float solution of receiver
states x̂1:T,float and ambiguities n̂1:T,float within the current
sliding window. The subscript 1:T denotes indices within
the window. Next, LAMBDA method is used to obtain
the integer ambiguity estimates n̂1:T,fix. Subsequently, the
second-stage FGO computes the fixed solution of the receiver
states x̂1:T,fix. x̂T,fix is output as the receiver state estimate of
time step k+T . Then the sliding window moves forward by
one step and repeats this process, using the previous solution
as prior information. The components of the baseline FGO
algorithm is discussed as follows:

1) DD carrier phase factor: Based on (4), for the first-
stage FGO, DD carrier phase factor can be expressed as

∥eI
ϕ,i∥2Rϕ,i

= ∥yϕ,i − h(xi)− λni∥2Rϕ,i
(7)

where the superscript I represents the first FGO and subscript
i denotes the index within the sliding window. The DD
carrier phase factor of the second-stage FGO is

∥eII
ϕ,i∥2Rϕ,i

= ∥yϕ,i − h(xi)− λn̂i,fix∥2Rϕ,i
. (8)

2) DD pseudorange factor: DD pseudorange (code) mea-
surements only depend on receiver states. Thus, the error
factor of DD pseudorange is the same for both the first and
second FGO,

∥eρ,i∥2Rρ,i
= ∥yρ,i − h(xi)∥2Rρ,i

. (9)

3) Motion constraint factor: motion constraints on re-
ceiver states between consecutive time steps can be derived
from (6). Denote the equivalent process noise covariance
matrix by Q̄i = BiQiB

⊤
i . Thus, the motion constraint factor

is
∥ex,i∥2Q̄i

= ∥xi+1 − Fixi∥2Q̄i
. (10)

4) Adaptive ambiguity factor: The time evolution of the
ambiguity vector ni is modeled as an adaptive random
walk by adapting the random walk noise to reflect the
integer discontinuity caused by cycle slips. It enables FGO
to leverage the time correlation in the integer ambiguity
evolution and enhances the robustness to cycle slips.

∥en,i∥2Vi
= ∥ni+1 − ni∥2Vi

. (11)

where Vi is the covariance of the adaptive ambiguity noise.
When a cycle slip is detected for a certain ambiguity variable,
the corresponding variance in Vi is inflated to reflect the
integer jump. When there is no cycle slip, the corresponding
variance remains a small value. A detailed derivation of Vi

can be found in Sec.III in [6].



Fig. 1. Architecture of the baseline FGO-based GNSS-RTK algorithm (left), measurement projection scheme I (middle), measurement projection scheme
II (right). The subscript 1 : T denotes the indices within the sliding window.

5) Prior information factor: In sliding-window FGO, a
prior information factor incorporates historical data from
the previous window to the current one. Specifically, the
fixed state estimates at the second time step of the previous
window is used as the prior for the current window, denoted
as

[
x̂T

pri n̂T
pri
]T

with associated covariance matrix Ppri. The
state vector at the first time step of the current window is[
xT
1 nT

1

]T
. The prior information factor of the first-stage

FGO is expressed as

∥eI
pri∥2Ppri

= ∥
[
xT
1 nT

1

]T − [
x̂T

pri n̂T
pri
]T ∥2Ppri

. (12)

Solving the first-stage FGO yields float solutions x̂1:T, float
and n̂1:T, float. Then, x̂1, float, the receiver state estimate at the
first time step of current sliding window, will be utilized as
the prior information for the second-stage FGO. The prior
information factor of the second-stage FGO is

∥eII
pri∥2P1,float

= ∥x1 − x̂1, float∥2P1,float
. (13)

FGO can be solved using iterative methods (e.g. Gauss-
Newton, Levenberg-Marquardt). However, this process can
become computationally intensive, particularly when the
number of GNSS measurements is large and the sliding
window size is substantial.

IV. OPTIMAL MEASUREMENT PROJECTION

we use a concrete example here to illustrate FGO’s com-
putational burden. Receiver state x ∈ R6, integer ambiguity
vector n ∈ ZM , and sliding window size T. The first-stage
FGO has a dimensionality of (6 + M) × T , as shown in
Fig. 1, which scales with M and T . For instance, with
13 visible satellites (M = 12) and sliding window size
T = 60, the FGO’s dimensionality is 1080. While larger
M improves positioning accuracy, it significantly increases
computational cost. Conversely, reducing T to mitigate this
burden can potentially degrade FGO performance. To address
this issue, we propose projecting GNSS measurements into a
lower-dimensional subspace of size M̃ (M̃ < M ), reducing
the computational complexity while minimally impacting
GNSS-RTK FGO positioning performance.

A. Measurement Projection Formulation

Considering the measurement model: yk = h(xk) + vk

where yk ∈ RM , and vk ∼ N (0,Rk). We seek an optimal
linear projector Ψk ∈ RM̃×M such that ỹk = Ψkyk ∈ RM̃

(M̃ < M ) while retaining maximal information from the
original measurement sets [3]. The subscript k is dropped
for brevity. The optimality criterion of the measurement
projection is selected to be the minimization of the MSE
of the state estimate x̂ using projected measurements ỹ. The
CRLB states that for any unbiased estimate x̂ [9],

E[(x − x̂)(x − x̂)⊤] ≥ I(x)−1 (14a)

I(x) = (ΨH)⊤(ΨRΨ⊤)−1(ΨH) (14b)

where I(x) denotes the Fisher Information Matrix (FIM)
of x, measuring the amount of information contained in
the measurements, and H = (∂h(x)) / (∂x) |x=x̂ . (14a)
provides the theoretical lower bound on the variance of any
unbiased estimate x̂ of x. Consequently, the optimization
program of minimizing the state estimate MSE can be
formulated as

Ψ∗ = argmin
Ψ

J(Ψ) = argmin
Ψ

Tr
(
I−1(x)

)
= argmin

Ψ
Tr

(
{(ΨH)⊤(ΨRΨ⊤)−1(ΨH)}−1

) (15)

For Ψ = I ∈ RM×M , J(I) represents the smallest achiev-
able MSE of state estimates using the original measurement
sets. J(Ψ) ≥ J(I),∀Ψ ∈ RM̃×Mand M̃ ≤ M as the
linear combination of measurements do not contribute new
information.

B. Solving the Optimization Program

A gradient-descent-based method is proposed in [3] to
solve the nonconvex optimization (15). The partial derivative
of J(Ψ) with respect to Ψ can be computed by

∂J(Ψ)/∂Ψ = −2UQΛ−2Q⊤V ⊤ (16)

Y = H⊤Ψ⊤(ΨRΨ⊤)−1ΨH = QΛQ⊤

U = (ΨRΨ⊤)−1ΨH, V = H−RΨ⊤U
(17)



Thus, a simple gradient-descent algorithm using (16) can be
developed to compute a local optimum of the measurement
projection optimization in (15). Let superscript [s] denote the
gradient-descent iteration index. At s = 0, Ψ[0] ∈ RM̃×M is
randomly initialized, e.g., via uniform distribution U(−1, 1).
Each gradient-descent iteration updates the Ψ[s] as follows.

Ψ[s+1] = Ψ[s] + 2γU [s]Q[s]Λ
−2
[s] Q

⊤
[s]V

⊤
[s][

Λ[s],Q[s]

]
= eig(Y [s]), Y [s] = H⊤Ψ⊤

[s]U [s]

V [s] = H−RΨ⊤
[s]U [s], U [s] = (Ψ[s]RΨ⊤

[s])
−1Ψ[s]H

H = ∂h(x)/∂x|x=x̂

(18)
Equation (18) ensures that Ψ[s] converges to a local optimum
for a large s if the step size γ is found by a line-search. Ψ∗

denotes the computed optimal projector. Next, we introduce
the two design schemes of applying this optimal measure-
ment projection approach to the baseline GNSS-RTK FGO.

V. MEASUREMENT PROJECTION SCHEME I

Fig. 1 shows the diagram of the baseline GNSS-RTK
FGO. Within the sliding window of size T , pseudorange and
carrier phase measurements yρ,i, yϕ,i ∈ RM , i = 1, · · · , T .
According to (4), yρ,i only contains the receiver states xi

while yϕ,i contains both xi and integer ambiguity ni. In
projection scheme I, the optimality criterion is minimize the
MSE of the positional state estimate p̂. As shown in Fig. 1,
in the first-stage FGO, pseduorange measurements {yρ,i}Ti=1

are projected from RM to RM̃ and M̃ < M . Carrier
phase measurements {yϕ,i}Ti=1 remain the same because
the estimation of the integer ambiguity will become unob-
servable if {yϕ,i}Ti=1 are projected to a lower-dimensional
subspace. For the second-stage FGO, integer ambiguities are
resolved. {yϕ,i}Ti=1 free of the integer ambiguities can then
be projected from from RM to RM̃ .

Given (4) and (5), yρ,i = h(xi) + ϵi = h(pi) + ϵi as
the geometric range h(xi) does not depend on the receiver
velocity. Thus, the Jacobian of h(pi) with respect to the
position states pi is

Hpi
= (∂h(pi)) / (∂pi) |pi=p̂i (19)

where, p̂i is the current position estimate. According to (15),
the optimal measurement projection optimization for yρ,i can
be expressed as

Ψ∗
ρ,i = argmin

Ψi

Tr
(
{(ΨiHpi

)⊤(ΨiRρ,iΨ
⊤
i )

−1(ΨiHpi
)}−1

)
(20)

Since the receiver’s position change within the sliding win-
dow is minimal compared to the satellite-receiver distance,
the variation in the Jacobian matrix Hpi

over time within the
sliding window is expected to be negligible, which suggests
that Hpi

can be treated as nearly constant within the sliding
window without significant loss of accuracy. Given that the
noise covariance Rρ,i is assumed known and constant, Ψ∗

ρ,1

computed at the first time step within the sliding window

can be used to project {yρ,i}Ti=1 for the entire window. The
error factor of the projected pseudorange is expressed by

∥ẽρ,i∥2R̃ρ,i
= ∥Ψ∗

ρ,1yρ,i −Ψ∗
ρ,1h(xi)∥2R̃ρ,i

(21)

where R̃ρ,i = Ψ∗
ρ,1Rρ,iΨ

∗⊤
ρ,1. After the integer ambiguity

resolution, the ambiguity vectors n̂1:T,fix can be removed from
the carrier phase measurements {yϕ,i}Ti=1, which eliminates
the unobservability issue for the projected carrier phase
measurements. Thus, {yϕ,i}Ti=1 can now be projected from
RM to RM̃ for the second-stage FGO. Analogous to (20), the
optimal measurement projection for yϕ,i can be formulated
as

Ψ∗
ϕ,i = argmin

Ψi

Tr
(
{(ΨiHpi)

⊤(ΨiRϕ,iΨ
⊤
i )

−1(ΨiHpi)}−1
)

(22)
where Hpi

= (∂h(pi)) / (∂pi) |pi=p̂i
. Note that p̂i here

is the position estimate computed from the first-stage FGO.
Similarly, the error factor of the projected carrier phase is
expressed by

∥ẽII
ϕ,i∥2R̃ϕ,i

= ∥Ψ∗
ϕ,1yϕ,i −Ψ∗

ϕ,1h(xi)− λΨ∗
ϕ,1n̂i,fix∥2R̃ϕ,i

(23)
where R̃ϕ,i = Ψ∗

ϕ,1Rϕ,iΨ
∗⊤
ϕ,1. Accordingly, the objective

functions of the first and second-stage FGOs can be written
as (24) and (25) respectively. The measurement projection
scheme is summarized in Algorithm 1.

x̂1:T,float,n̂1:T,float = argmin
x1:T,n1:T

∥eI
pri∥2Ppri

+
∑T

i=1(∥eI
ϕ,i∥2Rϕ,i

+

∥ẽρ,i∥2R̃ρ,i
) +

∑T−1
i=1 (∥ex,i∥2Q̄i

+ ∥en,i∥2Vi
).

(24)
x̂1:T,fix = argmin

x1:T

∥eII
pri∥2P1,float

+
∑T

i=1(∥ẽ
II
ϕ,i∥2R̃ϕ,i

+ ∥ẽρ,i∥2R̃ρ,i
)

+
∑T−1

i=1 ∥ex,i∥2Q̄i
.
(25)

VI. MEASUREMENT PROJECTION SCHEME II

As shown in the middle diagram of Fig. 1, the first-
stage FGO uses the original carrier phase measurements
{yϕ,i}Ti=1 ∈ RM . Thus, despite projecting the pseudorange
measurements to the subspace RM̃ , the first FGO’s dimen-
sionality remains (6 + M) × T . To further reduce compu-
tational cost, it is desirable to also project the carrier phase
measurements. Measurement projection scheme II achieves
this by projecting carrier phase measurements into a lower-
dimensional subspace while preserving observability of the
integer ambiguities. The algorithm of the projection scheme
II is illustrated in the right diagram in Fig. 1.

For carrier phase measurement yϕ,i ∈ RM and a linear
projection matrix Ψϕ,i ∈ RM̃×M (M̃ < M), the projected
carrier phase can be expressed as

ỹϕ,i = Ψϕ,ih(xi) + λΨϕ,ini +Ψϕ,iηi (26)

where ni ∈ ZM and ỹϕ,i ∈ RM̃ . However, using the
projected ỹϕ,i in the FGO renders the ambiguity ni unob-
servable. To address this, we define the projected ambiguity
n′
i = Ψϕ,ini ∈ RM̃ , which becomes fully observable given



Algorithm 1 Measurement Projection Scheme I
1: Define total time length L, sliding window size T
2: Set initial state estimate x̂0, n̂0 and covariance P0

3: Initialize Ψϕ,0,[0],Ψρ,0,[0] ∼ U([−1, 1]M̃×M )
4: Update Ψρ,0,[s] using (18) for iterations s : 0→ Nρ

5: Update Ψϕ,0,[s] using (18) for iterations s : 0→ Nϕ

6: for k = 1, ..., L do
7: Receive: tk,yk

8: if k ≤ T then
9: Update Ψρ,0,[s] by (18) for s : 0→ Nρ if k > 1

10: {x̂}ki=0,float, {n̂}ki=0,float ← solve 1st FGO (24)
11: {n̂}ki=0,fix ← integer fixation
12: Update Ψϕ,0,[0] by (18) for s : 0→ Nϕ if k > 1
13: {x̂}ki=0,fix ← solve 2nd FGO (25)
14: Set Ψρ,0,[0] = Ψρ,0,[Nρ], Ψϕ,0,[0] = Ψϕ,0,[Nϕ]

15: else
16: Set index j = k − T + 1
17: Set Ψρ,j,[0] = Ψρ,j−1,[Nρ], Ψϕ,j,[0] =

Ψϕ,j−1,[Nϕ]

18: Update Ψρ,j,[s] using (18) for s : 0→ Nρ

19: {x̂}ki=j,float, {n̂}ki=j,float ← solve 1st FGO (24)
20: {n̂}ki=j,fix ← integer fixation
21: Update Ψϕ,j,[s] using (18) for s : 0→ Nϕ

22: {x̂}ki=j,fix ← solve 2nd FGO (25)
23: end if
24: Output x̂k,fix, n̂k,fix
25: end for

ỹρ,i and ỹϕ,i. This allows the first-stage FGO to operate in
reduced dimensionality (6 + M̃) ∗ T by estimating xi ∈ R6

and n′
i ∈ RM̃ , thus lowering computational cost. However,

n′
i loses its integer-valued property, making ambiguity res-

olution infeasible and degrading positioning accuracy [9].
To address this issue, we impose integer constraints on the
projection operator Ψϕ,i ∈ ZM̃×M such that n′

i remains
integer-valued.

Equation (26) can be rewritten as

ỹϕ,i = Ψϕ,ih(xi) + λn′
i +Ψϕ,iηi (27)

To find the optimal integer-valued projection matrix Ψϕ,i,
an optimization program analogous to (15) is formulated.
Since integer ambiguity resolution is crucial for GNSS-RTK
positioning accuracy, the optimality criterion of the carrier
phase projection is selected to minimize the MSE of the
projected ambiguity estimate n̂′. The FIM I(n′

i) and the
optimization problem can be formulated as follows.

I(n′
i) = H⊤

n′
i
(Ψϕ,iRϕ,iΨ

⊤
ϕ,i)

−1Hn′
i
= λ2(Ψϕ,iRϕ,iΨ

⊤
ϕ,i)

−1

(28)
Ψ∗

ϕ,i = argmin
Ψϕ,i∈ZM̃×M

Tr
(
{I−1(n′

i)}
)

= argmin
Ψϕ,i∈ZM̃×M

1

λ2

∑M̃
k=1 Ψϕ,i(k, :)Rϕ,iΨ

⊤
ϕ,i(k, :)

(29)
where Hn′

i
= (∂ỹϕ,i) / (∂n

′
i) |n′

i=n̂′
i
= λIM̃×M̃ , due to

the linear structure of n′
i in ỹϕ,i. Ψϕ,i(k, :) is the k-th

row of Ψϕ,i. Rϕ,i is the noise covariance matrix of DD
carrier phase measurements, which can be derived as follows.
Denote the differencing operator by S ∈ ZM×(M+1) and the
noise covariance matrix of SD carrier phase measurements
by RSD

ϕ,i ∈ R(M+1)×(M+1).

S =
[
1M×1 −IM×M

]
,RSD

ϕ,i = diag
(
σ2
ϕ1

σ2
ϕ2
· · ·σ2

ϕM+1

)
(30)

And Rϕ,i can be computed by Rϕ,i = SRSD
ϕ,iS

⊤ as follows.

Rϕ,i =


σ2
ϕ1

+ σ2
ϕ2

σ2
ϕ1

· · · σ2
ϕ1

σ2
ϕ1

σ2
ϕ1

+ σ2
ϕ3
· · · σ2

ϕ1

...
...

...
...

σ2
ϕ1

σ2
ϕ1

· · · σ2
ϕ1

+ σ2
ϕM+1


(31)

As indicated by (28), rank(Ψϕ,i) = M̃ is required to
ensure the matrix inverse exits, adding a rank constraint
to the optimization in (29). The optimal Ψ∗

ϕ,i of (29) can
be determined as follows: For the k-th row Ψϕ,i(k, :), find
the index of the k-th smallest diagonal entry of Rϕ,i, set
the corresponding entry of Ψϕ,i(k, :) to 1 and all others
to zero. For instance, for the first row vector Ψϕ,i(1, :), if
Rϕ,i(4, 4) is the smallest among all diagonal entries, then
set Ψϕ,i(1, 4) = 1 and everywhere else to zero. Repeat this
process for k = 1, 2, 3, · · · , M̃ until Ψϕ,i is populated. In
this way, the integer-valued optimal projection operator Ψ∗

ϕ,i

can be determined to minimize the objective function in (29)
while satisfying the rank constraint.

An observation about the optimal Ψ∗
ϕ,i is that its M̃

non-zero entries correspond to a subset of the carrier phase
measurement yϕ,i ∈ RM with the smallest M̃ variances (the
diagonal entries of Rϕ,i). In effect, the projected ỹϕ,i ∈ RM̃

is formed by selecting from yϕ,i the entries with the smallest
M̃ variances. Thus, the optimal projection for yϕ,i is effec-
tively an optimal measurement selection problem. However,
unlike projection scheme I, where all measurements are
used, projection scheme II uses only a subset of the original
carrier phase measurements. Therefore, a slight performance
degradation is expected in projection scheme II compared to
scheme I.

Assume Rϕ,i remains approximately constant within the
sliding window, Ψ∗

ϕ,1 computed at the first time step within
the sliding window can be reused to project {yϕ,i}Ti=1 for
the entire window. Thus, the error factor of the projected
carrier phase in the first-stage FGO can be expressed by

∥ẽI
ϕ,i∥2R̃ϕ,i

= ∥Ψ∗
ϕ,1yϕ,i −Ψ∗

ϕ,1h(xi)− λn′
i∥2R̃ϕ,i

(32)

where R̃ϕ,i = Ψ∗
ϕ,1Rϕ,iΨ

∗⊤
ϕ,1. Since the first-stage FGO also

estimates the projected ambiguity n′ in projection scheme II,
the adaptive ambiguity factor must be modified as follows.

∥en′,i∥2Ṽi
= ∥n′

i+1 − n′
i∥2Ṽi

. (33)

where Ṽi = Ψ∗
ϕ,1ViΨ

∗⊤
ϕ,1. After the integer ambiguity

resolution, the integer-valued projected ambiguity estimates



{n̂′
i}Ti=1 are obtained. In the second-stage FGO, the error

factor of the projected carrier phase is computed as

∥ẽII
ϕ,i∥2R̃ϕ,i

= ∥Ψ∗
ϕ,1yϕ,i −Ψ∗

ϕ,1h(xi)− λn̂′
i∥2R̃ϕ,i

(34)

The projection for pseudorange measurements in projection
scheme II is identical to that in projection scheme I and is not
repeated here for brevity. Using (10), (12), (21), (32), (33)
and (34), the objective functions for the first and second-stage
FGOs of projection scheme II are formulated. The overall
procedure is summarized in Algorithm 2.

x̂1:T,float,n̂
′
1:T,float = argmin

x1:T,n′
1:T

∥eI
pri∥2Ppri

+
∑T

i=1(∥ẽI
ϕ,i∥2R̃ϕ,i

+

∥ẽρ,i∥2R̃ρ,i
) +

∑T−1
i=1 (∥ex,i∥2Q̄i

+ ∥en′,i∥2Ṽi
).

(35)
x̂1:T,fix = argmin

x1:T

∥eII
pri∥2P1,float

+
∑T

i=1(∥ẽ
II
ϕ,i∥2R̃ϕ,i

+ ∥ẽρ,i∥2R̃ρ,i
)

+
∑T−1

i=1 ∥ex,i∥2Q̄i
.
(36)

Algorithm 2 Measurement Projection Scheme II
1: Define total time length L, sliding window size T
2: Set initial state estimate x̂0, n̂0 and covariance P0

3: Initialize Ψρ,0 ∼ U([−1, 1]M̃×M )
4: Update Ψρ,0,[s] using (18) for iterations s : 0→ Nρ

5: for k = 1, ..., L do
6: Receive: tk,yk

7: if k ≤ T then
8: Update Ψρ,0,[s] by (18) for s : 0→ Nρ if k > 1
9: Obtain Ψϕ,0 by solving (29)

10: {x̂}ki=0,float, {n̂′}ki=0,float ← solve 1st FGO (35)
11: {n̂′}ki=0,fix ← integer fixation
12: {x̂}ki=0,fix ← solve 2nd FGO (36)
13: Set Ψρ,0,[0] = Ψρ,0,[Nρ]

14: else
15: Set index j = k − T + 1
16: Set Ψρ,j,[0] = Ψρ,j−1,[Nρ]

17: Update Ψρ,j,[s] using (18) for s : 0→ Nρ

18: Obtain Ψϕ,j by solving (29)
19: {x̂}ki=j,float, {n̂′}ki=j,float ← solve 1st FGO (35)
20: {n̂′}ki=j,fix ← integer fixation
21: {x̂}ki=j,fix ← solve 2nd FGO (36)
22: end if
23: Output x̂k,fix, n̂

′
k,fix

24: end for

VII. NUMERICAL SIMULATION

A. Simulation Setup

A numerical simulation is conducted to demonstrate the
proposed measurement projection schemes. The following
approaches are compared: (1) The baseline FGO-based
GNSS-RTK positioning algorithm (denoted by FGO-BASE);
(2) The baseline FGO-based GNSS-RTK with optimal mea-
surement projection scheme I (denoted by FGO-MP-I); (3)
The baseline FGO-based GNSS-RTK with optimal measure-
ment projection scheme II (denoted by FGO-MP-II);

The simulation considers a single-band GNSS receiver
collecting pseudorange and carrier phase signals from M +
1 = 13 satellites at a sampling rate of 10 Hz. The carrier
wavelength is λ = 0.2 m. A static base station with a known
position is located in close proximity to the receiver. At
each epoch, M = 12 double-differenced pseudorange and
carrier phase measurements are available. To simulate the
frequent cycle slips common in dynamic environments, such
as urban canyons, multiple integer jumps are introduced in
the time evolution of integer ambiguities in the carrier phase
measurements, using the method described in [6]. Receiver
motion follows the CV model in (6) with a sampling interval
of dt = 0.1 s. Each simulation lasts 300 time steps.

The baseline algorithm FGO-BASE processes GNSS mea-
surements in full dimensionality. In FGO-MP-I, both pseu-
dorange and carrier phase measurements are projected to
the subspace of dimensionality M̃ = 3. In FGO-MP-II,
pseudorange is projected to M̃ = 3 and carrier phase to
M̃ = 6. For projection optimization, single gradient descent
iteration is used at lines 9, 12, 18, 21 in Algorithm 1 and
lines 8, 17 in Algorithm 2, as warm-started optimization
requires very few iterations per time step in our experience
[3]. The number of gradient descent iterations can be tuned
based on the trade-off between computational cost and MSE
performance. All algorithms are implemented in Matlab,
using CasADi [1] via the MPCTools [10] interface and Ipopt
[13] to solve the FGO on a laptop with an i7 2.6GHz CPU.

B. Performance Evaluation

Fig. 2 compares the integer ambiguity resolution of FGO-
MP-I and FGO-MP-II with the true ambiguity history in a
single simulation test, using a sliding window of size T = 90.
FGO-MP-I estimates the original ambiguities, while FGO-
MP-II estimates the projected ambiguities. Both algorithms
demonstrate effective ambiguity fixation. Although relatively
larger errors appear during the initial transient phase, the
ambiguity estimates quickly converge to the true values.
Fig. 3 shows the receiver state estimation errors for all
three algorithms. These errors are of the same order of
magnitude and are very close to each other, indicating
that the proposed projection schemes maintain positioning
accuracy comparable to the baseline approach. However,
further performance evaluation via Monte Carlo simulations
is necessary for statistical validation.

Fig. 2. Integer ambiguity resolution of FGO-MP-I (left) and FGO-MP-
II(right)



Fig. 3. Receiver states estimation errors

C. Monte Carlo Simulation Results

A Monte Carlo (MC) simulation study with 100 runs–each
initialized randomly–is conducted to statistically evaluate the
proposed algorithms. The root-mean-square errors (RMSE)
of the receiver position estimates for the three algorithms,
using a sliding window size of T = 90, are shown in Fig. 4.
After the initial transient phase, all three RMSE curves
converge to below 5 cm. Both FGO-MP-I (red) and FGO-MP-
II (green) closely track the baseline RMSE of the FGO-BASE,
demonstrating that the proposed projection schemes can
maintain high-precision positioning accuracy while offering
the potential benefits of reducing computational complexity.
A closer look at the post-transient RMSE (after 90 epochs)
shows that FGO-BASE achieves the smallest RMSE, followed
by FGO-MP-I, with FGO-MP-II exhibiting the largest RMSE
level. This aligns with our analysis that (1) the baseline
FGO-BASE processes full-dimensional measurements, thus
achieving the highest accuracy; (2) FGO-MP-II exhibits the
largest RMSE as it sacrifices some accuracy by selecting only
a subset of the carrier phase data. Additional MC simulations
with sliding window sizes T = 30, 50, 70, and 110 showed
consistent results. However, these additional results are not
reported here due to space limitations.

Fig. 4. Root-mean-square-errors (RMSE) of the receiver position estimates
for the three algorithms with sliding window size T = 90 and 100 MC
runs.

In addition to positioning accuracy, the computational
complexity of the three algorithms is assessed for varying
sliding window sizes. Fig. 5 shows the average runtime of
the algorithms for different window sizes, computed over
100 MC runs, in an unoptimized Matlab implementation.
As expected, runtime increases with the sliding window size
for all algorithms. Both proposed measurement projection
algorithms, FGO-MP-I and FGO-MP-II, consistently achieve
lower runtime than the baseline FGO-BASE. Moreover, FGO-
MP-II outperforms FGO-NP-I in runtime, as it further reduces

the computational load by projecting the carrier phase mea-
surements in the first-stage FGO.

Fig. 5. Average runtime of the three algorithms with different sliding
window sizes in Matlab implementation. 100 MC runs for each sliding
window size.

VIII. CONCLUSION

This paper proposes two optimal measurement projec-
tion schemes to reduce the computational complexity of
factor-graph-based GNSS-RTK positioning. By projecting
GNSS measurements into lower-dimensional subspaces, the
approach accelerates optimization while maintaining high-
precision positioning with minimal accuracy loss. Monte
Carlo simulations validate its efficiency, demonstrating its
potential to improve the computational efficiency of FGO-
based GNSS-RTK, especially in computationally constrained
environments. Future work will apply the proposed methods
to iSAM/iSAM2 for further computational efficiency gains.
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