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Abstract—This paper delves into the transformative potential
of Machine Learning (ML) in Radio Frequency (RF) sensing
applications. We focus on pivotal domains such as device local-
ization, occupancy detection, activity monitoring, and biometric
sensing, showcasing how ML is redefining the boundaries of what
is possible. By harnessing the power of ML, we showcase how
to unlock unprecedented performance enhancements in these
critical areas. We provide a comprehensive review of cutting-edge
ML-driven RF sensing methodologies and offer an overview of
publicly available datasets that are propelling this field forward.
Moreover, we present key challenges that remain - from the
quality and labeling of RF sensor data to robustness, privacy,
and explainability of ML models. Through this exploration, we
lay the path for future scientific and engineering innovations in
the ever-evolving landscape of RF sensing.

Index Terms—Machine Learning, RF Sensing, Wi-Fi, Blue-
tooth, Ultra-Wideband (UWB), Radar, Localization, Activity
monitoring, Biometric Sensing.

I. INTRODUCTION

RF sensing uses radio propagation characteristics to detect,
measure, and analyze various environmental and system states.
An advantage of RF sensing in comparison to infrared and
vision based sensing is that they work through obstacles
in non-line-of-sight environments, providing a versatile and
non-intrusive approach to detection and monitoring. These
characteristics make RF sensing attractive in a wide range
of applications in healthcare, industrial automation, and smart
buildings.

In the healthcare domain, RF sensors can be used for sleep
monitoring, vital sign monitoring, respiration and heart rate
measurement, without physical contact, [1]–[10]. RF sensors
can be used in elderly care environments for activity moni-
toring [11]–[15] and even severity of fall detection [16], sup-
porting their well-being without loss in privacy. RF imaging
techniques may be used in medical diagnostics for in-body
imaging, tumor detection, monitoring tissue properties, and
localization of in-body RF sources [17], [18]. In security and
surveillance applications, RF fingerprinting can be used to
uniquely identify devices based on their RF emissions to limit
unauthorized access and provide network security. In industrial
applications, RFID sensors support efficient tracking of assets
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in warehouses and factories [19], [20]. RF sensors are also
used in real-time monitoring of parameters such as tempera-
ture, pressure, and liquid levels to monitor industrial processes,
detect and diagnose anomalies and failures [21]–[23]. Finally,
RF-based positioning and navigation systems enable robotics
and automation in connected buildings, manufacturing and
logistics [24]–[29].

One approach to categorizing RF sensing technologies is
based on operational frequencies. RFID (Radio Frequency
Identification) employs sub-GHz bands to automatically iden-
tify and track tags. RFID applications are common in asset
tracking, logistics, supply chain management, and inventory
control. Bluetooth and Wireless Fidelity (Wi-Fi) sensing use
the license-free 2.4 GHz band and find applications in con-
sumer devices for indoor positioning and presence detection
applications. Another active sensing technology is based on
UWB operating in the 3.1 GHz to 10.6 GHz range. UWB
sensing is suitable for short-range, high-precision applica-
tions like ranging, gesture recognition, and activity detection.
Finally, radar sensing technologies span different frequency
bands covering sub-GHz for air surveillance and defense, 4-
8 GHz C-band for weather radar and sea monitoring, 60
GHz for industrial applications, home monitoring, and in-cabin
sensing, 76-81/94/120 GHz for automotive road sensing, and
THz bands for body scanning applications.

These RF sensing technologies have traditionally been
driven by signal processing techniques, often based on well-
developed analytical signal models. In some application sce-
narios, theoretical models may have limitations. Over the
past years, rich amounts of RF sensor data have become
available, along with advances in ML. This combination of
data and ML in RF sensing opens new data-driven, as well as
hybrid data- and model-based, approaches to deliver improved
sensing performance. New sensing information can also be
derived by processing patterns across diverse RF data streams.
Furthermore, large amounts of such RF data is being labeled
and contextualized. This allows use of supervised learning
approaches for training models on labeled data in RF sensing
applications like positioning, anomaly detection, and activity
classification. In such cases, deep neural networks have also
been used to improve performance by identifying complex
patterns underlying in large datasets. In use cases where
labeled data is limited or non-existent, unsupervised learning
approaches are being employed.

The remainder of the paper is organized as follows. Differ-
ent ML paradigms for RF sensing are presented in Section II.
Diverse ML approaches in RF sensing to realize different func-
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tions like localization, occupancy and biometric sensing at the
device and human level are reviewed in detail in Section III.
Finally, in Section IV, challenges and new directions in ML-
driven RF sensing are outlined, with conclusions drawn in
Section V.

II. MACHINE LEARNING PARADIGMS FOR RF SENSING

Traditional signal processing methods used for RF sensing
rely on underlying signal models, as well as an understand-
ing of the RF propagation, transceiver system, RF footprint,
and other dynamic changes in the application environment.
These methods are effective when operating conditions align
with those specified during design and underlying model
assumptions are valid. In such cases, employing machine/deep
learning techniques for well-defined problems with satisfactory
performance is often an overkill. In practice, however, oper-
ating conditions deviate from design assumptions. Moreover,
RF sensing problems are often mathematically intractable or
cannot be simplified into numerical input-output explanations.
In such cases, ML models can prove to be effective, given
that they can be trained to be more generalizable than a priori
specifications. ML solutions are also more adaptable to dy-
namic conditions, requiring rapid updates or extensions, which
can be challenging for traditional solutions. Moreover, when
the input dimension is large or design choices are numerous,
deep learning becomes a superior choice for implicit feature
extraction and improved performance with smaller footprint.

As machine learning-based solutions move from theoretical
concepts to real-world applications, optimized integration in a
sensor data processing chain becomes essential for maximum
performance benefits, without incurring high complexity. The
application of deep learning to sensors requires careful con-
sideration of input feature representation and network archi-
tectures. The most straightforward method involves feeding
pre-processed RF data, such as time-frequency representations
such as Doppler Trace, involving standard FFT operations
across Wi-Fi packets, as input to the ML model to perform a
sensing task as depicted in Fig. 1(a). This approach leverages
established signal processing techniques for feature extrac-
tion, enabling the ML model to benefit from domain-specific
knowledge [30] [31]. Often, diverse input representations and
transformations are applied to the input data to extract mean-
ingful information that are fed to a ML model for a specific
task, such feature representations across various RF sensors
are outlined in Table I. In addition to these representations,
unsupervised learning can be employed to pre-learn domain-
specific input representations, mapping them to latent vectors.
These latent vectors can then be utilized as initial transfor-
mations for downstream supervised learning tasks, leveraging
larger unlabeled training datasets to improve performance. A
notable example is wav2vec [32], which vectorizes bio-signals
for downstream tasks using deep networks. Such techniques
are helpful particularly in low Signal-to-Noise Ratio (SNR)
environments.

Another paradigm of ML use in a RF system pipeline is by
transforming traditional processing blocks into ML models. RF
systems can be represented as a sequence of processing steps,

where each block performs specific operations on the signal,
progressively extracting relevant information. ML models can
be incorporated into this processing chain by potentially
replacing existing Digital Signal Processing (DSP) blocks en-
tirely, aiming to achieve similar functionality with potentially
improved performance or generalization capabilities under
unexpected operating conditions. For instance, in radar signal
processing, a complex neural network can replace traditional
blocks to output range-angle images, as shown in Fig. 1(b)
[40]. When replacing traditional blocks, the objective is to
maintain functionality under normal conditions while achiev-
ing superior performance under unexpected environments,
thereby significantly enhancing system robustness. Another
notable example of this paradigm is KalmanNet [54], a novel
approach to state estimation in dynamical systems, particularly
those with non-linearities and uncertain model knowledge.
KalmanNet offers a robust solution for RF-based tracking
in real-world scenarios, where accurate system models are
unavailable and non-linearities exist.

Another paradigm is cross-integration of ML models into
RF processing pipeline. ML models can also be employed
to create new processing blocks within the chain, addressing
novel tasks or limitations of traditional methods. For e.g. in
Fig. 1(c) ML models output are fused with traditional signal
processing block [55], namely Kalman filter, to jointly improve
the performance of signal processing tasks (detection in this
case) and machine learning tasks (classification in this case).
Cross-modal learning, where tasks from different modalities
are jointly optimized to improve separate individual tasks
simultaneously are also an example of this paradigm.

Furthermore, recent advancements have led to the devel-
opment of parametric neural networks [56], such as non-
uniform Discrete Fourier Transform (DFT) NN and sinc-
Net [57], which embed signal processing principles within
neural network architectures. These hybrid models preserve
the interpretability of model-based designs while leveraging
data-driven approaches to accelerate performance, bridging
the gap between traditional processing and deep learning
methodologies.

III. MACHINE LEARNING TECHNIQUES IN RF SENSING
APPLICATIONS

A. Localization and Navigation

The integration of machine learning into localization mecha-
nisms, such as RF (Wi-Fi/UWB/Bluetooth Low Energy (BLE))
fingerprinting for indoor localization, has revolutionized the
field by leveraging the capabilities of neural networks to
improve accuracy and efficiency. As illustrated in Fig. 2,
RF fingerprinting, a technique reliant on matching RF signal
patterns or features (fingerprints) from surrounding access
points or anchors to a database of known locations, has been
significantly enhanced by deep learning advancements.

Wi-Fi fingerprinting approaches received early attention due
to the easy access to Received Signal Strength Indicator (RSSI)
from commercial Wi-Fi devices [58], [59]. Considered as a
coarse-grained channel measurement, RSSI represents a sim-
ple superposition of signal power over multipath propagation
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but may fluctuate over time. It can be used directly as finger-
printing data in systems such as Radar [60], Compass [61],
and Horus [62]. Classical machine learning methods such as
the k-Nearest Neighbors (kNN) and Support Vector Machine
(SVM) and deep learning methods such as multi-layer neural
networks have been applied to RSSI fingerprinting [63]–[67].

The fine-grained channel measurements such as Channel
State Information (CSI) provide a better capability to re-
solve multipath components in the time or frequency do-
main. Although CSI is not accessible by 802.11 standards
protocols, modified firmware on commercial Wi-Fi devices
have enabled access to the CSI over a bandwidth of up to
160 MHz [68], [69], [70], [71]. This has sparked a large
swath of learning-based Wi-Fi sensing applications [72]–[76].
For instance, ConFi [77] used convolutional neural networks
(CNNs) to train CSI measurements from three antennas, to
classify the location and estimate location coordinates. [78]
fingerprinted full CSI over multiple time instants, calibrated
their phases, and fitted one autoencoder for one location.

DeepFi exploits 90 CSI amplitudes from all the subcarriers
at three antennas for feature extraction using an autoencoder
architecture [79]. Channel Impulse Response (CIR) can be also
acquired without channel estimation by using the concept of
time-reversal radio transmission which creates a resonating
effect of focusing the energy of the transmitted signal only
onto intended location, e.g., multipath reflections [80]–[84].
As a result, the TR-based CIR can be fingerprinted along with
traditional correlation-based or more advanced deep learning
approaches for localization and navigation.

At higher mmWave bands such as 60 GHz, mid-grained
mmWave beam training measurements, required by 802.11ad
and 802.11ay standards protocols, may be accessible with
modified firmware in [85]–[90]. Earlier efforts formulated
a direct localization using the beam SNR measurement as
a constrained optimization [85], [91], [92] and considered
model-based signal processing to map the beam SNR to
the location and orientation [86], [87]. More advanced deep
learning approach was applied in Line of Sight (LOS) [88] and
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TABLE I: Input Feature Representations for RF-based Sensing Tasks

Technology Feature Category Features References

Wi-Fi
CSI Doppler Trace, Delay-Doppler Images [33] [34] [35]

RSSI Mean, Variation [36] [37]
FTM Arrival Times, Intervals [38]

Radar
Time-Domain Raw-ADC data, Range waterfall [39] [40]

Frequency-Domain Spectral Power Density, range-Doppler images, range-azimuth images, 3D tensors [41] [42]
Micro-Doppler Doppler spectrogram, Doppler Spread [43] [44] [45]

BLE
RSSI Mean, Variation [46]

Packets, AoA Arrival Times, Intervals, Establishment time [47] [48]
Phase Changes Spectral gain images, Peak Frequencies [49] [50]

UWB
Time-Domain Amplitude, Phase [51]

Frequency-Domain Spectral Power Density, Spectral images [52]
FTM Time-of-Arrival, Time-Difference-of-Arrival, Angle-of-Arrival, Angle-of-Departure [53]
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Fig. 2: A schematic illustration of RF-fingerprinting for local-
ization and navigation system. Different signals use various
channel measurements and preprocessed intermediate results
to construct the fingerprinting database. For instance, RSSI,
CSI, FTM for Wi-Fi, TOF and CIR for UWB, and AoA for
BLE.

Non-Line of Sight (NLOS) scenarios [93]. A pretrained fusion
network between the CSI at sub-7 GHz and the beam training
measurements at 60 GHz was proposed for localization [89].

Wi-Fi Time of Flight (ToF) measurements can also be used
for fingerprinting. Fine Time Measurement (FTM) defined in
IEEE 802.11-2016 (REVmc) and 802.11az protocols is the
result of a handshaking protocol between an initiating station,
e.g. a smartphone, and a responding station, e.g., an Access
Point (AP), and yields direct time-of-flight measurements such
as Round Trip Time (RTT) between the two stations [38].
Commercial Wi-Fi devices including smartphones such as
Galaxy S20, G8X ThinQ, and Pixel 4/5/6, and Nest and
Aruba APs support the FTM feature. Under LOS scenarios,
it can lead to a sub-meter localization accuracy by a simple
trilateration in the presence of multiple APs [94]. However,
its use in NLOS environments is still challenging [95], [96]
and identifying RTT from LOS/NLOS paths was considered in
[97] to improve the FTM-based localization accuracy. To better
account for Wi-Fi propagation including blockage, reflection,
attenuation, RTT-based fingerprinting using machine learning
and deep learning approaches was considered in [98] for three

indoor scenarios and shows improved localization accuracy
over the trilateration-based method.

UWB technology offers superior capabilities for separating
direct path components from multipath components compared
to Wi-Fi, leveraging its larger bandwidth (e.g., 500 MHz vs.
160 MHz for 802.11az Wi-Fi). The IEEE 802.15.4z standard
has established a UWB physical layer for indoor localization
and tracking applications, utilizing anchors or sensors in fixed
positions to achieve accurate localization and tracking [99]. In
multipath and reflective scenarios, one challenge for the UWB-
based localization is the NLOS identification and mitigation.
[100] considered the use of non-parametric machine learning
techniques, e.g., SVM, to perform NLOS identification and
mitigation using hand-crafted features such as signal energy,
maximum amplitude, mean excess delay from UWB CIR.
Gaussian process (GP) was considered to determine the a
posteriori distribution of the CIR-based ranging error and such
errors were accounted for the final localization result [101].
Advanced deep learning approaches such as the MLP [102],
[103], Convolutional Neural Network (CNN) [51], [104],
[105], Capsule networks [106], and 3D CNN [107] have been
applied to extracting features directly from UWB RSSI, ToA,
and CIR to assist NLOS identification. Figure 3 illustrates
a configuration of three UWB receivers (marked by their
coordinates (xi, yi)) and one UWB transmitter (user), where
the 3D location of the transmitter is inferred from the features
extracted by 3D CNN over the multi-anchor UWB waveforms.
Local embedded neural networks are employed to enable on-
device UWB localization with small memory and computation
footprints. An example is given in [108], where a mean UWB
ranging error below 1 cm is achieved using a threshold-based
multipath mitigation algorithm (STM) enhanced by STMnet
which features 330-KB memory and 232K-FLOP computation
footprints.

BLE localization is another affordable, power-efficient,
easy-to-deploy localization option that is compatible with
ubiquitous BLE-enabled devices. Similar to Wi-Fi, traditional
approaches rely on BLE RSSI using either signal processing
techniques or machine learning approaches to map it to
distance or ToF estimates [109]–[112]. [112] exploits the
3D CNN for better feature extraction from the BLE RSSI
[113]. More recently, the Bluetooth SIG specifies Phase-
Based Ranging (PBR) [46] as a feature in the new release
Bluetooth 5.4 and opens a door for Angle of Arrival (AoA)-
based localization using low-cost switch antenna arrays [114],
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Fig. 3: Schematic illustration of AI-assisted Bluetooth or UWB
locationing system via trilateration principles.

Fig. 4: Frame-based localization versus sequence-based local-
ization using RF (Wi-Fi/UWB/BLE) channel measurements.

[115]. CNN has been utilized to improve the AoA estimation
with limited RF chains [116]. Combination of both BLE
RSSI and AoA was also considered in [48], [117]. In [118],
neural network is proposed to identify unusual patterns in
the frequency tones of BLE PBR ranging system corrupted
by noise and interference from other devices and aids in
predicting the corrupted frequency tones using neural network.

Other fingerprinting signatures may include preprocessed
intermediate results from the above channel measurements
such as AoA and Angle of Departure (AoD) powered by
the Multiple-Input Multiple-Output (MIMO) operation with
multiple antennas, and ToF. For instance, SpotFi [119] groups
all subcarrier CSIs over multiple antennas to obtain AoA-
ToF propagation path clusters via a 2D smoothing MUSIC.
DLoc [120] converts CSIs at multiple antennas into ToF-AoA
heatmaps (similar to SpotFi) in a unified x-y coordinate shared
by multiple APs and learns the heatmap features for direct
localization. Moreover, 802.11 protocols, e.g., 802.11az, can
provide detailed information about the AP’s location via the
Location Configuration Information (LCI) and Basic Service
Set Identifier (BSSID) [31], [121], [122] and further enhance
location accuracy.

Most of the above approaches are frame-based, as shown
in Figure 4. That is, the task such as localization or sensing

is inferred from current RF (Wi-Fi/UWB/BLE) frame, without
integration of past measurements or previous trajectory history.
Sequence-based approaches take consecutive Wi-Fi frames
as the input, and state estimation (e.g, Kalman filter-like
approaches [123], [124]) and recurrent neural networks (e.g.,
Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM) [125]) can be applied for trajectory estimation with
the RSSI and CSI [126]–[129] at sub-7 GHz. LSTM networks
have also been utilized to extract temporal-dependent features
from the UWB time-of-arrival (TOA) measurements [130],
[131], raw UWB CIR [105], [132], BLE RSSI [133], and BLE
AoA [115] for user localization. More recently, the sequence-
based formulation has been applied to mmWave Wi-Fi beam
training and multi-band Wi-Fi measurements with a neural
ordinary differential equation (ODE) model to overcome the
sampling irregularity and low data rate [134]–[136]. A multi-
model recurrent localization approach involving UWB, Inertial
Measurement Unit (IMU), and Wi-Fi RSSI was proposed in
[137] by accounting for sensor modality uncertainty.

The generalizability of deep learning models is another sig-
nificant advancement in RF fingerprinting. By training models
on large datasets encompassing diverse indoor environments,
they can learn to recognize patterns and relationships that are
universally applicable, reducing the need for extensive finger-
print database creation for every new location. This enables
deep learning-based Wi-Fi fingerprinting systems to adapt to
new environments with minimal additional training data, mak-
ing them more practical for real-world applications. Extracted
environment-independent Doppler profile [138] from the CSI
phase information can represent human activity, and such
phase information can be also used for indoor localization. In
[139], domain adaptation schemes have been considered to Wi-
Fi localization with the test dataset is collected from different
dates and the room environment varies from the training data
collection.

B. Occupancy sensing, activity monitoring, and people count-
ing

Reliable occupancy detection, people counting and occu-
pancy flow information are crucial in smart home and building
applications. This information can be used in lighting, Heating,
Ventilation and Air Conditioning (HVAC) controls, building
energy management, and space management systems [25],
[140]–[145].

A typical Wi-Fi sensing pipeline for presence, activity,
gesture, or people counting typically involves a series of
processing stages. First, CSI is filtered from a specific Medium
Access Control address. Next, CSI from either beacons or data
frames or both are extracted, depending on the application.
This is followed by phase sanitization, feature images gener-
ation and neural network for specific task classification. SVM
on Wi-Fi fingerprint CSI features was proposed in [146] for
occupancy detection and localization. Such a method relies on
signal variations and is susceptible to environmental humidity
and temperature changes. A resource-efficient deep learning
approach using Wi-Fi CSI for occupancy detection with con-
siderations to explainability and robustness to humidity and
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temperature changes was presented in [143]. An ensemble
learning approach with random forest, gradient boosting and
extreme gradient boosting Machine learning methods based
on engineered features and deep learning with Wi-Fi CSI
were presented for crowd counting and localization in [147].
A reinforcement learning using an enhanced deep Q-network
based on Bluetooth features and feedback from Internet of
Things (IoT) devices and environment sensors was considered
in [148].

An advantage of RF sensing is that the signal propagates
across obstructions. Through-the-wall occupancy detection
was considered in [149], [150], [151]. In [151], engineered
features like variances of signal and respiration rates were
used in different ML models. Occupancy sensing for multi-
room scenarios using a time-selective conditional dual feature
extract recurrent network with Wi-Fi CSI was presented in
[152].

Radar-based people counting using signal pattern analysis
and feature design was considered in [153]. To overcome
challenges associated with feature handcrafting, deep learning
approaches were proposed [154], [155]. The proposed model
in [155] included a a clutter suppression pre-processing step
followed by a 1-D CNN-Recurrent Neural Network (RNN)
fusion model, to better leverage the spatio-temporal character-
istics of radar data. However if the environment changes, such
deep learning models need to be re-trained with new data. As
a solution, in [156], environmental dependency was mitigated
through radar-centric signal augmentations and unsupervised
domain adaptation, thus enabling fully unsupervised people
counting in variable clutter environments. For people counting
in large surveillance areas, a RNN was used in [157] to regress
the crowd count through sequential Wi-Fi spatial-temporal
matrices.

In [158], [159], people counting using short-range 60-GHz
radar was proposed using distance metric learning and cross-
modal learning, which work on range micro-Doppler images
and range macro-Doppler images to distinguish between quasi-
static and moving humans in the field of view. In [160], a label-
aware ranked (LAR) loss was proposed for people counting in
automotive in-cabin environments using one transmit and three
receive antenna single 60-GHz Frequency-Modulated Continu-
ous Wave (FMCW) radars. Contrary to classical classification,
LAR loss exploits distance information among labels shaping
the embedding space to achieve ordered/ranked classification,
enhancing the robustness and stability of people counting
estimates. In the context of vehicle in-cabin driver monitoring,
radar technology offers unique advantages. RF vital sign
sensing for detecting fatigue or health issues was considered
in [161], [162], with [42] presenting a review on in-vehicle
monitoring using radars. For infotainment gesture sensing and
control, [163] demonstrated the possibility of using ML and
radars for infotainment control from any seat within a 5-
passenger car. NN-based classifier was considered in [164] to
detect 12 predefined gestures made by the person sitting on the
passenger seat of a vehicle, with the designed NN requiring
less than 20KB of memory. These studies demonstrate the
potential of ML-driven radar technology in creating intuitive
and non-contact control systems within vehicles.

Recent studies have proposed various deep learning ap-
proaches for sensing and processing radar signals. For in-
stance, [165] presents a deep auto-encoder for fall-motion
detection from Doppler spectrograms. In [16], ML and radar
digital twins were used to detect falls and classify their
severity. In [166], an LSTM network is trained on raw Analog-
to-Digital Converter (ADC) data, while [167] uses a DCNN to
classify images transformed from I/Q trajectories. A DCNN
with a Fourier layer is proposed in [168], where the kernels
are initialized with Fourier coefficients and adapted during
training. Inspired by audio signal processing, [39] a neural
network that uses bank of 1D bandpass sinc filters with learned
cutoff frequencies, specialized for different artifacts of activi-
ties’ Doppler are extracted leading to faster convergence and
physically interpretable architectures. Recent studies [169]-
[170] have leveraged deep autoencoder architectures to surpass
traditional detection and clustering methods in radar signal
processing. In [171], authors have proposed a parametri-
cally constrained autoencoder, incorporating parametric non-
uniform DFT in the initial layers.

Both activity recognition and gesture recognition are
promising human-machine interaction modes, and can deliver
achieving high accuracy using deep learning in closed and
controlled setups [172]–[174]. However, commercial adoption
is hindered by challenges in developing product-ready sys-
tems, particularly addressing robustness against non-gesture
motions, changes in data distribution due to device or envi-
ronments, leading to false alarms [175]. To handle non-gesture
motions, explicit background classes have been traditionally
proposed [176], however they may not capture all artifacts dur-
ing training. Therefore, Out-of-Distribution (OOD) detection
has emerged as a fundamental and crucial paradigm, enabling
the identification of unknown or unseen patterns or changes to
data distribution. One mechanism of achieving OOD detection
are to estimate model uncertainty providing a measure of
confidence in its predictions. Epistemic uncertainty refers to
the uncertainty in the model’s predictions due to limitations
in the training data or model complexity, while aleatoric
uncertainty represents the inherent noise and variability in the
RF signals and sensor readings. By quantifying both epistemic
and aleatoric uncertainty, the model can provide a more robust
and reliable prediction of occupancy states, accounting for
both the uncertainty in the model’s knowledge and the noisy
nature of the sensor data [177].

Furthermore, environmental changes, device variations, and
user diversity can significantly affect RF signal characteristics,
leading to decreased recognition accuracy. Domain adapta-
tion is crucial in RF-based activity recognition and gesture
recognition to address the mismatch between training and de-
ployment environments [178]. Environmental changes, device
variations, and user diversity can significantly affect RF signal
characteristics, leading to decreased recognition accuracy. Do-
main adaptation enables robust recognition performance and
maintains accuracy in changing conditions through continuous
updating and refinement of the model using real-time data,
enhancing its generalization capabilities and reliability in
diverse environments [40], [179].
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C. Biometric Sensing

During the cardiovascular and respiratory activity, the chest
wall moves as a result of the diaphragm and intercostal muscle
movement among others. This small and periodic displacement
can be detected by radar, allowing accurate estimation of the
breathing and heart rate under certain conditions. Figure 5
illustrates the basic operational principle of a radar-based vital
sign monitoring system where the received signal is a scaled
and time-shifted version of the transmitted signal and the
phase variation over time, which contains valuable information
regarding the body surface movement, is recovered by radar
processing. In fact, the body surface displacement, d(t), can
be recovered from time-varying phase as d(t) = θ(t)λ

4π where
λ is the radar operating wavelength.

CW radars have been extensively employed to extract the
phase information for vital sign monitoring [180]–[182]. Re-
cently, the application of millimeter-wave FMCW radars to
short-range vital sign monitoring has been widely investigated
[3], [42], [183], [184], owing to their improved resolution
and sensitivity.Based on the nature of the radar waveform,
components of the front-end and Digital Signal Processing
(DSP) are adapted in Figure 5 yielding the classical Model
based processing output.

Despite recent advances, accurate vital sign monitoring is
still challenging in practical scenarios, especially in relation
to heart rate estimation. The recovered displacement signal
is comprises not only of the breathing and heartbeat funda-
mental frequencies but also interference from their associated
harmonics and additional reflections from other parts of the
body as well as the environment [185]. In [186], an IEEE
802.15.4z compliant Impulse Radio Ultra-Wideband (Impulse
Radio (IR)-UWB) radar system is demonstrated for in-cabin
monitoring for automotive applications. The presented system
demonstrates three in-cabin use cases running in real-time:
occupancy detection, breathing rate estimation, and gesture
detection. The IR-UWB radar system detects occupancy and
estimates the breathing rates of persons sitting in a car’s driver
and/or front passenger seat. Furthermore, the radar system
detects if the passenger is performing a pre-defined gesture.
The experimental results demonstrate the effectiveness of the
system in a real-time platform, confirming its potential for
enhancing automotive safety and comfort. In the presented
demo, we achieve a false alarm probability of lower than 10–3,
a breathing rate accuracy of less than 1 beat per minute (bpm),
and gesture detection accuracy of more than 90%.

In addition, due to varied nature of the subjects being
monitored, their conditions, the diverse amplitudes of the chest
wall motion and range of possible breathing rates, random
body movements and environment changes, pose significant
SP challenges in relation to highly curated scenarios. In fact,
the SP framework needs to be adjusted to each scenario, and
setting up correct algorithms and parameters for each appli-
cation therefore remains a complicated task. These indicate
the necessity for ML based sensing using radar measurements
and Figure 5 presents the model-based, data-driven and hybid
approaches.

Learning based approaches have revolutionized the field

of contactless heart activity detection. Recent advancements
in this area have seen significant contributions from the
application of deep learning methods, which have substantially
improved the precision and reliability of heart rate estimation.
For instance, work [187] focused on deriving seismocardio-
gram from radar signals using deep learning methods. A
novel transformer block after the CNN block was proposed
in [4] to encode the temporal and spatial features, and the
compressed features were then decoded by the temporal con-
volutional network to generate the fine-grained Electrocardio-
gram (ECG) output. Their approach involved reconstructing
ECG waveforms from radar signals, achieving results that are
remarkably similar to traditional electrocardiograms. CNNs
were employed to learn the special patterns of the heartbeats
in [188]. The capability of radar systems to accurately detect
heart rate and analyze Heart Rate Variability (HRV), which
is a critical measure of autonomic nervous system activity
and cardiovascular health was demonstrated in [189]. The use
of radar for comprehensive heart activity detection, achieving
high accuracy in both heart rate measurement and HRV
analysis was explored in [190], [191]. Recently, custom design
of encoder-decoder model that can perform arrhythmia feature
encoding, sampling and fusion over raw IQ sensing data
directly, so as to discriminate normal heartbeat and arrhythmia
was presented in [192]. These studies collectively illustrate
the growing potential of radar-based systems in medical
diagnostics and health monitoring. By integrating advanced
deep learning algorithms with sophisticated radar technology,
researchers are pushing the boundaries of what’s possible in
contactless cardiac monitoring, offering promising new tools
for improving patient care and expanding the capabilities of
telemedicine.

Radar technology has recently emerged as a promising
modality for on-body biometric monitoring, offering non-
invasive and continuous measurement capabilities. The ap-
plication of machine learning techniques to radar data has
further enhanced the accuracy and robustness of these systems,
particularly in wearable configurations for cardiovascular mon-
itoring, glucose monitoring, and blood pressure assessment.
Wearable radar sensors placed on the chest have shown signifi-
cant potential for cardiovascular monitoring. In [193], a chest-
wearable ML-enabled 60-GHz radar system was developed
for continuous extraction of cardiorespiratory displacement
waveforms. This system achieved over 96 percent accuracy
in respiratory rate estimation and over 95 percent accuracy
in HRV measurements. For wrist-worn applications, radar
technology offers unique advantages in capturing subtle phys-
iological changes as demonstrated in [194] The application of
radar technology to glucose monitoring represents an exciting
frontier in non-invasive diagnostics. In [195], [196], a low-cost
portable ML-enabled microwave sensor was propose for non-
invasive monitoring of blood glucose levels. The concept fu-
eled numerous subsequent studies [197]–[199], demonstrating
the feasibility of ML-powered radar-based systems in detecting
subtle changes in blood composition associated with changes
in glucose levels. Most recently, [200] introduced a machine
learning metasurface-enhanced millimeter-wave radar system
for advanced near-field bio-sensing, demonstrating a notable
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Fig. 5: Contactless radar-based vital sign monitoring: operating principle with classical model based and ML based processing
blocks. Displacement signal, d(t) ideally corresponds to the chest wall motion due to the breathing, heart-beat and other
physical mechanisms during illumination

increase in signal to noise ratio. Blood pressure monitoring
using radar technology is an area of active research, with
potential applications in continuous, cuffless monitoring of
hypertension and cardiovascular health. The principles of
detecting subtle body movements and vascular changes could
potentially be applied to estimate blood pressure through
pulse wave velocity or other related metrics [201]–[204].
The integration of machine learning techniques with radar-
based biometric monitoring has significantly enhanced the
capability of these systems. Deep learning approaches, such as
those employed in [187] for contactless seismocardiography,
could potentially be adapted for on-body radar sensors to
improve signal processing and feature extraction. Similarly,
the encoder-decoder model proposed in [192] for arrhythmia
detection could be modified for use with wearable radar data
to provide more accurate cardiovascular health assessments.

Table II presents the key takeaways from the sensing
applications and future opportunities presented in this section.

IV. CHALLENGES AND OPPORTUNITIES IN ML-BASED RF
SENSING

The increasing use of ML-based methods has opened new
frontiers. This section presents a canvas of the research chal-
lenges brought out by these new avenues and early works
emphasizing the opportunities in addressing these challenges.

A. RF sensing data : Availability, Quality, and Augmentation

A challenge in ML-based RF sensing is the lack of high-
quality, diverse, and representative data. An overview of public
RF datasets with key sensor characteristics is presented in
Table III. RF sensing data can be affected by various factors,
such as noise, interference, multipath effects, and environmen-
tal conditions, which can degrade the quality of the data and
impact the performance of the ML models.

Moreover, the availability of labeled data for supervised
learning is often limited, especially for rare or critical events
like heart attacks or severe falls. For example, in the prediction
of heart attack, there is a scarcity of RF sensing data collected
during or before an actual heart attack event. This lack
of data makes it challenging to train ML models that can
accurately predict the onset of a heart attack and alert a
remote healthcare service provider. Similarly, in fall detection
applications, there is a limited amount of data that captures
the severity of falls, and the subsequent health impact. To
address these challenges, more attention is needed towards
well-annotated data collection and augmentation approaches.
Reliable methods are required for (automated) labeling data
under diverse application environments. The impact of factors
like data collection duration, sensor specifications including
number of RF transmitters/receivers and environmental impact
on training of ML models for sensing needs to be studied
well [227]. Additionally, to increase the diversity and volume
of available data with reliable labels, augmentation techniques
like synthetic data generation are gaining interest [228], [229],
[43]. The various components in the data synthetic generation
process continue to evolve with the aim of capturing the nu-
ances of real-world measurements offering interesting research
and development avenues.

B. RF Sensing System Digital Twins

These are virtual replicas of the RF physical system and
the environment. Digital twins can be used to optimize the
placement and configuration of RF sensors, evaluate the per-
formance of different ML algorithms, and test the robustness
and reliability of the RF sensing systems in different con-
ditions [230], [231]. Furthermore, digital twins can enable
personalized and adaptive ML models that can learn from the
individual’s unique characteristics and behaviors, leading to
more accurate and reliable RF sensing applications. Digital
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TABLE II: Key takeaways in ML-based RF sensing

Application State-of-the-Art Achievements Challenges and Future Directions
Localization
and Navigation • Multi-modal fusion of WiFi, UWB, and BLE

• Sequence-based approaches for trajectory estimation
• Domain adaptation techniques for environment generalization

• Development of edge-optimized lightweight models
• Self-supervised learning to reduce training data requirements
• Improved robustness to multi-path effects and interference

Occupancy
Sensing

• Through-wall detection capabilities
• People counting and tracking in dynamic environments
• Activity classification with human-artifact handling
• Gesture recognition in complex environments

• Advanced domain adaptation for diverse environments
• Unsupervised anomaly detection
• Real-time processing optimization
• Integration of RF sensors with building management systems

Biometric
Sensing

• Non-contact vital sign monitoring
• Heart rate variability analysis
• Breathing pattern detection
• Motion artifact compensation

• Multi-modal sensor fusion for improved accuracy
• Personalized sensing models
• Advanced artifact removal techniques
• Multi-subject separation in crowded scenarios

TABLE III: An overview of public RF datasets

Dataset Application RF sensor Data Reference
WILD-v2 Indoor Localization Wi-Fi RSSI, location IDs, AP locations [205]
WiSig RF fingerprinting Wi-Fi raw IQ samples, processed samples [206]
- Activity Recognition Wi-Fi Traces [207]
- Detecting Social Interactions BLE RSSI [208]
- Fingerprinting Wi-Fi (and Magnetic/IMU) raw data [209]
- Activity Recognition Radar range-Doppler data [210]
- Activity Recognition Wi-Fi CSI [211]
- Passive Localization and HAR UWB CIR [212]
UTIL Localization UWB TDOA [213]
H-WILD Localization Wi-Fi, UWB RSSI, CSI, AoA [214]
- Activity Recognition Radar Network ADC data [44]
mRI Pose estimation Radar (and RGB/Inertial) Point cloud [215]
HIBER 2D/3D Pose Estimation Radar (and RGB) Multi-view radar heatmaps [12]
MCD-Gesture Gesture Recognition Radar Raw ADC Data [216]
HuPR 2D Pose Radar (and RGB) Multi-view radar heatmaps [217]
MMVR 2D Pose/BBox/Seg Estimation Radar (and RGB-D) Multi-view radar heatmaps [218]
MM-Fi Pose/Position Estimation, Activity Recognition Radar, Wi-Fi, (and LiDAR, RGB-D) Point cloud, CSI, images [219]
RadarEyes Object Detection, Imaging Radar, (and LiDAR, RGB) Point cloud [220]
- Vital Sign Monitoring Radar Raw ADC Data [221], [222], [223]
- Vehicle Occupancy Bluetooth RSSI [224]
K-Radar Object Detection Radar Range, Doppler, Angle Maps [225]
Eat-Radar Gesture Recognition Radar Range-Doppler [226]

twins can be used to create continuous interactions of humans
and environments, allowing for new healthcare prediction
capabilities [232]. It also becomes possible to simulate rare or
critical scenarios, like severe falls [16], and generate synthetic
data that can be used for training and testing ML models.

Interestingly, the applications of digitial twins to RF sens-
ing extend beyond healthcare and can be applied to many
other emerging fields, from predicting the performance of
autonomous systems under extreme conditions [233], [234],
to the reliable detection and classification of unmanned aerial
vehicles [235]–[237].

Some challenges in the development of RF sensing system
digital twins include the accurate and realistic modeling of the
physical systems, the integration of data from various sensors
and devices, and the validation and verification of the digital
twin models. These challenges will require interdisciplinary
collaboration, advanced modeling and simulation techniques,
and RF testing and evaluation methods.

C. Robust ML in Interference Dominated Environment

RF sensing in interference-dominated environments neces-
sitates transparent ML designs regarding uncertainty. OOD
detection is crucial for reliable ML systems, particularly in

such environments [238], [239]. Another aspect to robust ML
model is to ensure models have both discrimination (inter-
class separability) and separability (intra-class compactness).
Approaches such as metric/representation learning [240], [241]
are proposed for such objectives. The goal of these methods
is to learn an embedding space where similar data points are
clustered together, while dissimilar data points are separated,
effectively capturing the essence of the data. However, training
these frameworks can be time-consuming and may require
online data mining. To address this, modifications to the
softmax classifier, such as D-softmax, center loss, arc-Face,
and SoftTriple loss, have been proposed to alleviate data
mining requirements. Additionally, label smoothing and focal
loss techniques can be applied to the cross-entropy loss to
improve the robustness of ML for RF Sensing models to an
under-performing class, noise and prevent overfitting. Another
aspect of training ML models for RF Sensing is their ability
to handle measurement noise, which can be achieved using
noise regularization [242].

Quantifying uncertainty in ML predictions is another impor-
tant aspect of developing robust artificial intelligence (AI) sys-
tems. Techniques such as post-training calibration, Bayesian
neural networks, and deep ensembles have been explored
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to better estimate the uncertainty in model outputs [243].
From a probabilistic perspective, the generalization of ML
for RF sensing depends on the support (range of the dataset)
and inductive biases (model class performance) of a model.
Bayesian deep learning [244] can capture uncertainty in ML
for RF Sensing by treating neural network weights as random
variables, allowing for the quantification of both aleatoric and
epistemic uncertainty. This enables the quantification of un-
certainty, allowing for more informed decision-making about
when to trust model predictions and handle out-of-distribution
data, thereby enabling ML models to fail gracefully in corner
cases [245].

D. Edge Constraints

The deployment of RF-based deep learning models is often
hindered by their high model complexity, which can result in
significant computational resources and energy consumption
[246]. This is particularly problematic for edge computing
applications, where resources are limited. To address this
issue, researchers have proposed various model compression
and optimization techniques, such as pruning, quantization,
and knowledge distillation [247], [248]. These techniques
have been shown to reduce the complexity of RF-based
deep learning models while maintaining their accuracy. By
leveraging these techniques, RF-based deep learning models
can be efficiently deployed on resource-constrained devices
with real-time processing.

The dependency of sensors on batteries and their energy
consumption limit their lifetime and require frequent main-
tenance, posing challenges for long-term deployment and
sustainability. In [249], deep reinforcement learning was used
to design sensing policies by learning energy availability and
event patterns. RF energy harvesting offers an alternative
power source, thereby extending sensor lifespan and sup-
porting a sustainable sensing solution by reducing the need
for battery replacements [250]–[253] . In particular machine
learning algorithms can optimize energy harvesting and con-
sumption by, or optimize duty cycling patterns [254], [255].
This leads to smarter, more efficient RF sensor systems capable
of supporting a wide range of applications from precision
agriculture to smart cities.

E. Privacy-preservation in RF Sensing

When compared to vision based systems, RF sensing paired
with ML present multiple inherently privacy-preserving op-
portunities in a multitude of applications [14], [15], [256],
[257]. Moreover, there is a potentially tight coupling between
user identity authentication and behavior recognition using RF
sensing, given that signal propagation characteristics caused by
the human body are exploited [258]. In [259], it was shown
that radars powered by ML can identify various individuals us-
ing their palmprint. In [248], correlated knowledge distillation
was used for human pose estimation in a privacy-preserving
way. In [260], a Siamese network-based deep neural network
was proposed to increase the similarity among the signals of
different behaviors, while maintaining the ability to distinguish
among distinct user identities. A smart reflector design with

conditional Generative Adversarial Network (GAN) was used
in [261] for privacy protection by injecting fake trajectories
against eavesdroppers who use FMCW radars for TTW user
monitoring. Given the unique TTW RF propagation charac-
teristics, more work is needed to develop sensing approaches
that enable preservation of user privacy preferences.

F. New ML Approaches for RF Sensing
In some RF sensing applications, data or training may be

distributed across various devices and environment. Federated
Learning (FL) is a decentralized approach that enables mul-
tiple devices or nodes to collaboratively train a shared ML
model on their collective data without sharing the data itself
[262]. In [246], FL was used for Wi-Fi sensing by training
in parallel at the edge instead of at a central server. In [263],
privacy-maintaining person identification models based on FL
with radar data were considered. A number of challenges
still need to be addressed in RF sensing, since RF data
from different devices and environments can be heterogeneous,
leading to issues in model convergence and performance
[264]. Frequent model updates can result in significant com-
munication overhead, necessitating efficient communication
strategies. Moreover, FL models can be vulnerable to attacks
and data poisoning, compromising the integrity of the shared
model. Robust security measures, like differential privacy,
secure multi-party computation, and homomorphic encryption,
are being explored to protect FL models and data [265].

At the circuit and device level, ML has been applied for
dealing with RF hardware impairments, and also in the form
of new neuromorphic architectures. In [266], nonlinear sensing
based on RF intermodulation response was considered for
vital signs monitoring and user localization. A low-power
neuromorphic radar sensing was proposed in [267] that jointly
optimizes the analog hardware and the neuromorphic compute.
A 4-b-weight Spiking Neural Network (SNN) for extreme-
edge radar gesture recognition application was considered in
[268] with limited power and die area. An interpretable fed-
erated learning approach that employs spiking time-dependent
plasticity to train the SNN on the resource-constrained edge
for radar gesture recognition was presented in [269]. A further
exploration of the suitability of neuromorphic architectures for
diverse RF sensing applications would help in understanding
the versatility of these architectures in different scenarios.
Attention is also required towards hardware-constrained ML
algorithmic techniques, such as quantization and pruning, for
SNNs to reduce memory and computation requirements that
fit embedded sensor applications. The design of neuromorphic
processors for SNN acceleration to support diverse RF sensing
application requirements is yet another area for future explo-
ration.

Given the black-box nature of many deep learning models,
the field of Explainable AI has emerged to provide explana-
tions to ML models and indicate how input data affects the
model output. Model explainability tools, such as Saliency
Maps [270], GradCam [271], and GradCam++ [272], have
been increasingly employed in RF-based sensing applications
utilizing deep learning. These techniques enable the visualiza-
tion and interpretation of model decisions, providing insights
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TABLE IV: Emerging applications and approaches in ML for RF sensing

Emerging Applications Precision Farming, Soil Permittivity Measurement, Terahertz Sensing, Food Quality Inspection, Healthcare Applications, Materials Science, Driver Monitoring
Emerging Methodologies Federated Learning, Explainable AI, Edge AI, Transparent and Reliable Models, Privacy-Preserving ML, Analog Hardware Optimization, Neuromorphic

Computing, Digital Twins
Emerging Techniques Uncertainty Quantification, Out-of-Distribution Detection, Representation Learning, Noise Regularization, Bayesian Neural Networks, Deep Ensembles, Post-

training Calibration

into the complex relationships between RF signals and the
physical environment. In RF sensing, explainability tools have
been applied to various tasks, such as gesture recognition
[273], material classification [274] among others. By leverag-
ing these tools, researchers can develop more transparent and
reliable deep learning models for RF sensing applications.

G. ML for Emerging RF Sensing Applications

The integration of RF sensing technologies is transforming
agriculture by enhancing precision, efficiency, and sustainabil-
ity. RF sensing technologies in agriculture provide precise
soil data, integrate sensing with communication, and support
autonomous operation [275], [276]. Frequency domain and
time domain sensing techniques are both employed in RF
sensing to achieve high precision and sensitivity in soil permit-
tivity measurements and agriculture applications. Frequency
domain sensing involves analyzing the response of the soil to
RF signals at different frequencies. On the other hand, time
domain sensing involves sending a time-varying RF signal
through the soil and analyzing the signal’s time-based response
[277], [278]. The use of machine learning techniques for
soil data analysis is expected to create new opportunities in
agriculture, hydrology, and sustainability studies, such as those
presented in [279], [280].

Terahertz sensing is an emerging technology for imaging,
spectroscopy and localization with wide applications in in food
quality inspection, biomedical, and materials science [281]–
[283]. Feature-engineered ML methods with THz sensing were
used for fruit inspection at a cellular level [284]. The detection
and classification of cancer biomarkers using ML methods on
time and frequency domain with THz sensing features was
considered in [285]. Advanced ML methods integrated into
THz systems will open new advances in high-resolution cancer
imaging and is a topic of future research.

Another application benefiting from ML-driven RF sensing
is in-cabin vital sign monitoring, occupant counting, gesture
recognition, and driver monitoring [286], [287]. Accurate
detection and counting of occupants within a vehicle are
essential for optimizing in-cabin climate control, entertainment
systems, and ensuring overall passenger safety. By leveraging
RF sensing technologies such as radar, deep learning mod-
els like CNN, LSTM and transformers have been proposed
to accurately monitor heart rate, respiration rate, and other
physiological parameters [288]–[290]. The use of in-vehicle
sensing in safety critical applications brings about the need to
enhance robustness of these solutions in future in the presence
of environmental noise and motion artefacts. Development of
privacy-preserving personalized ML models for sensing driver
vital signs is another future direction. Besides vehicle in-cabin-
sensing, machine learning in automotive radars have been used
for driving environment perception to support higher levels of

autonomy. This is an active area of research with a number of
recent overview articles [287], [291]–[293].

Table IV summarizes some emerging ML-driven RF sensing
along with new RF sensing applications. The growth of
low-cost RF sensors and opportunistic Wi-Fi use has ex-
panded applications to commercial and diverse human-centric/
instrument-centric use cases. To address these nuances and
sensor specifications, various emerging ML methods are being
explored, as listed in Table IV. We also note that in some
of the emerging applications like THz sensing, food quality
inspection and driver monitoring listed in Table IV, other
modalities like thermal and optical imaging are been actively
studied in literature. However, such alternate visible/infrared
optical sensing approaches to be beyond the scope of this RF-
focused sensing review.

V. CONCLUSIONS

We presented an overview of ML techniques in RF sensing
that is driving improved performance with greater robustness
in device localization, occupancy sensing, activity monitoring
and biometric sensing. There is a growing eco-system of
applications around these sensing functions benefiting from
this enhanced performance. To realize this potential of ML in
RF sensing, greater inter-disciplinary collaboration is required
across different disciplines: RF sensors, devices and circuits,
signal processing, machine learning, and system applications.
Collaboration between ML algorithm developers, low-power
sensor and processor design engineers will ensure that ML
RF sensing solutions can run on resource-constrained edge
devices in real time. Another aspect is robustness and explain-
ability of ML-driven RF sensing models in safety-sensitive
applications that requires tight interaction of domain experts,
sensor engineers, data scientists, and AI regulators. Further,
standardization is critical for advancing sensor-based research
and applications, particularly in areas where deep learning has
shown significant promise. By establishing a common standard
for sensor data collection and metadata management, we can
ensure interoperability, facilitate data sharing and collabora-
tion, and enable the creation of large-scale datasets that fuel
deep learning and generative AI research and applications.
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F. Deshours, and R. M. Shubair, “Low-cost portable microwave sensor
for non-invasive monitoring of blood glucose level: novel design
utilizing a four-cell csrr hexagonal configuration,” Scientific Reports,
vol. 10, no. 1, p. 15200, 2020.

[198] A. E. Omer, G. Shaker, S. Safavi-Naeini, G. Alquié, F. Deshours,
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