
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Recursive McCormick Linearization of Multilinear Programs
Raghunathan, Arvind; Cardonha, Carlos; Bergman, David; Nohra, Carlos J.

TR2025-098 July 01, 2025

Abstract
Linear programming (LP) relaxations are widely employed in exact solution methods for mul-
tilinear programs (MLPs). These relaxations can be obtained by using Recursive McCormick
Linearizations (RMLs), where an MLP is linearized by iteratively substituting bilinear prod-
ucts with artificial variables and constraints. This article introduces a systematic approach
to identifying RMLs. We focus on identifying RMLs with a small number of artificial vari-
ables and strong LP bounds. We present a novel mechanism for representing all the possible
RMLs, which we use to design an exact mixed-integer programming (MIP) formulation to
identify minimum-size RMLs; this problem is NP-hard in general, but we show that it is
fixed-parameter tractable if each monomial is composed of at most three variables. More-
over, we explore the structural properties of our formulation to derive an exact MIP model
that identifies RMLs of a given size with the best-possible LP relaxation bound. We test our
algorithms by conducting numerical experiments on a large collection of MLPs. Numerical
results indicate that the RMLs obtained with our algorithms can be significantly smaller
than those derived from heuristic or greedy approaches, leading, in many cases, to tighter LP
relaxation bounds. Moreover, our linearization strategies can be used to reformulate MLPs
as QCPs, which can then be efficiently solved using state-of-the-art solvers for QCPs. This
QCP-based solution approach is highly beneficial for hard MLP instances.

INFORMS J Computing 2025

c© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Recursive McCormick Linearization of Multilinear
Programs
Carlos Cardonha
University of Connecticut, Storrs, CT 06269, carlos.cardonha@uconn.edu

Arvind U Raghunathan
Mitsibushi Electric Research Laboratories, Cambridge, MA 02139, raghunathan@merl.com

David Bergman
University of Connecticut, Storrs, CT 06269, david.bergman@uconn.edu

Carlos J. Nohra
Amadeus North America, Irving, TX 75062.

Abstract. Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLPs).
These relaxations can be obtained by using Recursive McCormick Linearizations (RMLs), where an MLP is linearized by iteratively
substituting bilinear products with artificial variables and constraints. This article introduces a systematic approach to identifying
RMLs. We focus on identifying RMLs with a small number of artificial variables and strong LP bounds. We present a novel
mechanism for representing all the possible RMLs, which we use to design an exact mixed-integer programming (MIP) formulation
to identify minimum-size RMLs; this problem is NP-hard in general, but we show that it is fixed-parameter tractable if each
monomial is composed of at most three variables. Moreover, we explore the structural properties of our formulation to derive
an exact MIP model that identifies RMLs of a given size with the best-possible LP relaxation bound. We test our algorithms by
conducting numerical experiments on a large collection of MLPs. Numerical results indicate that the RMLs obtained with our
algorithms can be significantly smaller than those derived from heuristic or greedy approaches, leading, in many cases, to tighter LP
relaxation bounds. Moreover, our linearization strategies can be used to reformulate MLPs as QCPs, which can then be efficiently
solved using state-of-the-art solvers for QCPs. This QCP-based solution approach is highly beneficial for hard MLP instances.

Key words: Multilinear Programs, McCormick Linearization, Global Optimization, Parameterized Complexity

1. Introduction
This article introduces new techniques for linearizing unconstrained multilinear programs (MLPs)
defined over Ω= [0,1]n or Ω= {0,1}n. An MLP is formulated as

min
x∈Ω

f(x) =
m∑
i=1

αi

∏
j∈Ji

xj. (1)

We use x = (x1, . . . , xn) to denote a vector in Ω. Function f(x) consists of m monomials. Each
monomial αifi(x), i ∈ [m], is composed of a coefficient αi ∈ R and a term fi(x) :=

∏
j∈Ji

xj , i.e.,

fi(x) is the product of the variables whose indices belong to a subset Ji of [n]. We assume w.l.o.g.
that the term fi(x) is unique to the monomial αifi(x) (as monomials sharing the same term can
be aggregated).

EXAMPLE 1. Consider the MLP min
x∈[0,1]4

f(x) = x1x2x3−x2x3x4−x1x3x4 consisting of m= 3

monomials defined over n = 4 variables with domain Ω = [0,1]. Monomial α1f1(x) = x1x2x3 is
described by the coefficient α1 = 1 and the set of variables J1 = {1,2,3}, which is associated with
the term f1(x) = x1x2x3.

MLPs arise in a wide variety of applications such as circuit layout design (Boros et al. (1999)),
facility location (Jakob and Pruzan (1983)) and statistical mechanics (Bernasconi (1987)).

1

2

Branch-and-bound methods can directly be used to solve (1) to global optimality. The efficiency
of these methods is greatly influenced by the computational cost and tightness of the relaxations
used to bound the problem. MLPs can be bounded using Linear Programming (LP), Mixed-Integer
Linear Programming (MILP) and Semidefinite Programming (SDP) relaxations. LP relaxations are
typically constructed in two steps. In the first step, factorable programming techniques are used
to derive an initial LP relaxation of the MLP in a higher-dimensional space (McCormick (1976),
Sherali and Wang (2001), Tawarmalani and Sahinidis (2004)). In the second step, this initial LP
relaxation is tightened by adding different classes of valid inequalities, such as facets of the con-
vex and concave envelopes of the multilinear functions contained in the MLP (Bao et al. (2009,
2015), Misener et al. (2015)), Reformulation-Linearization Technique (RLT) inequalities (Zorn
and Sahinidis (2014), Dalkiran and Sherali (2016)), 2-links inequalities (Crama and Rodrı́guez-
Heck (2017)), running intersection inequalities (Del Pia et al. (2020)) and extended flower inequal-
ities (Khajavirad (2023)). MILP relaxations can be constructed by using piece-wise linear for-
mulations of multilinear terms (Sundar et al. (2021), Kim et al. (2022)). When the original MLP
contains discrete variables, an MILP relaxation can alternatively be obtained by re-imposing inte-
grality requirements on an existing LP relaxation of the MLP (Kılınç and Sahinidis (2018)). SDP
relaxations can be derived using the theory of moments and sum-of-squares approaches (Lasserre
(2001)).

An alternative to directly solving (1) is to reformulate it into a different class of problem, which
may be easier to solve. To this end, additional variables and constraints are introduced to obtain an
equivalent problem with a linear or quadratic objective function. Under these approaches, some or
all of the non-linearity is moved from the objective to the newly introduced constraints. In the liter-
ature, these reformulations are referred to as linearization or quadratization approaches (Anthony
et al. (2017), Rodrı́guez-Heck (2018), Dalkiran and Ghalami (2018), Elloumi et al. (2021), Karia
et al. (2022)). When all variables in (1) are binary, the problem can be reduced to a binary linear
program via linearization (Glover and Woolsey (1974)).

A widely used linearization strategy for (1) involves replacing bilinear products xixj , appearing
in one or more multilinear terms, with artificial variables y{i,j}. By iteratively applying such opera-
tions, the MLP can be reformulated into an equivalent problem with a linear objective function and
nonconvex quadratic constraints of the form y{i,j} = xixj . By replacing these nonlinear constraints
with McCormick inequalities (McCormick (1976)), an LP relaxation of (1) is obtained. We refer
to linearization strategies following the aforementioned procedure as Recursive McCormick Lin-
earizations (RMLs). The number of artificial variables and the quality of the LP relaxation bound
varies across different RMLs, as illustrated in Example 2.

EXAMPLE 2 (QUALITY OF AN RML). Figures 1 and 2 depict two RMLs for the MLP shown
in Example 1. RML 1 uses ten variables in total (with six artificial variables) and delivers an LP
bound of −4

3
. In contrast, RML 2 uses five artificial variables and has an LP bound of −1.

x1x2︸︷︷︸x3 x2x3︸︷︷︸x4 x1x3︸︷︷︸x4

y{1,2}x3︸ ︷︷ ︸ y{2,3}x4︸ ︷︷ ︸ y{1,3}x4︸ ︷︷ ︸
y{1,2,3} y{2,3,4} y{1,3,4}

Figure 1 RML with 10 variables and LP bound −4
3

.

x2 x1x3︸︷︷︸ x2 x3x4︸︷︷︸ x1 x3x4︸︷︷︸
x2y{1,3}︸ ︷︷ ︸ x2y{3,4}︸ ︷︷ ︸ x1y{3,4}︸ ︷︷ ︸
y{1,2,3} y{2,3,4} y{1,3,4}

Figure 2 RML with 9 variables and LP bound −1.

3

In this article, we present a systematic study of RMLs focused on the size and tightness of the
resulting LP relaxation. In particular, we introduce exact approaches for identifying RMLs that
have (i) the minimum number of artificial variables; and (ii) the tightest LP relaxation bound given
a constraint on the number of artificial variables. Our theoretical and algorithmic contributions are:

• Minimum-Size RML: We show that the identification of minimum-size RMLs is NP-hard,
and we present a fixed-parameter tractable algorithm for the special case of the problem
where all monomials have degree at most three. Furthermore, we investigate scenarios where
a greedy approach to the problem delivers arbitrarily poor results. Finally, we propose an exact
MIP model for finding minimum-size RMLs.

• Best-Bound RML: We introduce an exact MIP model for finding best-bound RMLs of any
given size. Our results rely on transforming a two-level MIP formulation into a single-level
MIP based on the bounds we derive for dual variables of the inner-level sub-problem.

Our algorithms can be used in two different ways. First, our RMLs can be used within a global
optimization solver to obtain initial LP relaxations with a reduced size and tighter bounds. As indi-
cated previously, these initial LP relaxations can be further tightened by adding valid inequalities.
Second, our RMLs can be used to reformulate (1) into a quadratically-constrained problem (QCP),
which can then be solved using a global optimization solver for QCPs.

To demonstrate the benefits of our approach, we conduct numerical experiments on a large set
of MLP instances. Our results suggest that our minimum-size RMLs can be significantly smaller
than the RMLs obtained using heuristic or greedy approaches. Similarly, our best-bound RMLs
can significantly improve the LP relaxation bounds. Moreover, we use our RMLs to reformulate
all MLP instances in the test set as QCPs, which we then solve with the global solver GUROBI.
We compare this solution approach with another one based on directly solving the MLPs with the
global solver BARON. As our results indicate, for hard instances, using our linearization strategies
to reformulate the MLPs as QCPs, and solving the resulting QCPs with GUROBI can be signific-
natly faster than solving the original MLPs with BARON.

The closest reference to our work is the recent paper by Elloumi and Verchère (2023), which
proposes algorithms for identifying minimum-size RMLs and best-bound RMLs using a different
modeling approach. Namely, whereas the model in Elloumi and Verchère (2023) has variables rep-
resenting all possible linearizations, our model decomposes by bilinear terms, so our formulation
is more compact and scalable for monomials of large degree. Moreover, the differences in the mod-
eling approaches are relevant for the design of an exact MIP model for finding best-bound RMLs.
Namely, both papers rely on single-level reformulations of bi-level optimization problems, but
whereas the reformulation of Elloumi and Verchère (2023) is straightforward, ours requires more
careful and sophisticated analysis. Our numerical experiments show that our algorithms outper-
form the algorithms by Elloumi and Verchère (2023), mainly because our models obtain better dual
bounds for harder instances. Verma and Lewis (2020) also study minimum-size RMLs, but their
algorithm is tailored for monomials of degree four, whereas ours can be applied to arbitrary MLPs.
Other references related to our work include the articles by Anthony et al. (2016) and Boros et al.
(2020), which focus on identifying upper and lower bounds for the size of quadratizations.

Our results extend to the cases where all variables are subject to general box constraints, as
multilinear functions are closed under affine variable transformations. Additionally, our algorithms
can also be used to solve general polynomial optimization problems over a box, including cases
with polynomial constraints.

The remainder of this article is organized as follows. Section 2 formalizes the problem and
introduces the notation. Sections 3 and 4 present our results involving minimum-size RMLs and
best-bound RMLs, respectively. Section 5 presents our numerical studies. Finally, Section 6 con-
cludes the article.

4

2. Linearization of Multilinear Programs
The standard algorithm for linearizing an MLP is an iterative procedure that reduces the degree
of one or more multilinear terms in each step by replacing bilinear terms with artificial variables.
Consider any index i ∈ [m] and the corresponding term fi(x) =

∏
j∈Ji

xj . For any pair of indices

j1, j2 ∈ Ji, we can replace the bilinear product xj1xj2 with the variable y{j1,j2} and rewrite fi(x)
as fi(x) = y{j1,j2}

∏
j∈Ji\{j1,j2}

xj. This reformulation does not eliminate nonlinearity, but we can

use McCormick convex and concave envelopes (see McCormick (1976)) to obtain a polyhedral
relaxation of this expression:

y{j1,j2} ≥ 0

y{j1,j2} −xj1 −xj2 +1≥ 0

y{j1,j2} −xj1 ≤ 0

y{j1,j2} −xj2 ≤ 0

We denote the McCormick inequality system that linearizes the bilinear product xj1xj2 by intro-
ducing an artificial variable y{j1,j2} and the convex and concave envelopes in (2) as E (t) with t=
({j1} ,{j2} ,{j1, j2}). This procedure can be recursively applied to the remaining bilinear products
of original and artificial variables until fi(x) is completely linearized. In the end, we obtain a set
of artificial variables yJ representing the product of all variables in J ⊆ [n] for a collection of sets
that includes Ji for each i∈ [m]. For ease of notation, we also refer to the variable xj as y{j}.

2.1. Recursive McCormick Relaxation (RML)
For any i ∈ [m], let Ni := {J : J ⊆ Ji, J ̸= ∅} be the family of non-empty subsets of indices of the
variables in monomial i, and let N =

⋃
i∈[m]

Ni. For any J ′′ in N such that |J ′′| ≥ 2, a triple t =

(J,J ′, J ′′) describes a partition of J ′′ into two non-empty sets J and J ′. We assume that the first two
elements of any triple are arranged in lexicographical order. In this way, we can uniquely define
tail1(t), tail2(t), and head(t) as the first, second, and third elements of t, respectively. Finally, let
Ti := {t : head(t)∈Ni} and T =

⋃
i∈[m]

Ti be the set of all possible triples associated with Ni and N ,

respectively, and let tails(t) := {tail1(t), tail2(t)}.
DEFINITION 1. A Proper Triple Set for an MLP is a set of triples T ⊆T for which there exists

a subset T ′ ⊆ T satisfying the following conditions:
RMP 1 For every monomial αifi(x), if the set Ji with the indices of the variables composing fi(x)

is such that |Ji|> 1, then Ji is equal to head(t) for at least one triple t∈ T ′; and
RMP 2 If a set J ⊆N such that |J |> 1 is equal to tail1(t) or tail2(t) for some triple t ∈ T ′, then

J is equal to head(t′) for some t′ ̸= t in T ′.
Condition RMP 1 enforces the linearization of all monomials of two or more variables. Condi-
tion RMP 2 extends RMP 1 to artificial variables, which always represent the product of two or
more original variables. Our definition of proper triple sets enforces the existence of at least one
full linearization and allows the incorporation of artificial variables with no associated lineariza-
tion; these variables are not necessary, but they may help enhance relaxation bounds. A proper

5

triple set T defines an RML of an MLP over the set of variables yJ for each J in {head(t) : t∈ T}
and subject to the constraints of E(t) for each t in T :

min
∑
i∈[m]

αiyJi

s.t. E(t), ∀t∈ T

yJ ∈ [0,1], ∀J ∈N .

(2)

The cardinality of T defines the size of the respective RML (2). In particular, minimum-size RMLs
are minimal proper triple sets. We consider non-minimal proper triple sets when identifying best-
bound LP relaxation linearizations (see Section 4). Lastly, an RML can also be used to derive
a quadratization of an MLP. We obtain the following quadratically-constraint problem (QCP) of
an MLP from an RML T :

min
∑
i∈[m]

αiyJi

s.t. yJ1∪J2 = yJ1yJ2 , ∀ (J1, J2, J1 ∪ J2)∈ T

yJ ∈Ω, ∀J ∈N .

(3)

The domain Ω of variable yJ is set to [0,1] or {0,1} based on the domains of the variables com-
posing J .

2.2. Sequential RML
Algorithm 1 describes Seq, the recursive arithmetic interval RML strategy by Ryoo and Sahinidis
(2001). Seq is an iterative algorithm that, in each step, identifies a pair of (original or artificial)

Algorithm 1: Sequential RML (Seq)
1 T := ∅ Set of triples
2 for i∈ [m] do
3 Ai := {{j} : j ∈ Ji} Family of singleton sets containing the indices of the variables composing fx(x)
4 while ∃i∈ [m] : |Ai|> 1 do
5 Pick J,J ′ ∈Ai for some Ai such that |Ai|> 1 Select an arbitrary bilinear term from an arbitrary monomial
6 J ′′ := J ∪ J ′

7 T := T ∪{(J,J ′, J ′′)}
8 for i′ ∈ [m] do
9 if {J,J ′} ⊆Ai′ then

10 Ai′ :=Ai′ \ {J,J ′} Remove sets J and J ′ from Ai′

11 Ai′ :=Ai′ ∪{J ′′} Add set J ∪ J ′ to Ai′

variables yJ and yJ ′ occurring in the same term, where J ∩J ′ = ∅, and replaces the bilinear product
yJyJ ′ for a new artificial variable yJ∪J ′ . This substitution is applied to all multilinear terms con-
taining yJyJ ′ . Example 3 shows that the linearization generated by Seq depends on the variable
ordering it uses to select bilinear terms.

EXAMPLE 3. Seq yields the linearization depicted in Figure 1 for f(x) = x1x2x3 − x2x3x4 −
x1x3x4 if it adopts the ordering (x1, x2, x3, x4), which leads to the substitution of the bilinear
terms x1x2, x2x3, and x1x3, in this order. In contrast, Seq obtains the linearization in Figure 2 if
it uses the ordering (x3, x4, x1, x2) instead; first, x3x4 is replaced in the last two monomials, and
then x1x3 is replaced in the first.

6

2.3. Related Concepts in the Literature
RMLs are related to linearization and quadratization techniques explored in the literature. For
example, a triple can be interpreted as a reduction operation in the method presented by Buchheim
and Rinaldi (2008). More recently, Anthony et al. (2017) presented the concept of pairwise cov-
ers for the quadratization of binary optimization problems. Namely, for any binary optimization
problem, a pairwise cover consists of a collection H of subsets of indices in [n] such that, for
each monomial indexed by I , there is a pair of elements in H whose union equals I . This idea
is related to RMLs, although a direct application of pairwise covers does not necessarily provide
a full linearization for large-degree monomials; namely, some multilinear terms derived from this
decomposition may not have a pairwise cover. Finally, and more closely related to our strategy,
we have the quadratization scheme presented in Crama et al. (2022), which, similarly to us, differs
from pairwise covers by enforcing the quadratization of all multilinear terms. The main differ-
ence between our strategy and the quadratization schemes is that each triple (J,J ′, J ′′) used in our
linearizations describes a partition of J ′′ into non-empty sets J and J ′, whereas the quadratiza-
tion scheme in Crama et al. (2022) (and Anthony et al. (2016)) allows J ∩ J ′ ̸= ∅. Therefore, our
linearization can be interpreted as a restriction of the quadratization scheme in Crama et al. (2022).

3. Minimum-size Linearization
We investigate strategies for deriving minimum-size RMLs. We start with a simple yet suboptimal
greedy approach and then proceed with an exact algorithm to find minimum-size RMLs. We also
show that finding a minimum-size RML is NP-hard and that a special case of the problem is fixed-
parameter tractable.

3.1. Greedy Linearization
Algorithm 2 describes Greedy, an RML strategy that selects a pair of variables yJ and yJ ′ appear-
ing together in as many monomials as possible in each iteration. Then, similarly to Seq, the bilinear
product yJyJ ′ is replaced by yJ∪J ′ in each monomial where it occurs. Greedy is akin to the proce-

Algorithm 2: Greedy
1 T := ∅ Set of triples
2 for i∈ [m] do
3 Ai := {{j} : j ∈ Ji} Family of singleton sets containing the indices of the variables composing fx(x)
4 while ∃i∈ [m] : |Ai|> 1 do
5 Pick J,J ′ such that |{i∈ [m] : {J,J ′} ∈Ai}| is maximum
6 J ′′ := J ∪ J ′

7 T := T ∪{(J,J ′, J ′′)}
8 for i′ ∈ [m] do
9 if {J,J ′} ⊆Ai′ then

10 Ai′ :=Ai′ \ {J,J ′} Remove sets J and J ′ from Ai′

11 Ai′ :=Ai′ ∪{J ′′} Add set J ∪ J ′ to Ai′

dure described by Buchheim and Rinaldi (2008) for the quadratization of polynomial optimization
problems. More recently, Rodrı́guez-Heck (2018) proposed heuristics for identifying small pair-
wise covers (Anthony et al. (2017)); in particular, the heuristics named “Most popular intersection
first” and “Most popular pair first” explore the same ideas as the greedy algorithm, as they select
sets for the pairwise cover based on how frequently they appear in the monomials.

This heuristic frequently performs well, but it can produce arbitrarily large RMLs (see Propo-
sition 3). In particular, Example 4 shows why Greedy performs poorly in the vision instances
(Crama and Rodrı́guez-Heck (2017)); this behavior is observed in our experiments.

7

EXAMPLE 4. The vision instances are multilinear polynomials with quadratic, cubic, and
quartic terms. The variables represent cells in a grid. The quadratic, cubic, and quartic terms are
associated with variables forming a diagonal, a right angle, and a square of adjacent cells, respec-
tively. Figure 3 shows examples of terms in an instance of the problem defined over a 3-by-3 grid.
An n-by-n instance has 2(n− 1)2 quadratic terms, 4(n− 1)2 cubic terms, and (n− 1)2 quartic
terms. These instances admit a baseline RML with one artificial variable per term, starting with the

1 2 3

4 5 6

7 8 9

Quadratic terms

1 2 3

4 5 6

7 8 9

Cubic terms

1 2 3

4 5 6

7 8 9

Quartic terms
Figure 3 All terms in a 3-by-3 example of the vision instances.

quadratic ones and proceeding with the cubic and quartic terms. In contrast, Greedy adds an arti-
ficial variable y{i,i+1} for each 1≤ i≤ n2 such that i mod n ̸= 0 first, representing pairs of cells
that appear in the cubic and quartic terms but not in the quadratic terms. Greedy still needs to add
one artificial variable for each term, so the first batch of artificial variables is added in addition to
the same number of variables used by the baseline RML.

3.2. Exact Model
Formulation (4) is an MIP formulation for identifying minimum-size RMLs. The variables of (4)
represent the selection of the triples composing a proper triple set T . Each ui,t indicates whether
triple t is used in the linearization of monomial fi(x), and vt indicates whether t is used in the
linearization of any monomial. The constraints (4b)-(4c) model conditions RMP 1 and RMP
2, respectively. Namely, if the index set Ji of monomial i contains two or more elements,
then head(t) = Ji for at least one triple t in T . Similarly, if some index set J containing two or
more elements is in tails(t) for some selected triple t, then there must exist another selected triple t′

such that J = head(t′). The constraints (4d) couple variables ui,t and vt, i.e., if we use t to linearize
one or more monomials, then we must set vt to one. Finally, the objective function (4a) minimizes
the number of triples used to linearize the entire MLP.

min
∑
t∈T

vt (4a)

s.t.
∑

t∈Ti:head(t)=Ji

ui,t = 1 ∀ i∈ [m] with |Ji|> 1, (4b)∑
t∈Ti:head(t)=J

ui,t =
∑

t∈Ti:J∈tails(t)

ui,t ∀ i∈ [m],∀J ∈Ni : 2≤ |J |< |Ji|, (4c)

ui,t ≤ vt ∀ t∈ Ti, i∈ [m], (4d)

v ∈B|T |,ui ∈B|Ti| ∀ i∈ [m].

3.2.1. Inequalities for monomials of degree 4 There are two minimum-sized lineariza-
tion patterns for a multilinear term xjxkxlxl′: a) two linearizations of original variables fol-
lowed by one linearization of artificial variables, e.g., ({j} ,{k} ,{j, k}), ({l} ,{l′} ,{l, l′}),
and ({j, k} ,{l, l′} ,{j, k, l, l′}); or b) all linearizations involve at least one original variable, e.g.,

8

({j} ,{k} ,{j, k}), ({j, k} ,{l} ,{j, k, l}), and ({j, k, l} ,{l′} ,{j, k, l, l′}). We explore the fact that
these patterns use the same number of triples to derive inequalities that preserve at least one
minimum-sized RML for any given MLP f(x).

Isolated terms xjxkxl A multilinear term xjxkxl is isolated if it appears in exactly one mono-
mial αifi(x) and fi(x) has degree four, i.e., fi(x) = xjxkxlxl′ for some l′ in [n]. By definition, the
artificial variable y{j,k,l} can only be used to linearize fi(x). Therefore, an RML T that uses y{j,k,l}
and y{j,k} can be replaced with another RML T ′ that uses y{j,k} and y{l,l′} instead. This opera-
tion does not increase the number of artificial variables, and if y{l,l′} appears in other monomi-
als, we have |T ′| < |T |; therefore, it follows that |T ′| ≤ |T |. We conclude that for every isolated
term xjxkxl and set Tj,k,l := {t∈ T : head(t) = {j, k, l}}, there exists a minimum-sized RML that
satisfies the equality below: ∑

t∈Tj,k,l

vt = 0. (5)

Intermediate terms xjxkxl A multilinear term xjxkxl is intermediate if it only appears in mono-
mials αifi(x) of degree four (e.g., there is no monomial with term fi′(x) = xjxkxl). In contrast to
isolated terms, intermediate terms may appear in two or more monomials. Proposition 1 shows that
there always exists one minimum-sized RML such that, for each triple t where head(t) is an inter-
mediate term, either t is not used at all, or t is used in the linearization of at least two monomials
of f(x).

PROPOSITION 1. For every triple t such that head(t) = {j, k, l} is an intermediate term, the
incorporation of the following inequality into (4) preserves at least one minimum-sized RML:

2vt ≤
∑
i∈[m]

ui,t. (6)

Proof of Proposition 1: Let T be the proper triple set associated with a minimum-sized RML
containing t = ({j, k},{l},{j, k, l}) such that xjxkxl is an intermediate term and

∑
i∈[m]

ui,t = 1,

i.e., t is used to linearize exactly one term fi(x) = xjxkxlxl′ . We show that T can be trans-
formed into another RML that does not utilize t. As |T | is minimum, fi(x) is linearized by t, t′ =
({j},{k},{j, k}), and t′′ = ({j, k, l},{l′},{j, k, l, l′}). As xjxkxl is an intermediate term and Ji is
unique, i.e. Ji ̸= Ji′ for i′ ∈ [m] \ {i}, t′′ can only be used in the linearization of fi(x). Therefore,
t′ is the only triple used to linearize fi(x) that may also be used to linearize other monomials.
Thus, by replacing t with ({l} ,{l′} ,{l, l′}) and t′′ with ({j, k},{l, l′},{j, k, l, l′}), we obtain an
alternative proper triple set T ′ with the same cardinality as T and triples that can linearize fi(x).
Repeating this procedure until all such triples t have been removed allows us to obtain a minimum-
sized RML T ∗ that satisfies (6), so the result follows. ■

3.3. Hardness and Fixed-Parameter Tractability
This section introduces a fixed-parameter tractable algorithm for the 3-MLP, aspecial case of MLP
in whici all monomials have degree at most 3. This result explores the similarities between the 3-
MLP and the dominating set problem. Moreover, we show that finding a minimum-size RML is
NP-hard; the identification of minimum-sized quadratization for pseudo-boolean functions is also
NP-hard (Boros and Hammer (2002)), so this hardness result is expected.

9

3.3.1. Dominating Set Formulation of the 3-MLP Any RML of an MLP containing a mono-
mial fi(x) = xjxkxl necessarily has a triple t= ({j′} ,{k′} ,{j′, k′}) for some {j′, k′} ⊂ {j, k, l},
j′ ̸= k′, and one triple t′ = ({l′} ,{j′, k′} ,{j′, k′, l′}), l′ ∈ {j, k, l} \ {j′, k′}. Therefore, we can
cast an instance I ′ of the 3-MLP using a variation of the dominating set problem over a bipar-
tite graph G = (U,V,E). The dominating set of a graph consists of a subset V ′ of dominating
vertices V such that any vertex in V is either in V ′ or has a neighbor in V ′.

In our case, each vertex u of U is associated with a bilinear term xjxk and an index set Ju =
{j, k}, and each vertex v is associated with the multilinear term xlxmxn of a monomial fi(x) and
an index set Jv = {l,m,n}; for ease of notation, we use u = xjxk and t = xlxmxn. We adopt
set-theoretical notation to represent the relationships between the elements of U and V based on
their associated index sets (e.g., u ∩ v = ∅ if Ju ∩ Jv = ∅). Set E contains an edge {u, v} if and
only if Ju ⊂ Jv. For any v ∈ V, we say that the vertices in U(v) := {u ∈ U : {u, v} ∈ E} cover v;
for example, if v = xixjxk, we have U(v) = {xixj, xixk, xjxk}. The identification of a minimum-
size RML for the 3-MLP reduces to solving a special case of the dominating set problem on the
graph G constructed as defined above, where all the dominating vertices must be chosen from U.
Next, we show that this problem (and the 3-MLP) is NP-hard.

3.3.2. Reduction Rules, Hardness, and Tractability We explore the connection with the
dominating set problem to remove elements from U and V through a kernelization algorithm.

THEOREM 1 (Reduction Rules). The sequential, exhaustive, and iterative application of the
following set of rules preserves at least one dominating set in G associated with a minimum RML:
Rule 1 For every v ∈V such that v∩v′ = ∅ for every v′ ∈V\{v}, select an arbitrary pair u∈U(v)

and remove v from V and all elements of U(v) \ {u} from U.
Rule 2 Remove all elements of U of degree 1.
Rule 3 For each element v of V with a single neighbor u, select u.
Rule 4 Remove all elements of U without neighbors.
Rule 5 The problem can be decomposed by its connected components in G.

Proof: For Rule 1, observe that as v shares no variables with other triples in V, all pairs in U(v)
can only cover v. Therefore, any optimal solution of f(x) has exactly one element of U(v). After
the exhaustive application of Rule 1, each v has at least one neighbor u of degree at least two. Note
that any optimal solution that uses a neighbor of v of degree one may be replaced for another solu-
tion of the same cardinality (or smaller) by using a neighbor of v of degree two instead. Therefore,
we can remove all elements of U of degree one, i.e., we can apply Rule 2. The application of Rule
1 and Rule 2 may lead to configurations where an element v of V has only one neighbor in U. As
any feasible solution must contain at least one element of U(v) for each v in V, we apply Rule
3. From the validity of the previous rules, it follows that there is at least one optimal solution that
does not contain elements of U without neighbors, so Rule 4 is valid. Finally, Rule 5 follows from
the fact that a vertex v of V cannot be covered by any element of U that does not belong to the
same connected component in G. ■

EXAMPLE 5. Figure 4 illustrates the application of the reduction rules on f(x) = x1x2x3 +
x4x5x6 + x4x6x7 + x8x9x10 + x8x9x11 + x9x10x11 + x8x13x14 + x10x13x14 + x8x10x14. The dom-
inating set formulation of f(x) is depicted in Figure 4a. Nodes of U incorporated into the opti-
mal solution are shaded in red; eliminated nodes are shaded in gray. The term x1x2x3 does not
share variables with other terms, so we can apply Rule 1 and select x2x3 to cover x1x2x3 while
excluding x1x2 and x1x3 (see Figure 4b). Next, Rule 2 eliminates x4x5, x5x6, x4x7, x6x7, x8x11,
x10x11, x8x13, and x10x13 (see Figure 4c). Finally, Figure 4d shows the result of Rule 3, where we
select x4x6 to cover both x4x5x6 and x4x6x7.

10

x1x2x3

x1x2

x2x3

x1x3

x4x5x6

x4x5

x4x6

x5x6

x4x6x7

x4x7 x6x7

x8x11 x9x11 x10x11 x8x13 x10x13x13x14

x8x9x11 x9x10x11 x8x13x14 x10x13x14

x8x9 x9x10 x8x10 x10x14x8x14

x8x9x10 x8x10x14

(a) Dominating set representation of f(x).

x1x2x3

x1x2

x2x3

x1x3

x4x5x6

x4x5

x4x6

x5x6

x4x6x7

x4x7 x6x7

x8x11 x9x11 x10x11 x8x13 x10x13x13x14

x8x9x11 x9x10x11 x8x13x14 x10x13x14

x8x9 x9x10 x8x10 x10x14x8x14

x8x9x10 x8x10x14

(b) Application of Rule 1 to f(x).

x1x2x3

x1x2

x2x3

x1x3

x4x5x6

x4x5

x4x6

x5x6

x4x6x7

x4x7 x6x7

x8x11 x9x11 x10x11 x8x13 x10x13x13x14

x8x9x11 x9x10x11 x8x13x14 x10x13x14

x8x9 x9x10 x8x10 x10x14x8x14

x8x9x10 x8x10x14

(c) Application of Rule 2 to f(x).

x1x2x3

x1x2

x2x3

x1x3

x4x5x6

x4x5

x4x6

x5x6

x4x6x7

x4x7 x6x7

x8x11 x9x11 x10x11 x8x13 x10x13x13x14

x8x9x11 x9x10x11 x8x13x14 x10x13x14

x8x9 x9x10 x8x10 x10x14x8x14

x8x9x10 x8x10x14

(d) Application of Rule 3 to f(x).
Figure 4 Reduction rules applied to f(x) := x1x2x3 +x4x5x6 +x4x6x8 +x7x8x9 +x8x9x10 +x7x9x10.

PROPOSITION 2 (Structure of the Kernel). Let Gr = (Ur,Vr,Er) denote the graph resulting
from the exhaustive application of the rules in Theorem 1.
Property 1 Each element of Vr has two or three neighbors in Ur.
Property 2 Each non-selected element of Ur has at least two neighbors in Vr.
Property 3 Gr is a K2,2−free graph.
Property 4 If u ∈ Ur is not selected, any solution must contain at least one u′ ∈ Ur for each

neighbor of u.

Proof: Property 1 follows from the fact that |U(v)|= 3 in G for any v in Vr and from Rule 3.
Property 2 follows directly from Rule 2. For Property 3, observe that any pair of elements u1, u2

in U sharing the same neighbors must have exactly one variable in common. Therefore, there are
three variables associated with u1 and u2, so it defines exactly one element of V, i.e., V cannot
have two distinct elements that are simultaneously neighbors of both u1 and u2. Finally, Property
4 follows directly from Property 3, as any vertex in Ur \{u} can cover at most one neighbor of u.
■

Proposition 2 provides the conditions to adapt the arguments of Boros and Hammer (2002) to
show that finding a minimum-size RML is NP-hard.

THEOREM 2. Finding a minimum-size RML for the 3-MLP is NP-hard.

Proof: The result follows from a reduction of the vertex cover problem, which is NP-hard
(Garey and Johnson (1979)). In the vertex cover problem, we have a graph G = (V,E) and wish
to identify a subset V ′ of V such that, for each edge e = {u, v} in E, we have u ∈ V ′ or v ∈ V ′

(or both). Let G= (V,E) be the graph associated with an arbitrary instance I of the vertex cover

11

a

b

c

d

e

f
xaxby

xaxcy

xbxcy

xbxdy

xcxey

xdxey

xdxfy

Figure 5 Example of instance of the vertex cover problem for G= (V,E), where V = {a, b, c, d, e, f} and E =
{{a, b},{a, c},{b, c},{b, d},{c, e},{d, e},{d, f}}. The figure shows the monomials associated with
each edge; we have V = {xaxby,xaxcy,xbxcy,xbxdy,xcxey,xdxey,xdxfy}. The 3-MLP instance is
complete with U= {xay,xby,xcy,xdy,xey,xfy}. An optimal solution for the vertex cover instance is
the set {b, d}, whereas {xby,xdy} is the optimal solution for the associated 3-MLP instance.

problem. We construct the reduced bipartite graph Gr = (Ur,Vr,Er) associated with an instance
of the 3-MLP. For each vertex v in V we have an element yxv in Ur, and for each edge e= {u, v}
in E we have an element xuxvy in Vr. A complete construction would also require the inclusion
of xuxv in Ur for each {u, v} in Er; however, it follows from Rule 2 that we do not need to include
them in Ur, as there is at least one optimal solution of (Ur,Vr) that does not use elements of Ur of
degree 1. Therefore, we build Er as in Section 3.3.1, but taking into account the transformations
in Section 3.3.2. For an example, see Figure 5.

Any optimal solution V ′ for I is associated with a set of elements U′ in Ur that covers each
element of Vr. In particular, the one-to-one relationships between V and Ur and E and Vr extend
to the coverage of edges by vertices in G and triples by pairs in (Ur,Vr). Therefore, it follows that
the 3-MLP is NP-hard. ■

We leverage the construction used in the proof of Theorem 2 to show that Greedy may iden-
tify RMLs arbitrarily larger than a minimum-size RML.

PROPOSITION 3. Greedy may identify RMLs arbitrarily larger than a minimum-size RML.

Proof: Let B = (U,V,E) be a bipartite graph such that |U |= k for some k ∈ N, and let V :=
k⋃

i=1

Vi (i.e., V is partitioned into subsets V1, V2, . . . , Vk) whereby |Vi|=
⌊
k
i

⌋
, i∈ [k]. We construct E

by assigning exactly i neighbors in U to each vertex in Vi, i ∈ [k]. Moreover, each vertex in U has
at most one neighbor in Vi, and we assign neighbors in U to vertices in Vi so that the maximum
degree of any vertex in U is k−1. We obtain an instance of the 3-MLP by applying the construction
presented in the proof of Theorem 2 to graph B. The greedy algorithm proceeds by selecting,
in each iteration, the vertex with the largest number of uncovered neighbors. By construction,
all the

∑k
i=1 |Vi| pairs associated with V are incorporated into the linearization by the greedy

algorithm, so the solution size is |V | ≈
∑k

i=1⌊
k
i
⌋ = Θ(k lnk). In contrast, this instance admits a

linearization that picks all the pairs associated with U , which contains only k elements. Therefore,
the proper triple set identified by Greedy is O(lnk) times larger than a minimum-sized one. ■

Finally, Theorem 3 shows that the 3-MLP is fixed-parameter tractable in the size of the lineariza-
tion, i.e., for a fixed k, one can decide in polynomial time whether there exists a linearization with
at most k elements.

THEOREM 3. Given k ∈ N, one can decide in time O(k6 + 3kk2) whether an instance of the
3-MLP has a linearization of size k.

Proof: The structural properties of the reduced problem allow us to show that the 3-MLP is
fixed-parameter tractable in the sizer k of the linearization; we denote this parameterized decision
problem as (Gr, k). First, we show the adaptation of the kernelization procedure proposed by Buss
and Goldsmith Buss and Goldsmith (1993) for the vertex cover problem applies to the 3-MLP.

12

LEMMA 1 (Rule 6). If Gr contains an element u in U with degree greater than or equal to k+1,
remove u and its neighbors and solve (Gr −u, k− 1).

Proof: This result follows from Property 4. Namely, if u has degree greater than or equal
to k+1, then any solution for the 3-MLP that does not contain u must contain at least k+1 elements
of U \ {u} to cover its neighborhood. Similarly, any certificate showing that (Gr − u, k − 1) is a
“yes” instance can be efficiently converted in a “yes” certificate for (Gr, k). ■

Deleting a vertex u may affect all the elements in V and the elements in U, so the applica-
tion of Rule 6 takes time O(|U|(|U|+ |V|)). Our fixed-parameter tractable procedure to solve an
instance (Gr, k) of the 3-MLP consists of applying Rules 1, 2, 3, 4, and 6; observe that, in addition
to Rule 6, Rules 1 and 3 may also change (decrease) the value of k. We can omit Rule 5 for the
decision version of the problem.

First, we claim that if (Gr, k) is a “yes” instance, then |E| ≤ k2. If Rule 6 (Proposition 1) cannot
be applied, all vertices in U have at most k neighbors in V. As at most k vertices of U may be
selected and, consequently, at most k2 vertices of V can be covered, it follows that |E| ≤ k2.

Next, we claim that if (Gr, k) is a “yes” instance, then |V| ≤ k2/2 and |U| ≤ k2/2. From Prop-
erty 1, each element of V must have at least two neighbors in U, so |V| ≤ k2/2. Similarly, as Prop-
erty 2 shows that each element of U has at least two neighbors in V, it follows that |U| ≤ k2/2.

The exhaustive application of Rules 1, 2, 3, 4, and 6 can be performed in polynomial time.
Namely, in each step, at least one vertex is removed, so in the worst case, we have O((|U| +
|V|)(2|U|+ |V|+ |V|2)+ |U|2+ |U||V|) =O((|U|+ |V|)(|U|2+ |V|2)) =O(w3), where w= |U|+
|V| represents the size of the instance. A bounded search tree on the kernel needs time T (w,k) =
O(3kn); each vertex in V has at most three neighbors, and a vertex of U can be removed (with
its neighbors in V) in time O(w). As w = O(k2) after the kernelization procedure, the brute-
force procedure consumes time O(3kk2). In total, the algorithm consumes time O(w3 + 3kk2) =
O(k6+3kk2); therefore, the 3-MLP is fixed-parameter tractable. ■

4. Best Bound LP Relaxation
Let v̂ ∈ B|T | be a binary vector representing a proper triple set T , i.e., v̂t = 1 if and only if t ∈ T .
For a given v̂ ∈B|T |, the formulation presented in (2) can be rewritten as the following LP:

min
y∈[0,1]|N|

∑
J∈N

βJyJ (7a)

s.t.

−1 0 1
0 −1 1
1 1 −1

︸ ︷︷ ︸

=:B

 yJ
yJ ′

yJ ′′

︸ ︷︷ ︸

=:yt

≤

1
1
2

︸ ︷︷ ︸
:=b

+

−1
−1
−1

︸ ︷︷ ︸

=:c

v̂t ∀ t∈ T (7b)

yJ ≤ 1 ∀J ∈N (7c)

We have βJ = αi if J = Ji for some i∈ [m] and βJ = 0 otherwise. Lemma 2 shows that the optimal
solution to (7) is bounded for any choice of v̂.

LEMMA 2. The optimal objective value of (7) lies in the interval [η,0] where η =∑
i∈[m]

min(0, αi).

Proof: The optimal objective value of (7) is not larger than zero since y = 0 is feasible for
any v̂. A lower bound of

∑
J∈N

min(0, βJ) can be attained by setting yJ = 1 if βJ < 0 and yJ = 0 if

βJ ≥ 0. Since βJ ̸= 0 only for J ∈ {J1, . . . , Jm}, the lower bound simplifies to
∑

i∈[m]

min(0, αi). ■

13

Let λt := (λt,1, λt,2, λt,3) denote the vector with the dual multipliers for the inequalities in (7b)
associated with the triple t. Let µJ denote the multiplier for the bound constraint yJ ≤ 1 in (7c)
associated with the index set J . Moreover, let λ be a vector containing λt for all t ∈ T , and µ
denote the collection of multipliers µJ for all J ∈N . The dual of (7) can be written as follows:

max
(λ,µ)∈R|T |×R|N|

Obj(λ,µ) :=−
∑
t∈T

(bTλt+ cTλtv̂t)−
∑
J∈N

µJ (8a)

s.t. βJ +
∑

t:J=tail1(t)

(−λt,1+λt,3)+
∑

t:J=tail2(t)

(−λt,2+λt,3)

+
∑

t:J=head(t)

(λt,1+λt,2−λt,3)+µJ ≥ 0 ∀J ∈N (8b)

λ,µ≥ 0 (8c)

From Lemma 2 and strong duality, it follows that the optimal solution to (8) is bounded given v̂.

LEMMA 3. The optimal objective value of (8) lies in the interval [η,0].

4.1. Bounds on the dual multipliers
In this section, we prove that, for any given v̂, the multipliers λv̂ and µv̂ have finite bounds inde-
pendent of v̂; this result is stated in Proposition 4 and follows from Lemmas 4, 5, and 6. For brevity,
we assume in this section that v̂ is fixed, so we omit it from the notation.

PROPOSITION 4. Let λv̂,µv̂ denote an optimal solution to (8) for a fixed v̂. We have λv̂
t,j ≤

Mt,j for all t∈ T , j = 1,2,3 with Mt,j ∈ [0,∞) and µv̂
J ≤MJ for all J ∈N with MJ ∈ [0,∞).

LEMMA 4. There exists an optimal solution λv̂,µv̂ to (8) with λv̂
t = 0 for all t such that v̂t = 0.

Proof: Suppose (λ̃, µ̃) is feasible for (8) and λ̃t′ ̸= 0 for some t′ such that v̂t′ = 0. The result
follows from the fact that there exists a solution (λ̂, µ̂) that is feasible for (8) with λ̂t′ = 0 and
Obj(λ̂, µ̂) =Obj(λ̃, µ̃). Let t′ = (J ′, J ′′, J ′′′). Define λ̂ and µ̂ as follows:

λ̂t =

{
λ̃t if t ̸= t′

0 if t= t′
and µ̂J =

µ̃J if J /∈ {J ′, J ′′, J ′′′}

µ̃J ′ + λ̃t′,3 if J = J ′

µ̃J ′′ + λ̃t′,3 if J = J ′′

µ̃J ′′′ + λ̃t′,1+ λ̃t′,2 if J = J ′′′.

(9)

By construction, we have λ̂, µ̂≥ 0. Moreover, λ̂t′ , µ̂J ′ , µ̂J ′′ , and µ̂J ′′′ only figure in the inequalities
in (8b) for J ∈ {J ′, J ′′, J ′′′}. Hence, the inequality (8b) holds for all J \ {J ′, J ′′, J ′′′}. Therefore,
we just need to show that (λ̂, µ̂) satisfy (8b) for {J ′, J ′′, J ′′′}.

First, consider the left-hand side of (8b) for J = J ′; the analysis for J = J ′′ is identical. We have

βJ ′ +
∑

t:J ′=tail1(t)

(−λ̂t,1+ λ̂t,3)+
∑

t:J ′=tail2(t)

(−λ̂t,2+ λ̂t,3)

+
∑

t:J ′=head(t)

(λ̂t,1+ λ̂t,2− λ̂t,3)+ µ̂J ′ (10a)

= βJ ′ +(−λ̂t′,1+ λ̂t′,3)+
∑

t:J ′=tail1(t)\{t′}

(−λ̂t,1+ λ̂t,3)+
∑

t:J ′=tail2(t)

(−λ̂t,2+ λ̂t,3)

14

+
∑

t:J ′=head(t)

(λ̂t,1+ λ̂t,2− λ̂t,3)+ µ̂J ′ (10b)

= βJ ′ +0+
∑

t:J ′=tail1(t)\{t′}

(−λ̃t,1+ λ̃t,3)+
∑

t:J ′=tail2(t)

(−λ̃t,2+ λ̃t,3)

+
∑

t:J ′=head(t)

(λ̃t,1+ λ̃t,2− λ̃t,3)+ µ̃J ′ + λ̃t′,3 (10c)

= βJ ′ +
∑

t:J ′=tail1(t)

(−λ̃t,1+ λ̃t,3)+
∑

t:J ′=tail2(t)

(−λ̃t,2+ λ̃t,3)

+
∑

t:J ′=head(t)

(λ̃t,1+ λ̃t,2− λ̃t,3)+ µ̃J ′ + λ̃t′,1 ≥ λ̃t′,1 ≥ 0 (10d)

In the first equality, we move the terms associated with t′ out of the first summation. The equality
in (10c) is obtained by substituting (9), and (10d) follows by adding and subtracting the term λ̃t′,1

and collecting the term (−λ̃t′,1 + λ̃t′,3) into the first summation. The first inequality is obtained
from (8b) holding for (λ̃, µ̃), and the final inequality follows from λ̃≥ 0. For J = J ′′′, we have

βJ ′′′ +
∑

t:J ′′′=tail1(t)

(−λ̂t,1+ λ̂t,3)+
∑

t:J ′′′=tail2(t)

(−λ̂t,2+ λ̂t,3)

+
∑

t:J ′′′=head(t)

(λ̂t,1+ λ̂t,2− λ̂t,3)+ µ̂J ′′′ (11a)

= βJ ′′′ +
∑

t:J ′′′=tail1(t)

(−λ̂t,1+ λ̂t,3)+
∑

t:J ′′′=tail2(t)

(−λ̂t,2+ λ̂t,3)

+ (λ̂t′,1+ λ̂t′,2− λ̂t′,3)+
∑

t:J ′′′=head(t)\{t′}

(λ̂t,1+ λ̂t,2− λ̂t,3)+ µ̂J ′′′ (11b)

= βJ ′′′ +
∑

t:J ′′′=tail1(t)

(−λ̃t,1+ λ̃t,3)+
∑

t:J ′′′=tail2(t)

(−λ̃t,2+ λ̃t,3)

+
∑

t:J ′′′=head(t)\{t′}

(λ̃t,1+ λ̃t,2− λ̃t,3)+ 0+ µ̃J ′′′ + λ̃t′,1+ λ̃t′,2 (11c)

= βJ ′′′ +
∑

t:J ′′′=tail1(t)

(−λ̃t,1+ λ̃t,3)+
∑

t:J ′′′=tail2(t)

(−λ̃t,2+ λ̃t,3)

+
∑

t:J ′′′=head(t)

(λ̃t,1+ λ̃t,2− λ̃t,3)+ µ̃J ′′′ + λ̃t′,3 ≥ λ̃t′,3 ≥ 0 (11d)

Equality (11b) follows from splitting the last summation over t′. The equality in (11c) is obtained
by substituting (9), and (11d) follows by adding and subtracting the term λ̃t′,3 and collecting the
term (λ̃t′,1+ λ̃t′,2− λ̃t′,3) into the last summation. The first inequality is obtained from (8b) holding
for the variables (λ̃, µ̃), and the final inequality follows from λ̃≥ 0. Therefore, (λ̂, µ̂) is feasible
for (8b) and λt′ = 0. Finally, we show that Obj(λ̂, µ̂) =Obj(λ̃, µ̃). This follows from:

Obj(λ̂, µ̂) =−
∑
t∈T

(bT λ̂t + cT λ̂tv̂t)−
∑
J∈N

µ̂J (12a)

= −
∑

t∈T \{t′}

(bT λ̂t+ cT λ̂tv̂t)− (bT λ̂t′ + cT λ̂t′ v̂t′)

15

−
∑

J∈N\{J ′,J ′′,J ′′′}

µ̂J − µ̂J ′ − µ̂J ′′ − µ̂J ′′′ (12b)

= −
∑

t∈T \{t′}

(bT λ̃t + cT λ̃tv̂t)− 0

−
∑

J∈N\{J ′,J ′′,J ′′′}

µ̃J − µ̃J ′ − µ̃J ′′ − µ̃J ′′′ − λ̃t′,1− λ̃t′,2− 2λ̃t′,3 (12c)

= −
∑

t∈T \{t′}

(bT λ̃t + cT λ̃tv̂t)−
∑
J∈N

µ̃J − bT λ̃t′ =Obj(λ̃, µ̃) (12d)

Equality (12b) follows by splitting the first sum in t′ and the second sum in {J ′, J ′′, J ′′′}. The
equality in (12c) follows by substituting (9). The equality in (12d) follows from the definition
of b in (7b). The final equality follows by noting that bT λ̃t′ = bT λ̃t′ + cT λ̃t′vt′ since vt′ = 0 and
collecting the terms into the summation over t in T \ {t′}. ■

LEMMA 5. Let (λv̂,µv̂) be an optimal solution to (8) as stated in Lemma 4. Then λv̂
t,3, µ

v̂
J ≤ η.

Proof: Consider the term λv̂
t in (8a) for some triple t. This can be simplified as

bTλv̂
t + cTλv̂

t v̂t =

{
λv̂
t,3 if v̂t = 1;

bTλv̂
t = 0 if v̂t = 0,

(13)

which follows by substituting for b, c from (7b) and from Lemma 4. Thus, the optimal value of the
objective in (8a) can be reduced to

Obj(λ̂, µ̂) =−
∑
t∈T

(bTλv̂
t + cTλv̂

t v̂t)−
∑
J∈N

µv̂
J =−

∑
t∈T :v̂t=1

λv̂
t,3−

∑
J∈N

µv̂
J ≥−η, (14)

where the first equality follows from (13) and the inequality from Lemma 3. Combining λv̂,µv̂ ≥ 0
with (14) yields that λv̂

t,3 ≤ η for all t in T such that v̂t = 1 and µv̂
J ≤ η for all J in N . To complete

the proof it suffices to recall that, by Lemma 4, λv̂
t,3 = 0≤ η for all t in T such that v̂t = 0. ■

Lemma 5 yields that Mt,3 = η for all t in T and MJ = η for all J in N . Next, Lemma 6 shows
that the bounds for λv̂

t,1 and λv̂
t,2 are also finite for all t in T .

LEMMA 6. Let (λv̂,µv̂) be an optimal solution to (8) as stated in Lemma 4. There exists a finite
Mt,j for each t∈ T and j = 1,2 such that λv̂

t,j ≤Mt,j .

Proof: Consider the inequality in (8b) for J ∈N . This can be rewritten for (λv̂,µv̂) as∑
t:J=tail1(t)

λv̂
t,1+

∑
t:J=tail2(t)

λv̂
t,2 ≤

βJ +
∑

t:J=tail1(t)

λv̂
t,3+

∑
t:J=tail2(t)

λv̂
t,3+

∑
t:J=head(t)

(λv̂
t,1+λv̂

t,2−λv̂
t,3)+µv̂

J (15)

From (14) we have that
∑
t∈T

λv̂
t,3 +

∑
J∈N

µv̂
J ≤ η. Then we can upper bound the terms involving λv̂

t,3

and µv̂
J on the right-hand side of (15) as∑

t:J=tail1(t)

λv̂
t,3+

∑
t:J=tail2(t)

λv̂
t,3+µv̂

J ≤
∑
t:T

λv̂
t,3+

∑
J∈N

µv̂
J ≤ η (16)

16

where the first inequality follows by noting that either J = tail1(t) or J = tail2(t) but not both,
and from the non-negativity of multipliers. The second inequality follows from (14) and Lemma 4.
Thus, the inequality (15) is equivalent to∑

t:J=tail1(t)

λv̂
t,1+

∑
t:J=tail2(t)

λv̂
t,2 ≤ βJ + η+

∑
t:J=head(t)

(λv̂
t,1+λv̂

t,2−λv̂
t,3)

≤ βJ + η+
∑

t:J=head(t)

(λv̂
t,1+λv̂

t,2) (17)

where the first inequality follows from (16) and the second from the non-negativity of λv̂
t,3. Observe

that the right-hand side of (17) involves the multipliers λv̂
t,1 and λv̂

t,2 for all t such that J = head(t),
i.e., the triples t for which J is the head. If an upper bound is available for such multipliers, then
we can use (17) to derive an upper bound on the arcs in which J is a tail.

We show by induction that Mt,1 and Mt,2 are finite. First, consider J1 := {J ∈ N | |J | = 1}.
We have {t ∈ T | J = head(t)} = ∅ for each J in J1, i.e., J cannot be the head of any triple.
Consequently, the inequality (17) for J ∈J1 becomes∑

t:J=tail1(t)

λv̂
t,1+

∑
t:J=tail2(t)

λv̂
t,2 ≤ βJ + η. (18)

Therefore, Mt,1 ≤ βJ +η and Mt,2 ≤ βJ +η for each t in T such that tail1(t)∈J1 or tail2(t)∈J1,
respectively. Next, we consider J2 := {J ∈N | |J |= 2}. For each J in J2, any t in {t ∈ T | J =
head(t)} is such that |tail1(t)|= 1 and |tail2(t)|= 1. Therefore, upper bounds Mt,1 and Mt,2 have
been identified for λv̂

t,1 and λv̂
t,2, respectively, in the first iteration. Hence (17) can be written as∑

t:J=tail1(t)

λv̂
t,1+

∑
t:J=tail2(t)

λv̂
t,2 ≤ βJ + η+

∑
t:J=head(t)

(Mt,1+Mt,2). (19)

Thus Mt,1 for tail1(t) ∈ J2 and Mt,2 for tail2(t) ∈ J2 can be obtained from the right-hand side
of (19). We can repeat the above for Jk := {J ∈ N||J | = k}, 3 ≤ k ≤ n, by considering sets of
increasing cardinality to determine all the bounds Mt,j for j = 1,2. ■

4.2. Best Bound MIP
Let V denote the set of vectors v in B|T | composing a feasible solution to (4), and let Vk := {v|v ∈
V ,∥v∥1 ≤ k} be the collection of proper triple sets containing at most k elements. We consider
the following bilevel formulation to identify an element of Vk that yields the best LP relaxation
bound.

max
v∈Vk

min
y∈[0,1]|N|

m∑
i=1

αiyJi (20a)

s.t. Byt ≤ b+ cvt ∀ t= (J,J ′, J ′′)∈ T (20b)

Variables y and v are defined over N and T , respectively, as in (7). Furthermore, we use yt to
denote the collection of variables (yJ , yJ ′ , yJ ′′), where t= (J,J ′, J ′′). Finally, we use strong duality
to cast (20) as a single-level maximization MIP.

THEOREM 4. The max-min problem in (20) is equivalent to the following MIP:

max
v∈VK ,λ∈R|T |,µ∈R|N|

−
∑
t∈T

λt,3−
∑
J∈N

µJ (21)

s.t. (8b)− (8c) (22)
λt,j ≤Mt,jvt t∈ T , j = 1,2,3. (23)

17

Proof: First, we show that (20) can be cast as the following single-level problem:

max
v∈Vk,λ∈R|T |,µ∈R|N|

−
∑
t∈T

(bTλt + cTλtvt)−
∑
J∈N

µJ (24a)

s.t. (8b)− (8c) (24b)

From Lemma 2 we have that the inner minimization problem in (20), given by (7), attains a finite
optimal value for any v. By strong duality of LP, the optimal objective value of the inner mini-
mization problem equals the optimal objective value of the dual (8). Substituting (7) by (8) and
noting that maxv∈Vk

and maxλ,µ can be combined into a single level proves the claim. Formu-
lation (24) has linear constraints but a bilinear objective, since vt multiplies cTλt. By Lemma 4,
the optimal solution to (8) satisfies λv

t = 0 for each t such that vt = 0. Lemmas 5 and 6 provide
upper bounds on the optimal multipliers (λv̂,µv̂). Hence, the constraints (23) are valid. Finally,
the simplification of the objective function follows from (14). ■

5. Computational results
This section presents the results of a numerical study conducted to demonstrate the benefits of the
minimum-size and best-bound linearization strategies introduced in §3.2 and §4.2. We denote by
MinLin the minimum-size linearization derived from the MIP (4) with inequalities (5) and (6).
Similarly, we use BB to denote the best-bound linearization obtained from the solution of the MIP
presented in Theorem 4.

We start in §5.1 by describing the test set. In §5.2 and §5.3, we compare different linearization
strategies in terms of the number of variables and the bounds of the resulting LP relaxations. Then,
in §5.4 and §5.5, we compare MinLin and BB with the algorithms EV-MinLin and EV-BB,
proposed by Elloumi and Verchère (2023) for identifying minimum-size and best-bound lineariza-
tions, respectively. Finally, in §5.6, we use different linearizations to reformulate the MLPs of our
test set as QCPs, which we then solve with the global solver GUROBI (Gurobi Optimization, LLC
(2022)). This approach is compared with a different strategy where we directly solve the original
MLPs with the global solver BARON (Khajavirad and Sahinidis (2018)).

Our code was implemented in Python 3.10. We use Pyomo as modeling language (Hart et al.
(2017)) and run our experiments on an Apple M1 Pro with 10 cores and 32 GB of RAM. We use
GUROBI 11.0.2 to solve all the MIPs and QCPs of our experiments. To solve the MLPs, we use
BARON 24.5.8, with CPLEX 22.1.1 (Cplex (2022)) as an LP subsolver. We use default settings for
all solvers. The time spent with the construction of the models is excluded from all experiments.
For the comparisons with EV-MinLin and EV-BB, we use the original Julia implementations of
these algorithms, which were kindly provided by the authors. Our data and code are available on
GitHub (Cardonha et al. (2024)).

We use plots with performance profiles to report the computational performance of the algo-
rithms. These plots are divided into two parts. On the left, we report the number of instances solved
to optimality (in the y-axis) within the amount of time indicated in the x-axis; the largest value of x
is the time limit. On the right, we indicate the number of instances for which the solver obtained
an optimality gap inferior to the value indicated in the x-axis within the time limit. Whenever
applicable, we omit and scale parts of the plots to make performance differences more clear. We
draw a horizontal line indicating the total number of instances in situations where no algorithm
obtains non-trivial bounds for all instances. We occasionally omit from our plots trivial instances,

18

i.e., instances that can be solved by all algorithms in less than one second. When we solve MIPs,
QCPs or MLPs to global optimality, we calculate the optimality gaps as

Optimality Gap =

(
|fub− flb|
|fub|+10−9

)
× 100.

where fub and flb respectively denote the best upper and lower bounds obtained within the time
limit.

5.1. Test set
In the following, we describe the three families of instances considered in our experiments.

Multilinear Optimization Problems: This collection consists of 330 unconstrained multilinear
problems with continuous variables, with Ω= [0,1]n. We created these instances by following the
procedure that Del Pia et al. (2020) used to generate their random instances. Namely, for each
combination of n ∈ {20,25,30,35,40} and m ∈ {50,60, . . . ,150}, we generated three instances
in which all monomials have degree 3 and three instances in which all monomials have degree 4.
The variables of each monomial were chosen independently and uniformly at random. The coef-
ficients of each monomial are integer values chosen from a uniform distribution defined over the
interval [−100,100]. The resulting collection contains 165 instances of degree 3 and 165 instances
of degree 4, which we respectively denote by mult3 and mult4.

Vision Instances: The vision instances represent an image restoration problem in which
the objective function is given by f(x) = L(x) + H(x), where L(x) is an affine function and
H(x) a multilinear function of degree four. In this case, all variables are binary. For our experi-
ments, we used the 45 instances generated by Crama and Rodrı́guez-Heck (2017), for which n ∈
{100,150,225}. The instances of a given size share the same multilinear function H(x), i.e., they
only differ in the coefficients of L(x).

Auto-correlation Instances: The autocorr instances also have 0-1 variables and were
extracted from POLIP, a library of polynomially-constrained mixed-integer programming prob-
lems (http://polip.zib.de). We consider 33 instances with n ∈ {20,25,30,35,40,45,50}
in our experiments.

5.2. Linearization size
For each instance of the test set, we constructed 3 different RMLs by using the linearization strate-
gies Seq, Greedy and MinLin.We solved the MIPs associated with MinLin by setting a time
limit of 60 seconds. We then calculated the reduction in the size of the RMLs identified by Greedy
and MinLin in comparison with the RMLs produced by Seq. The results are presented in Fig-
ure 6. For each plot, the x-axis shows the proportion of instances achieving a relative percentual
reduction in the size of the RML that is at least as large as the value indicated in the y-axis. The fig-
ure shows thatMinLin and Greedy identify smaller RMLs than Seq for the mult3 and mult4
instances. For the vision instances, Seq delivers minimum linearizations (so MinLin yields no
gains), and Greedy uses approximately 15% more variables on average (see Example 4). Every
sequential linearization is optimal for the autocorr instances, and, as a result, all algorithms
provide RMLs of the same size. In terms of relative performance, the linearizations identified
by MinLin are always at least as small as the ones produced by Greedy; moreover, MinLin is
strictly better in more than 80% of the cases.

19

(a) 165 mult3 instances. (b) 165 mult4 instances.
Figure 6 Reduction in the linearization size in comparison with the linearization strategy Seq.

5.3. LP bounds
Next, we compare the LP bounds given by the RMLs constructed with the linearization strate-
gies Seq, Greedy, MinLin, and BB. We use as baseline All, which is the RML containing
McCormick inequalities for all possible triples and delivering the strongest LP bound among
all RMLs. For this comparison, we calculate the root-node gap of a given linearization algorithm
Alg as

Root-node GapAlg =
(

fAll− fAlg
max(|fAll|,10−3)

)
× 100 (25)

where fAll and fAlg denote the bounds of the LP relaxations constructed by algorithms All and
Alg, respectively. For MinLin, we use the best linearization identified within 30 seconds, provid-
ing the linearization of Greedy as warm start. For BB, we also run the algorithm for 30 seconds,
using the size of the RML T identified by MinLin as parameter and T as warm start. For some
instances, the MIPs built by BB are computationally challenging; in particular, if BB can only iden-
tify a suboptimal RML within 30 seconds, its LP bound may be weaker than the LP bounds of
the RMLs identified by other algorithms.

The results are presented in Figure 7. For each plot, the x-axis indicates the proportion of
instances for which the relative gap is less than or equal to the value indicated by the y-axis. The
relative performances of the algorithms on the mult3 and mult4 instances are similar; Seq is
the worst, BB is the best, and Greedy is slightly superior to MinLin. Greedy consistently deliv-
ers poor relaxation bounds for the vision instances. Figure 7d shows that small RMLs may not
deliver strong bounds; in these cases, Greedy and MinLin are outperformed by Seq. Finally,
BB consistently delivers tighter relaxation bounds than the other linearizations.

5.4. Comparison of MinLin and EV-MinLin
For every instance in the test set, we compare the performance of the MIP formulations used by the
linearization strategies MinLin and EV-MinLin. To this end, we solved the MIPs constructed
by these algorithms with a time limit of 60 seconds. The results are shown in Figure 8. This figure
does not contain any performance profiles for the mult3 and vision instances because both
algorithms solved the MIPs corresponding to these instances within 0.1 seconds. Moreover, for
mult4, we eliminated 111 instances which can be solved trivially by both algorithms.

As seen in Figure 8, the differences in performance between MinLin and EV-MinLin are
minor for the autocorr instances. More significant differences are observed for the mult4

20

(a) 165 mult3 instances. (b) 165 mult4 instances.

(c) 45 vision instances. (d) 33 autocorr instances.
Figure 7 Root-node relaxation gaps for different linearization strategies.

(a) 54 nontrivial mult4 instances. (b) 33 autocorr instances.
Figure 8 Performance profiles comparing the minimum-linearization MIPs built by MinLin and EV-MinLin.

instances, which are more challenging and, in some cases, cannot be solved to optimality within
the time limit. For these instances, MinLin has a clear advantage, with more instances solved to
optimality and better optimality gaps. In particular, EV-MinLin fails to obtain non-trivial bounds
for 24 instances, whereas MinLin obtains gaps inferior to 10% for all instances.

5.5. Comparison of BB and EV-BB
Now, we compare the performance of the MIP formulations used by the linearization strategies
EV-BB and BB. To this end, we set the size of the RMLs identified in the previous experiments as
the upper bound for the number of linearization variables used by EV-BB and BB. Since the orig-

21

inal implementation of EV-BB does not consider this upper bound, we modified the code accord-
ingly to make EV-BB and BB comparable. We solve the MIPs with a time limit of 10 minutes.
Figure 9 presents the results of these experiments. We exclude the results of 10 mult4 instances
for which MinLin and EV-MinLin obtain RMLs of different sizes. We also exclude 28 mult4
instances for which the best-bound linearization MIPs built by BB and EV-BB are solved within
one second.

(a) 165 mult3 instances. (b) 127 nontrivial mult4 instances.

(c) 45 vision instances. (d) 32 autocorr instances.
Figure 9 Performance profiles comparing the best-bound linearization MIPs built by BB and EV-BB.

As Figure 9 indicates, the relative performance of BB and EV-BB depends on the instance. Both
algorithms perform similarly for the mult3 instances. For the autocorr instances, more of the
EV-BB MIPs are solved to optimality, whereas BB is better on mult4 and vision instances.
Moreover, for the harder autocorr instances, the MIPs constructed by BB lead to smaller gaps.

5.6. Solution of the QCP and MLP formulations with global optimization solvers
In this section, we reformulate the MLPs of the test set as QCPs, by using the linearization strate-
gies Seq, Greedy, MinLin, and BB. We then solve the resulting QCPs with GUROBI. We
respectively denote these solution approaches as GUROBI-QCP-Seq, GUROBI-QCP-Greedy,
GUROBI-QCP-MinLin and GUROBI-QCP-BB. We compare these solution approaches with
another one which involves solving the MLPs directly with BARON; this approach is denoted
by BARON-MLP. We decided to use these two solvers because GUROBI is regarded as a state-
of-the-art global solver for nonconvex QCPs, whereas BARON is considered to be one of the
most advanced global solvers for MLPs. As indicated by Achterberg and Towle (2020), the relax-
ations that GUROBI builds for nonconvex QCPs are enhanced by adding RLT cuts (Sherali and

22

Alameddine (1992)), SDP cuts (Sherali and Fraticelli (2002)), and facets from the Boolean Quadric
Polytope (Padberg (1989)). On the other hand, the polyhedral relaxations that BARON constructs
for MLPs are significantly tightened with the addition of multilinear cuts and running intersection
inequalities (Del Pia et al. (2020)). The multilinear cuts correspond to facets of the convex and
concave envelopes of the multilinear functions contained in the MLP. These facets can be obtained
by solving an LP separation problem, whose size grows exponentially with the number of variables
in the multilinear function. To manage the size of this separation problem, BARON uses a clever
decomposition approach, which divides a multilinear function into lower-dimensional multilinear
functions. This is coupled with a customized simplex algorithm, which efficiently solves the sepa-
ration problem (Bao et al. (2015)). The running intersection inequalities are valid inequalities for
the multilinear polytope and, under certain conditions, are facet-defining (Del Pia and Khajavi-
rad (2021)). BARON generates these inequalities using a specialized polynomial-time separation
algorithm (Del Pia et al. (2020)).

In our experiments with GUROBI and BARON, we use a time limit of 10 minutes.
GUROBI-QCP-Seq, GUROBI-QCP-Greedy, and BARON-MLP do not need pre-processing
steps. For GUROBI-QCP-MinLin, we retrieve the smallest RML T identified by MinLin
within 30 seconds, using the Greedy RML as warm start. For GUROBI-QCP-BB, we obtain
another RML T’ by executing BB for 30 seconds, using T as warm start and |T | as an upper bound
on the number of linearization variables used by BB. For GUROBI-QCP-BB, we set the time
limit to 10 minutes minus the time spent by MinLin and BB. For GUROBI-QCP-MinLin, we
only deduct the time spent for the identification of T . Figure 10 shows the results of these experi-
ments. For this comparison, we excluded 123 mult3 instances, 22 mult4 instances, 4 vision
instances, and 1 autocorr instance solved by all algorithms within one second.

As seen in Figure 10, the mult3 and vision instances can be considered easy since all algo-
rithms solve them to optimality within one minute. We observe that, for some instances, the identi-
fication of high-quality RMLs becomes a bottleneck; this is particularly apparent when we observe
the performance of GUROBI-QCP-BB on the vision instances. Therefore, in these cases, QCPs
derived from simpler linearization strategies (i.e., those without a significant pre-processing over-
head) produce better results.

The results for the mult4 instances show that the overhead of computing linearizations is
worth it for harder instances. GUROBI-QCP-MinLin and GUROBI-QCP-BB solve all mult4
instances within 3 minutes, whereas GUROBI-QCP-Seq and GUROBI-QCP-Greedy need
much more time to close the gap for all instances. BARON-MLP times out for some of the mult4
instances. The autocorr instances are very challenging, so essentially all QCP-based algorithms
have similar performance. BARON-MLP performs well on some of the easy autocorr instances,
but it struggles to close the gap for harder ones. The QCP-based approaches close the gap for more
autocorr instances than BARON-MLP.

Next, Figure 11 presents scatter plots comparing GUROBI-QCP-MinLin and
GUROBI-QCP-BB with BARON-MLP. We created this figure by considering all 408 instances
from test set, and by filtering out trivial instances which can be solved by all algorithms within
1 second. After filtering out such trivial instances, we obtained a collection consisting of 258
instances.

As Figure 11 indicates, BARON-MLP outperforms GUROBI-QCP-MinLin and
GUROBI-QCP-BB for many easy instances. This shows that the overhead of computing lineariza-
tions is significant in these cases. By contrast, GUROBI-QCP-MinLin and GUROBI-QCP-BB
are clearly faster than BARON-MLP for hard instances. In particular, for some of the hard instances
for which BARON-MLP times out, GUROBI-QCP-MinLin and GUROBI-QCP-BB can be at
least 6 times faster.

23

(a) 42 nontrivial mult3 instances. (b) 143 nontrivial mult4 instances.

(c) 41 nontrivial vision instances. (d) 32 nontrivial autocorr instances.
Figure 10 Comparison between global optimization solvers. The QCPs solved by GUROBI are obtained by

using different RMLs to reformulate the MLPs . BARON is used to directly solve the MLPs.

Figure 11 Comparison between GUROBI-QCP-MinLin (left) and GUROBI-QCP-BB (right) with BARON-MLP for
258 nontrivial instances.

6. Conclusions
This work presents a systematic investigation of linearization techniques for multilinear programs
based on Recursive McCormick Linearizations. We design algorithms to identify optimal lineariza-
tions using two criteria: the total number of introduced variables and the strength of the LP relax-
ation bound. We show that the identification of a minimum-size linearization is NP-hard, and that a
greedy approach to the problem can deliver arbitrarily bad results. As a result, we present an exact

24

algorithm. We also explore structural properties of the problem to derive a MIP formulation that
identifies a linearization of bounded cardinality delivering the best relaxation bound.

We compared our minimum-size and best-bound linearization strategies, MinLin and BB, with
those introduced by Elloumi and Verchère (2023) (EV-MinLin and EV-BB). In our experiments,
we see that MinLin is slightly better than EV-MinLin. Similarly, we observe that, for hard
instances, BB outperforms EV-BB. This is explained by the fact that BB decomposes linearizations
by bilinear terms, whereas EV-BB uses integrated representations of linearizations. Consequently,
EV-BB is slightly better on easier instances, whereas BB obtains better bounds for harder instances.
Finally, our representation of RMLs make MinLin and BB more scalable than EV-MinLin and
EV-BB, respectively, in the degree of the MLPs.

Our experiments also show that, using our linearization strategies to reformulate difficult MLP
instances as QCPs, and solving the resulting QCPs with GUROBI can be a much better option than
directly solving the original MLPs with BARON. In these cases, our linearization strategies allow
us to obtain QCP reformulations which can be significantly smaller than the QCP reformulations
derived from heuristic or greedy linearization approaches. In this process, we take advantage of
all the improvements that have been made in recent years to GUROBI’s QCP solver. By contrast,
for many easy MLP instances, directly solving the original problem with BARON leads to the best
results.

References
Tobias Achterberg and Eli Towle. Non-Convex Quadratic Optimization Webinar, 2020. URL https://www.

gurobi.com/events/non-convex-quadratic-optimization/.

M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems.
Mathematical Programming, 162:115–144, 2017.

Martin Anthony, Endre Boros, Yves Crama, and Aritanan Gruber. Quadratization of symmetric pseudo-boolean func-
tions. Discrete Applied Mathematics, 203:1–12, 2016.

Xiaowei Bao, Nikolaos V. Sahinidis, and Mohit Tawarmalani. Multiterm polyhedral relaxations for nonconvex,
quadratically constrained quadratic programs. Optimization Methods and Software, 24(4-5):485–504, 2009.

Xiaowei Bao, Aida Khajavirad, Nikolaos V Sahinidis, and Mohit Tawarmalani. Global optimization of nonconvex
problems with multilinear intermediates. Mathematical Programming Computation, 7(1):1–37, 2015.

Jakob Bernasconi. Low autocorrelation binary sequences: Statistical mechanics and configuration space analysis.
Journal de Physique, 48(4):559–567, 1987.

Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics, 123(1-3):155–225,
2002.

Endre Boros, Peter L Hammer, Michel Minoux, and David J Rader Jr. Optimal cell flipping to minimize channel
density in VLSI design and pseudo-boolean optimization. Discrete Applied Mathematics, 90(1-3):69–88, 1999.

Endre Boros, Yves Crama, and Elisabeth Rodrı́guez-Heck. Compact quadratizations for pseudo-boolean functions.
Journal of combinatorial optimization, 39:687–707, 2020.

Christoph Buchheim and Giovanni Rinaldi. Efficient reduction of polynomial zero-one optimization to the quadratic
case. SIAM Journal on Optimization, 18(4):1398–1413, 2008.

Jonathan F Buss and Judy Goldsmith. Nondeterminism within P∗. SIAM Journal on Computing, 22(3):560–572, 1993.

Carlos Cardonha, Arvind U. Raghunathan, David Bergman, and Carlos J. Nohra. Recursive McCormick lineariza-
tion of multilinear programs. 2024. doi: 10.1287/ijoc.2023.0390.cd. URL https://github.com/
INFORMSJoC/2023.0390. Available for download at https://github.com/INFORMSJoC/2023.0390.

IBM ILOG Cplex. V22.1.1: User’s Manual for CPLEX. International Business Machines Corporation, 2022.

Y. Crama and E. Rodrı́guez-Heck. A class of valid inequalities for multilinear 0–1 optimization problems. Discrete
Optimization, 25:28–47, 2017.

25

Yves Crama, Sourour Elloumi, Amélie Lambert, and Elisabeth Rodriguez-Heck. Quadratization and convexifi-
cation in polynomial binary optimization. HAL Open Science, 2022. URL https://hal.science/
hal-03795395.

Evrim Dalkiran and Laleh Ghalami. On linear programming relaxations for solving polynomial programming prob-
lems. Computers & Operations Research, 99:67–77, 2018.

Evrim Dalkiran and Hanif D Sherali. RLT-POS: Reformulation-Linearization Technique-based optimization software
for solving polynomial programming problems. Mathematical Programming Computation, 8(3):337–375, 2016.

A. Del Pia and A. Khajavirad. The running intersection relaxation of the multilinear polytope. Mathematics of
Operations Research, 46((3):1008–1037, 2021.

Alberto Del Pia, Aida Khajavirad, and Nikolaos V Sahinidis. On the impact of running intersection inequalities for
globally solving polynomial optimization problems. Mathematical programming computation, 12(2):165–191,
2020.

Sourour Elloumi and Zoé Verchère. Efficient linear reformulations for binary polynomial optimization problems.
Computers & Operations Research, 155:106240, 2023.

Sourour Elloumi, Amélie Lambert, and Arnaud Lazare. Solving unconstrained 0-1 polynomial programs through
quadratic convex reformulation. Journal of Global Optimization, 80(2):231–248, 2021.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San Francisco, 1979.

Fred Glover and Eugene Woolsey. Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program.
Operations Research, 22(1):180–182, 1974.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.gurobi.com.

William E Hart, Carl D Laird, Jean-Paul Watson, David L Woodruff, Gabriel A Hackebeil, Bethany L Nicholson,
John D Siirola, et al. Pyomo-optimization modeling in python, volume 67. Springer, 2017.

KRAR Jakob and Peter Mark Pruzan. The simple plant location problem: Survey and synthesis. European Journal of
Operational Research, 12(36-81):41, 1983.

Tanuj Karia, Claire S Adjiman, and Benoı̂t Chachuat. Assessment of a two-step approach for global optimization of
mixed-integer polynomial programs using quadratic reformulation. Computers & Chemical Engineering, 165:
107909, 2022.

Aida Khajavirad. On the strength of recursive McCormick relaxations for binary polynomial optimization. Operations
Research Letters, 51:146–152, 2023.

Aida Khajavirad and Nikolaos V Sahinidis. A hybrid LP/NLP paradigm for global optimization relaxations. Mathe-
matical Programming Computation, 10(3):383–421, 2018.

Mustafa R Kılınç and Nikolaos V Sahinidis. Exploiting integrality in the global optimization of mixed-integer nonlin-
ear programming problems with BARON. Optimization Methods and Software, 33(3):540–562, 2018.

JONGEUN Kim, JEAN-PHILIPPE P Richard, and MOHIT Tawarmalani. Piecewise polyhedral relaxations of multi-
linear optimization. Optimization Online, 2022.

Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on optimization,
11(3):796–817, 2001.

Garth P. McCormick. Computability of Global Solutions to Factorable Nonconvex Programs: Part I – Convex Under-
estimating Problems. Mathematical Programming, 10(1):147–175, dec 1976.

Ruth Misener, James B Smadbeck, and Christodoulos A Floudas. Dynamically generated cutting planes for mixed-
integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optimization
Methods and Software, 30(1):215–249, 2015.

Manfred Padberg. The boolean quadric polytope: Some characteristics, facets and relatives. Mathematical program-
ming, 45:139–172, 1989.

Elisabeth Rodrı́guez-Heck. Linear and quadratic reformulations of nonlinear optimization problems in binary vari-
ables. Doctoral dissertation, Université de Liège, 2018.

H. S. Ryoo and N. V. Sahinidis. Analysis of bounds for multilinear functions. J. Glob. Optim., 19:403–424, 2001.

26

Hanif D Sherali and Amine Alameddine. A new reformulation-linearization technique for bilinear programming
problems. Journal of Global optimization, 2:379–410, 1992.

Hanif D Sherali and Barbara MP Fraticelli. Enhancing RLT relaxations via a new class of semidefinite cuts. Journal
of Global Optimization, 22:233–261, 2002.

Hanif D Sherali and Hongjie Wang. Global optimization of nonconvex factorable programming problems. Mathemat-
ical Programming, 89:459–478, 2001.

Kaarthik Sundar, Harsha Nagarajan, Jeff Linderoth, Site Wang, and Russell Bent. Piecewise polyhedral formulations
for a multilinear term. Operations Research Letters, 49(1):144–149, 2021.

Mohit Tawarmalani and Nikolaos V Sahinidis. Global optimization of mixed-integer nonlinear programs: A theoretical
and computational study. Mathematical programming, 99(3):563–591, 2004.

Amit Verma and Mark Lewis. Optimal quadratic reformulations of fourth degree pseudo-boolean functions. Opti-
mization Letters, 14:1557–1569, 2020.

Keith Zorn and Nikolaos V Sahinidis. Global optimization of general nonconvex problems with intermediate polyno-
mial substructures. Journal of Global Optimization, 59:673–693, 2014.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2025-098.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

