
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

pycvxset: A Python package for convex set manipulation
Vinod, Abraham P.

TR2025-086 June 21, 2025

Abstract
This paper introduces pycvxset, a new Python package to manipulate and visualize con-
vex sets. We support polytopes and ellipsoids, and provide user-friendly methods to per-
form a variety of set operations. For polytopes, pycvxset supports the standard halfs-
pace/vertex representation as well as the constrained zonotope representation. The main
advantage of constrained zonotope representations over standard halfs- pace/vertex repre-
sentations is that constrained zonotopes admit closed-form expressions for several set oper-
ations. pycvxset uses CVXPY to solve various convex programs arising in set operations,
and uses pycddlib to perform vertex-halfspace enu- meration. We demonstrate the use of
pycvxset in analyzing and controlling dynamical systems in Python. pycvxset is available at
https://github.com/merlresearch/pycvxset under the AGPL- 3.0-or-later license, along with
documentation and examples.

American Control Conference (ACC) 2025

c© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

pycvxset: A Python package for convex set manipulation

Abraham P. Vinod

Abstract— This paper introduces pycvxset, a new Python
package to manipulate and visualize convex sets. We support
polytopes and ellipsoids, and provide user-friendly methods to
perform a variety of set operations. For polytopes, pycvxset
supports the standard halfspace/vertex representation as well as
the constrained zonotope representation. The main advantage
of constrained zonotope representations over standard halfs-
pace/vertex representations is that constrained zonotopes admit
closed-form expressions for several set operations. pycvxset
uses CVXPY to solve various convex programs arising in set
operations, and uses pycddlib to perform vertex-halfspace enu-
meration. We demonstrate the use of pycvxset in analyzing and
controlling dynamical systems in Python. pycvxset is available
at https://github.com/merlresearch/pycvxset under the AGPL-
3.0-or-later license, along with documentation and examples.

I. INTRODUCTION

Set-based methods provide a formal framework to analyze
and control dynamical systems. Such methods are often used
in set propagation and reachability analysis where the goal is
to characterize system states and controllers with desirable
properties [1]–[4]. For example, in spacecraft rendezvous,
set-based methods may be used to define a range of accept-
able positions and velocities along the nominal spacecraft
trajectory to guarantee safe abort [5]–[7]. See [1], [3], [8]–
[10] for other applications of set-based control methods.

For linear systems, set-based methods yield practical im-
plementations using efficient set representations like ellip-
soids and polytopes. However, several set operations are not
closed in ellipsoids [11], and certain set operations in the
standard vertex/halfspace representation of polytopes require
computationally expensive vertex-halfspace enumeration [3].
Recently, constrained zonotopes have been proposed for
performing exact set operations on polytopes, since 1) they
provide an equivalent representation of polytopes, and 2) they
admit closed-form expressions for most operations [6]–[10].

Several open-source software toolboxes implement some
or all of these set representations and their operations
in various languages [11]–[18]. Together, these toolboxes
have been instrumental in improving the access to set-
based methods for reachability and trajectory optimization
for the broader dynamical systems and control commu-
nity. Compared to MATLAB tools [11], [16]–[18], existing
tools in Python [12]–[15] focus mainly on halfspace/vertex-
representation for polytopes and ignore other useful set
representations like constrained zonotope and ellipsoids.

This paper introduces pycvxset, a Python package to
manipulate and visualize convex sets. With pycvxset, we

A. P. Vinod is with Mitsubishi Electric Research Laboratories, Cam-
bridge, MA 02139, USA. Email: abraham.p.vinod@ieee.org.

hope to bring the recent progress made in set representa-
tions especially constrained zonotopes [6]–[9] to Python.
pycvxset extends pytope [13] to include ellipsoidal
and constrained zonotopic set representations, broadens
the capabilities of Polytope class including 3D plot-
ting, and integrates with CVXPY for use in constrained
control. pycvxset is extensively tested and documented
for reliability and ease of use. See the project website
https://merlresearch.github.io/pycvxset/ for more details.

II. SET REPRESENTATIONS AND OPERATIONS

A. Set representations

We consider three equivalent polytope representations:

P(V) =

{
x ∈ Rn

∣∣∣∣∣ ∃θ ∈ RN , x = V ⊤θ

1⊤θ = 1, θ ≥ 0

}
, (1)

P(A, b,Ae, be) = {x ∈ Rn | Ax ≤ b, Aex = be}, (2)

P(G, c,Ae, be) =

{
x ∈ Rn

∣∣∣∣∣ ∃ξ ∈ RN , x = Gξ + c,

∥ξ∥∞ ≤ 1, Aex = be

}
, (3)

with appropriate dimensions for V,A, b, Ae, be, G, c. Two
set representations are said to be equivalent when the sets
they represent contain each other. Here, (1) is the vertex
representation (V-rep), (2) is the halfspace representation
(H-rep), and (3) is the constrained zonotopic representation
of a polytope. While the equivalence of (1) and (2) is
well-known [3], their equivalence to a constrained zonotope
representation was recently established in [8, Thm. 1]. The
following sets are special cases of polytopes:

R(l, u) = {x ∈ Rn | l ≤ x ≤ u}, (4)

R(c, h) = {x ∈ Rn | ∀i ∈ {1, 2, . . . , n}, |xi − ci| ≤ hi}, (5)

Z(G, c) = {x ∈ Rn | ∃ξ ∈ RN , x = Gξ + c, ∥ξ∥∞ ≤ 1}, (6)

for finite vectors l, u, c, h ∈ Rn and appropriately dimen-
sioned matrix G. Here, (4) and (5) represent axis-aligned
rectangles, and (6) represents zonotopes. Throughout this
paper, we refer to sets represented in the form of (1) and
(2) as polytopes and those in the form of (3) as constrained
zonotopes, even though they all represent the same set [8].
We refer to unbounded sets of the form (2) as polyhedra.

Finally, we consider bounded ellipsoidal sets E (7)–(9):

E(Q, c) = {x ∈ Rn | (x− c)⊤Q−1(x− c) ≤ 1}, (7)

E(G, c) = {x ∈ Rn | ∃ξ ∈ RNE , x = Gξ + c, ∥ξ∥2 ≤ 1}, (8)

B(c, r) = {x ∈ Rn | ∥x− c∥2 ≤ r}. (9)

Any bounded, full-dimensional ellipsoid admits either of the
representations — (7) with a positive definite matrix Q ∈
Rn×n and (8) with G ∈ Rn×NE that has full-row rank [19].

https://github.com/merlresearch/pycvxset
https://merlresearch.github.io/pycvxset/

Here, (7) and (8) satisfy GG⊤ = Q. A bounded ellipsoid that
is not full-dimensional may be represented using (8) with G
that has linearly dependent rows, and (9) represents a ball
with radius r.

B. Set operations

For any sets T ,S ⊆ Rn and W ⊆ Rm, and a matrix
R ∈ Rm×n, we define the set operations (affine map,
Minkowski sum ⊕, intersection with inverse affine map ∩R,
and Pontryagin difference ⊖) as follows:

RT ≜ {Ru : u ∈ T }, (10a)

T ⊕ S ≜ {u+ v : u ∈ T , v ∈ S}, (10b)

T ∩R W ≜ {u ∈ T : Ru ∈ W}, (10c)

T ⊖ S ≜ {u : ∀v ∈ S, u+ v ∈ T }. (10d)

Since T ∩ S = T ∩In S, (10c) also includes the standard
intersection. For any x ∈ Rn, we use T + x and T − x to
denote T ⊕{x} and T ⊕{−x} respectively for brevity. (10)
also subsumes other set operations like orthogonal projection
and inverse affine transformation (see Table I), and slicing
(an intersection with an axis-aligned affine set).

The key advantage of constrained zonotopes over poly-
topes is that they admit closed form expressions for all
set operations listed in (10) (except Pontryagin difference
(10d)) [8], [9]. Recently, the authors have proposed a
closed-form expression to inner-approximate the Pontryagin
difference (10d) [6]. In contrast, polytopes must contend
with computationally expensive vertex-halfspace enumera-
tion when certain set operations are performed on a polytope
in vertex/halfspace representation.

III. THE PYCVXSET PACKAGE

pycvxset provides three classes for representing convex
sets (1)–(9): Polytope, ConstrainedZonotope, and
Ellipsoid. pycvxset only supports bounded sets. In
this section, we briefly discuss how to define, manipulate,
and visualize these sets in Python using pycvxset.

A. Set definitions

1) Polytope: We define a polytope using the Polytope
class in the following ways:
1) specifying (V) to define a polytope in V-rep (1),
2) specifying (A, b) or (A, b,Ae, be) to define a polytope in
H-rep (2), and
3) specifying rectangles (l, u) (see (4)) or (c, h) (see (5)). We
also provide methods to convert a polytope from V-rep (1)
to H-rep (2) and vice versa using pycddlib and scipy.

The following code snippet creates a polytope in V-rep
and 3-dimensional simplex in H-rep, prints the description
of the polytope along with its vertices.

1 import numpy as np
2 from pycvxset import Polytope
3
4 V = [[-1, 0.5],[-1,1],[1,1],[1,-1],[0.5,-1]]
5 P1 = Polytope(V=V)
6 print("P1 is a", repr(P1))
7 A, b = -np.eye(3), np.zeros((3,))
8 Ae, be = [1, 1, 1], 1

9 P2 = Polytope(A=A, b=b, Ae=Ae, be=be)
10 print("P2 is a", P2)
11 print("Vertices of P2 are:\n", P2.V)
12 print("P2 is a", P2)

The above code snippet produces the following output:

P1 is a Polytope in Rˆ2 in only V-rep
In V-rep: 5 vertices

P2 is a Polytope in Rˆ3 in only H-rep
Vertices of P2 are:
[[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]]
P2 is a Polytope in Rˆ3 in H-rep and V-rep

pycvxset supports exact conversion between (1) and (2)
using pycddlib. For example, the call P2.V in Line 11
triggers a vertex enumeration internally as seen from the
print statements for P2.

2) Constrained zonotope: We define a constrained zono-
tope (3) using the ConstrainedZonotope class in the
following ways:
1) specifying a Polytope object as in (1) or (2),
2) specifying (c,G,Ae, be) as given in (3),
3) specifying rectangles (l, u) (4) or (c, h) (5), and
4) specifying (c,G) as given in (6) to define a zonotope.
We use [8, Thm. 1] to define a constrained zonotope C
from P in (2). For P in (1), we first define a standard N -
dimensional simplex in H-rep (2), use [8, Thm. 1] to compute
the corresponding constrained zonotope, and then obtain C
using the polytope vertices V and (10a).

The following code snippet creates a constrained zonotope
from the polytope defined before as well as a box.

1 from pycvxset import ConstrainedZonotope
2
3 C1 = ConstrainedZonotope(polytope=P1)
4 print("C1 is a", repr(C1))
5 print("P1 is a", repr(P1))
6 C2 = ConstrainedZonotope(lb=[-1,-1], ub=[1,1])
7 print("C2 is a", repr(C2))

The above code snippet produces the following output:

C1 is a Constrained Zonotope in Rˆ2
with latent dimension 5 and 1 equality constraint

P1 is a Polytope in Rˆ2 in only V-Rep
In V-rep: 5 vertices

C2 is a Constrained Zonotope in Rˆ2
that is a zonotope with latent dimension 2

Note that pycvxset detects that C2 is a zonotope.
pycvxset provide methods to generate polytopic ap-

proximations of constrained zonotopes (see Section III-B).
Due to the computational effort involved [8], an exact
conversion from (3) to (1) or (2) is not currently supported.

3) Ellipsoid: We define an ellipsoid using the
Ellipsoid class in the following ways:
1) specifying (Q, c) as given in (7),
2) specifying (G, c) as given in (8), and
3) specifying (c, r) to define a ball (9).

pycvxset supports full-dimensional ellipsoids using (7)
or (8), and degenerate ellipsoids using (8). The following
code snippet creates two ellipsoids of the forms (7) and (8).

1 from pycvxset import Ellipsoid
2
3 E1 = Ellipsoid(c=[2,-1], Q=np.diag([1,4]))
4 print("E1 is an", E1)
5 E2 = Ellipsoid(c=[0,1,0], G=np.diag([1,2,3]))
6 print("E2 is an", E2)

The above code snippet produces the following output:
E1 is an Ellipsoid in Rˆ2
E2 is an Ellipsoid in Rˆ3

B. Visualizing polytopes and polytopic approximations

pycvxset can plot 2D and 3D polytopes using
matplotlib. We can also plot polytopic approximations
of constrained zonotopes and ellipsoids (see Fig. 1).

The following code snippet plots the sets in Fig. 1.

1 import matplotlib.pyplot as plt
2
3 plt.figure()
4 ax = plt.subplot(131, projection="3d")
5 P2.plot(ax=ax) # Plot polytope
6 ax.view_init(elev=30, azim=-15)
7 ax.set_aspect("equal")
8 ax.set_title("Polytope")
9 ax = plt.subplot(132) # Plot const. zonotope
10 C1.plot(ax=ax, vertex_args={"visible":True})
11 ax.set_aspect("equal")
12 ax.set_title("Constrained Zonotope")
13 ax = plt.subplot(133) # Plot ellipsoid
14 E1.plot(ax=ax,patch_args={"facecolor":"pink"})
15 ax.set_aspect("equal")
16 ax.set_title("Ellipsoid")
17 plt.subplots_adjust(wspace=0.5)

Fig. 1. Plotting various sets using pycvxset.

pycvxset provides flexibility in plotting either faces, ver-
tices, or both, and provides identical methods for plotting
irrespective of the set representation. By default, pycvxset
plots inner-approximations of constrained zonotopes and
ellipsoids, but outer-approximations may be plotted when
required. For brevity, we will omit plotting commands in
subsequent code snippets.

We compute polytopic (inner- and outer-) approximations
for n-dimensional ellipsoids and constrained zonotopes using
their support function and support vectors (see Table I).
pycvxset auto-generates well-separated 2n + 2nD di-
rection vectors for any D ∈ N by solving the following

Fig. 2. Well-separated vectors on a 3-dimensional unit sphere using (11).

optimization problem [20, Eq. (B.1)],

max. r

s. t. ∥xi − xj∥2 ≥ r, ∀1 ≤ i < j ≤ D,

∥xi − ej∥2 ≥ r, ∀1 ≤ i ≤ D, ∀1 ≤ j ≤ n,

2xi ≥ r, 0.8 ≤ ∥xi∥ ≤ 1, ∀1 ≤ i ≤ D.

(11)

Here, the decision variables are vectors xi ∈ Rn for
i ∈ {1, 2, . . . , D} and a scalar r, and ej denotes the
standard axis vector in Rn. (11) is a difference-of-convex
program that aims to spread points xi on the intersection
of a unit sphere and the positive quadrant Rn

≥0, which are
subsequently reflected the axis planes to yield the direction
vectors [20], [21]. (11) may be solved (approximately) via
the well-known convex-concave procedure [22], and the
approach is implemented in pycvxset as the method
spread points on a unit sphere. Fig. 2 shows the
result of (11) for n = 3 and D = 20.

C. Set operations

Table I lists the set operations supported for each class.
pycvxset provides identical methods for various set oper-
ations (when supported).

1) Involving another vector v and/or matrix M : For any
set X , we support affine transformation (M, v), inverse-
affine transformation with an invertible map M , projecting
a point v, checking if v ∈ X , and computing the support
function and vector of the set X along the direction v. We
require inverse-affine map to have an invertible M to ensure
that the pre-image of a bounded set under the affine map
M is also bounded. These operations either have closed-
form expressions (e.g., affine transformation of a constrained
zonotope [8] or support function of an ellipsoid [11]) or
require solving convex programs which we implement using
CVXPY (e.g., checking v ∈ X for a polytope X).

The following code computes the orthogonal projection on
P2 and the distance of a point x = [1, 1, 1] from P2 (Fig. 3).

1 projection, d = P2.project(x=[1, 1, 1], p=2)

Fig. 3. Projection of a point on a polytope

TABLE I
PYCVXSET SET OPERATIONS ON A SET X ⊂ Rn . HERE, ✓ INDICATES EXACT IMPLEMENTATION, † INDICATES EXACT IMPLEMENTATION POSSIBLE

AFTER CONVERTING POLYTOPE TO CONSTRAINEDZONOTOPE , AND ≈ INDICATES APPROXIMATE IMPLEMENTATION. ALL OPERATIONS FOR

CONSTRAINED ZONOTOPES AND ELLIPSOIDS MAY BE APPROXIMATED, IF DESIRED, USING APPROPRIATE POLYTOPIC APPROXIMATIONS.

Operation Expression Polytope
Constrained

Ellipsoid
zonotope

Set computations involving another vector v and/or matrix M

Affine transformation (M, v) for M ∈ Rm×n, v ∈ Rm MX + v ✓ ✓ ✓

Inverse-affine transformation M ∈ Rn×n, M is invertible {x | Mx ∈ X} ✓ ✓ ✓

Project a point v ∈ Rn on to X using ∥ · ∥p, p ∈ {1, 2,∞} argminx∈X ∥x− v∥p ✓ ✓ ✓

Containment of a point v ∈ Rn in X v ∈ X ✓ ✓ ✓

Support function along a direction v ∈ Rn supx∈X vT x ✓ ✓ ✓

Support vector along a direction v ∈ Rn arg supx∈X vT x ✓ ✓ ✓

Centering

Chebyshev ball supBall(x,r)⊆X r ✓ inner. ≈ ✓

Maximum volume inscribed ellipsoid supE(c,Q)⊆X Vol(E) ✓ inner. ≈ ✓

Minimum volume circumscribed ellipsoid infE(c,Q)⊇X Vol(E) ✓ ✓

Minimum volume circumscribed rectangle infRect(l,u)⊇X Vol(Rect) ✓ ✓ ✓

Other set-specific manipulations/computations

Interior point (Relative) Compute x ∈ X ✓ ✓ ✓

Orthogonal projection to Rm {x | ∃v ∈ Rn−m, [x; v] ∈ X} ✓ ✓ ✓

Volume Vol(X) ✓ ≈ (n = 2) ✓

Set computations involving another set Y (Y ⊂ Rn unless specified otherwise)

Intersection with a polytope Y

X ∩ Y

✓ ✓

Intersection with a polyhedron Y ✓ ✓

Intersection with a constrained zonotope Y † ✓

Intersection with Y ⊂ Rm under inverse affine map M ∈ Rm×n ✓ ✓

Intersection with an affine set Y (includes slice operation) ✓ ✓ ✓

Minkowski sum with a polytope Y
X ⊕ Y

✓ ✓

Minkowski sum with a constrained zonotope Y † ✓

Pontryagin difference with an ellipsoid Y
X ⊖ Y

✓ inner ≈
Pontryagin difference with a zonotope Y ✓ inner ≈
Pontryagin difference with a polytope Y ✓

Containment of a polytope Y
Y ⊆ X

✓ ✓ ✓

Containment of a constrained zonotope Y ✓ ✓

Containment of an ellipsoid Y ✓ ✓

2) Centering: Centering methods provide a succinct, ap-
proximate representation of complex sets in the form of
ellipsoids and rectangles [19, Ch. 8]. These methods solve
convex programs for polytopes in V-rep/H-rep, and are
available in closed-form for ellipsoids [11]. For constrained
zonotopes, we provide approximations [7].

Fig. 4 illustrates centering and bounding sets for the
polytope P1 and the constrained zonotope C1, where we ob-
tained identical Chebyshev ball, maximum volume inscribed
ellipsoids, and minimum volume circumscribed rectangles.

3) Other set-specific manipulations/computations: We
compute an interior point for each set using centering. For
polytopes, we can also compute its centroid. We compute the
orthogonal projection of a set using an appropriately defined
affine map. We compute the orthogonal projection of a 3-
dimensional unit ℓ1-norm ball in the following code snippet
(see Fig. 5). pycvxset counts dimensions from zero.

Fig. 4. Centering for a polytope P1 and a constrained zonotope C1.

1 V = np.vstack((np.eye(3), -np.eye(3)))
2 l1ball = Polytope(V=V)
3 ball2D=l1ball.projection(project_away_dims=2)

We compute the volume of a full-dimensional polytope
and an ellipsoid using scipy and closed-form expressions
respectively. We approximate the volume of a constrained
zonotope via grid-based sampling.

Fig. 5. Orthogonal projection of a unit ℓ1-norm ball (n = 3).

4) Involving another set Y: We provide exact implemen-
tations for intersection and Minkowski sum of polytopes and
constrained zonotopes among themselves, and for Pontryagin
difference of polytopes with any other sets [23]. The inter-
section and Minkowski sum of a constrained zonotope and
a polytope returns a constrained zonotope. The Pontryagin
difference of a constrained zonotope and an ellipsoid or a
zonotope is inner-approximated with a constrained zonotope
using least squares [6].

We implement an exact check for the containment of a
polytope Y within a set X (not necessarily a polytope) by
solving appropriate convex programs [19], where we check
for the containment of all the vertices of Y in the set X . We
also implement an exact check for the containment of a set
Y (not necessarily a polytope) within a polytope X using
the support function [19]. We implement an exact check for
the containment of an ellipsoid in another ellipsoid using
semi-definite programming [19].

To implement exact check for Y ⊆ X for two constrained
zonotopes X ,Y , we encode x ∈ Y ⇒ x ∈ X as a bilinear
program obtained using strong duality:

minimize 1 + α⊤(cY −GXξX − cX)− β⊤be,Y
subject to ∥ξX∥∞ ≤ 1,

Ae,Xξ = be,X ,

∥G⊤
Y α+A⊤

e,Y β∥
1
≤ 1.

(12)

with decision variables α ∈ Rn, β ∈ RMY , ξX ∈ RNX ,
and Y ⊆ X if and only if the optimal value of (12) is
non-negative. We solve (12) to optimality using CVXPY and
GUROBI, and can also check for containment of polytopes
within constrained zonotopes. These methods also enable
checking for equality between polytopes and constrained
zonotopes, as illustrated in the following code snippet.

1 print("C1 is a", C1)
2 print("P1 is a", P1)
3 print("Are C1 and P1 equal?", C1 == P1)
4 lb, ub, p, q = [-1, -1], [1, 1], [-1, -1], 0.5
5 P1a = Polytope(lb=lb, ub=ub).

intersection_with_halfspaces(A=p, b=q)
6 C1a = ConstrainedZonotope(lb=lb, ub=ub).

intersection_with_halfspaces(A=p, b=q)
7 print("C1a is a", C1a)
8 print("P1a is a", P1a)
9 print("Are P1 and P1a equal?", P1a == P1a)
10 print("Are C1 and C1a equal?", C1 == C1a)

The above code snippet produces the following output:

C1 is a Constrained Zonotope in Rˆ2
P1 is a Polytope in Rˆ2 in H-Rep and V-Rep
Are C1 and P1 equal? True
C1a is a Constrained Zonotope in Rˆ2

P1a is a Polytope in Rˆ2 in only H-Rep
Are P1 and P1a equal? True
Are C1 and C1a equal? True

The equality of the sets C1 and P1 may also be visually
confirmed in Fig. 4, where the polytopic inner-approximation
of C1 computed by pycvxset for plotting is exact for
this constrained zonotope instance. In contrast to the sets
P1 and C1 defined in Sections III-A.1 and III-A.2, the sets
P1a and C1a defined in Lines 5 and 6 in the above code
snippet are defined by an intersection of a unit ℓ∞-norm ball
and an appropriate halfspace {x : p⊤x ≤ q}. As expected,
pycvxset declares all these sets to be equal, despite being
different representations.

We support intersection of Polytope and
ConstrainedZonotope objects with unbounded
sets like affine sets and polyhedron, and the intersection
of Ellipsoid with affine sets since these operations are
also closed in Polytope, ConstrainedZonotope,
and Ellipsoid respectively. We also implement slice
using intersection with an appropriately-defined affine set.

We do not support intersection, Minkowski sum, and
Pontryagin difference operations for ellipsoids natively in
pycvxset since they are not closed operations for el-
lipsoids. However, all set operations discussed here are
supported by Polytope. Consequently, any set operation
that is not natively supported by pycvxset involving con-
strained zonotopes and ellipsoids may be approximated using
their appropriate polytopic approximations (Section III-B).

D. Overloaded operators
We overload several Python operators to simplify the use

of pycvxset. Table II summarizes how these operators
interact with the sets in pycvxset. We interpret X +
(-Y) and X - Y as X ⊕ (−Y) and X ⊖ Y respectively.

When the comparison operators (<,<=,>,>=,in) are given
with a set X and a vector y instead of a set Y , pycvxset
automatically switches to appropriate containment check
with the vector y. Similarly, when the addition/subtraction
operator is given a vector y ∈ Rn, X + y, y+X , and X − y
translates X by y, y, and −y respectively.

TABLE II
PYTHON EXPRESSIONS SUPPORTED BY PYCVXSET INVOLVING SETS

X ,Y ⊂ Rn , SCALAR s ∈ R, VECTOR v ∈ Rn , AND MATRIX M

Python expression Interpretation

M @ X Affine map with M ∈ Rm×n

s * X Scaling: (s * np.eye(X.dim)) @ X
-X Negation: (-1) * X

X @ M Inverse affine map with invertible M ∈ Rn×n

v < X, v <= X, v in X v ∈ X
X < Y, X <= Y, X in Y X ⊆ Y
X > Y, X >= Y, Y in X X ⊇ Y

X == Y Equality check: X ⊆ Y and Y ⊆ X
X + Y Minkowski sum of X with set Y
X - Y Pontryagin difference of X with set Y
X ** m Cartesian product with itself m ∈ N times

E. Solving relevant optimization problems
We use CVXPY to solve various optimization problems

within pycvxset. We also provide methods to set up

and solve convex programs with CVXPY involving sets
constructed using pycvxset:
1) minimize to set up and solve optimization problems,

minimize J(x),
subject to x ∈ X ,

(13)

for any CVXPY-compatible cost function J , and
2) containment constraints to obtain the CVXPY
expressions that enforce the containment constraints x ∈ X
as well as any necessary auxiliary variables.
Various methods in pycvxset like project, support
use these methods to solve convex programs.

The user can specify the solver to use during
set computations via the attributes cvxpy args lp,
cvxpy args socp, and cvxpy args sdp associated
with each object. These attributes are used when solving the
various linear programs, second-order cone programs, and
semi-definite programs respectively.

F. Installation and examples

We provide extensive documentation along with user-
friendly examples for pycvxset at the project website:
https://merlresearch.github.io/pycvxset/. The source code is
available at https://github.com/merlresearch/pycvxset.
pycvxset is released under the AGPL-3.0-or-later li-

cense. We have tested pycvxset in Windows, Ubuntu, and
MacOS, and for Python versions from 3.9 to 3.12. In future,
we plan to register pycvxset to the Python Package Index
as well.

IV. REACHABILITY ANALYSIS USING PYCVXSET

We now briefly discuss how pycvxset may be used
to compute robust controllable (RC) sets [3, Defn. 10.18].
Consider a discrete-time linear time-invariant system with
additive uncertainty,

xt+1 = Axt +But + Fwt, (14)

with state xt ∈ Rn, input ut ∈ U ⊂ Rm, disturbance
wt ∈ W ⊂ Rp, and appropriate matrices A,B, F . We
assume that the input set U and disturbance set W are convex
and compact sets. Given a horizon N ∈ N, a polytopic safe
set S ⊂ Rn and a polytopic target set T ⊂ Rn, a N -step
robust controllable set is the set of initial states that can
be robustly driven, through a time-varying control law, to
the target set in N steps, while satisfying input and state
constraints for all possible disturbances. Formally, we define
the N -step RC set as K0 via the following set recursion for
t ∈ {0, 1, . . . , N − 1}:

Kt = S ∩
(
A−1((Kt+1 ⊖ FW)⊕ (−BU))

)
, (15)

with KN ≜ T . We implement (15) in pycvxset with the
following Python function get rcs.
1 def get_rcs(S_U, S_W, S_S, S_T, A, B, F, N):
2 S_K = [None] * (N + 1)
3 S_K[-1], S_FW, S_BU = S_T, F@S_W, (-B)@S_U
4 for t in range(N - 1, -1, -1):
5 S_temp = (S_K[t+1] - S_FW) + S_BU
6 S_K[t]=S_S.intersection(S_temp @ A)
7 return S_K[0]

In get rcs, we highlight variables denoting sets with a
prefix S to distinguish from other variables — the horizon
N and matrices A,B, F defined in (14). Here, S U is U , S W
is W , S T is T , S S is S , and S K is K.

Lines 2 and 3 of get rcs initialize the sets and pre-
compute the affine-mapped sets in (15). Lines 5-6 implement
the set recursion (15) using Table II. The returned set
S K[0] is a ConstrainedZonotope (or a Polytope)
when sets S U, S T, and S S are ConstrainedZonotope
(or Polytope) objects. For a ConstrainedZonotope-
based computation, the set S W must be a zonotope or an
ellipsoid [6], while the set S W can be any set in pycvxset
for the Polytope-based computation (see Table I).

V. NUMERICAL EXAMPLES

We provide two numerical examples to demonstrate vari-
ous features of pycvxset. We also encourage readers to
see [24] for more examples and additional details about
pycvxset.

All computations were done on a standard laptop with 13th
Gen Intel i7-1370P, 20 cores, 64 GB RAM using Python 3.9.

A. Reachability analysis for a double integrator

We use pycvxset to compute a 30-step RC set for a dou-
ble integrator system model. A double integrator system can
model an acceleration-controlled, mobile robot constrained
to travel on a line. The corresponding RC set indicates the
safe initial states that allow for subsequent satisfaction of
state and input constraints. Using a sampling time of 0.1,
we have (14) with,

A =

[
1 0.1
0 1

]
, B = F =

[
0.005
0.1

]
, (16)

with two-dimensional state xt denoting the position and
velocity with one-dimensional input ut ∈ U = [−1, 1] and
disturbance wt ∈ W = 0.4 × U denoting the controlled
acceleration and the perturbation. We choose the safe set
S = [−1, 1] × [−0.5, 0.5], which serves as position and
velocity bounds the robot must satisfy at all times. We choose
the target set T = [−0.25, 0.25]×[−0.1, 0.1], which requires
the robot to have a terminal position (at time t = 30) within
0.25 m of the origin, and a terminal velocity magnitude of
at most 0.1 m/s.

Fig. 6 shows the RC sets computed using get rcs. Ob-
serve that the RC set computed using constrained zonotope is
slightly smaller than the set computed using polytopes, due
to the inner-approximation used in Pontryagin difference [6].
The overall computation time to generate and plot Fig. 6 was
less than 3 seconds.

Fig. 6. 30-step RC sets for (16) using pycvxset.

https://merlresearch.github.io/pycvxset/
https://github.com/merlresearch/pycvxset

Fig. 7. Slices of the 4-dimensional 50-step RC set for a spacecraft
rendezvous problem. (Left) Initial vx = 0. (Right) Initial vy = 0.

B. Reach-avoid computation for spacecraft rendezvous

We now demonstrate a practical application of pycvxset
where ConstrainedZonotope class provides scalability
and numerical stability over Polytope class for the com-
putation of RC set. It also uses an ellipsoidal uncertainty set
defined using Ellipsoid class.

We consider the problem of safe spacecraft rendezvous.
For safety, it is essential to characterize the set of safe ter-
minal configurations from which an approaching spacecraft
(deputy) may wait for go/no-go for docking with another
spacecraft (chief) [7], [20]. From each of these positions, the
deputy must be able to proceed towards the chief for docking
using bounded control authority while staying within a line-
of-sight cone and satisfying velocity bounds at all times.

Dynamics: Assuming a circular orbit for the chief near
the earth, the relative dynamics may be described by a four-
dimensional linear system model, known as Hill-Clohessy-
Wiltshire dynamics) to describe the position and velocity in
relative x-y coordinates. We discretize the model in time
using zero-order hold to obtain (14) with F set to a 4-
dimensional identity matrix [7], [20], [21]. We assume that
the thruster inputs ut ∈ U = [−0.2, 0.2]

2 N are held constant
over the sampling time 30 seconds. We account for uncer-
tainty in the rendezvous trajectory arising from potential
actuator limitations of the spacecraft and model mismatch
using an additive uncertainty wt ∈ Wt = Ellipsoid(c =
[0, 0, 0, 0], G = [10−5, 10−5, 10−4, 10−4]) ⊂ R4 in the form
(8) (units km and m/s).

Computation of RC set: We compute a 50-step RC set
to navigate the deputy to a target set T = [−0.2, 0.2] ×
[−0.2, 0]× [−0.1, 0.1]

2 (units km and m/s). Additionally, the
deputy must remain inside a line-of-sight cone originating
from the chief, S = {x ∈ R4 : |x1| ≤ −x2 ≤ 1, |x3| ≤
0.05, |x4| ≤ 0.05} (units km and m/s). See [7], [20] for
more details.

Fig. 7 shows the slices of the RC set computed using the
ConstrainedZonotope class of pycvxset. We faced
numerical issues when performing polytope-based computa-
tions of RC sets which may be attributed to the difficulties
arising vertex-halfspace enumeration. The computation of
the RC set using ConstrainedZonotope took about 20
seconds.

VI. CONCLUSION

This paper introduces pycvxset, an open-source Python
package to manipulate and visualize convex sets in Python.
Currently, pycvxset supports polytopic, ellipsoidal, and
constrained zonotopic set representations. The packages fa-
cilitates the use of set-based methods to analyze and control
dynamical systems in Python.

VII. ACKNOWLEDGEMENTS

We are grateful to Stefano Di Cairano and Kieran Par-
sons for their insightful feedback during the course of the
development of this package.

REFERENCES

[1] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer,
2008.

[2] D. Bertsekas and I. Rhodes, “On the minimax reachability of target
sets and target tubes,” Automatica, vol. 7, pp. 233–247, 1971.

[3] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge Univ. Press, 2017.

[4] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for
reachability analysis,” Annual Rev. Ctrl., Rob., & Auto. Syst., vol. 4,
no. 1, pp. 369–395, 2021.

[5] A. P. Vinod, A. Weiss, and S. Di Cairano, “Abort-safe spacecraft
rendezvous under stochastic actuation and navigation uncertainty,” in
Proc. Conf. Dec. & Ctrl., 2021, pp. 6620–6625.

[6] ——, “Projection-free computation of robust controllable sets with
constrained zonotopes,” Automatica, vol. 175, p. 112211, 2025.

[7] ——, “Inscribing and separating an ellipsoid and a constrained zono-
tope: Applications in stochastic control and centering,” in Proc. Conf.
Dec. & Ctrl, 2024, pp. 8125–8131.

[8] J. Scott, D. Raimondo, G. Marseglia, and R. Braatz, “Constrained
zonotopes: A new tool for set-based estimation and fault detection,”
Automatica, vol. 69, pp. 126–136, 2016.

[9] V. Raghuraman and J. Koeln, “Set operations and order reductions for
constrained zonotopes,” Automatica, vol. 139, p. 110204, 2022.

[10] L. Yang, H. Zhang, J. Jeannin, and N. Ozay, “Efficient backward
reachability using the Minkowski difference of constrained zonotopes,”
IEEE Tran. Comp.-Aided Design Integrated. Circ. & Syst., vol. 41,
no. 11, pp. 3969–3980, 2022.

[11] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal toolbox (et),”
in Proc. Conf. Dec. & Ctrl., 2006, pp. 1498–1503, http://
systemanalysisdpt-cmc-msu.github.io/ellipsoids/.

[12] “pycddlib,” https://pypi.org/project/pycddlib/.
[13] “pytope,” https://github.com/heirung/pytope.
[14] “polytope,” https://tulip-control.github.io/polytope/.
[15] “pypoman,” https://pypi.org/project/pypoman/.
[16] M. Althoff, “An introduction to CORA,” in W. App. Verif. Cont. &

Hyb. Syst., 2015, pp. 120–151, https://github.com/TUMcps/CORA.
[17] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-

parametric toolbox 3.0,” in Proc. Euro. Ctrl. Conf., 2013, pp. 502–510,
ttps://www.mpt3.org/.

[18] J. Koeln, T. J. Bird, J. Siefert, J. Ruths, H. C. Pangborn, and
N. Jain, “zonoLAB: A MATLAB toolbox for set-based control systems
analysis using hybrid zonotopes,” in Proc. Amer. Ctrl. Conf., 2024, pp.
2513–2520, https://github.com/ESCL-at-UTD/zonoLAB.

[19] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ.
Press, 2004.

[20] J. Gleason, A. P. Vinod, and M. M. Oishi, “Lagrangian approximations
for stochastic reachability of a target tube,” Automatica, vol. 128, 2021.

[21] A. P. Vinod, J. Gleason, and M. M. K. Oishi, “SReachTools: A
MATLAB Stochastic Reachability Toolbox,” in Proc. Hyb. Syst.:
Comput. & Ctrl., Montreal, Canada, 2019, pp. 33 – 38, https://
sreachtools.github.io.

[22] T. Lipp and S. Boyd, “Variations and extension of the convex–concave
procedure,” Opt. & Engg., vol. 17, pp. 263–287, 2016.

[23] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of dis-
turbance invariant sets for discrete-time linear systems,” Mathematical
problems in engineering, vol. 4, no. 4, pp. 317–367, 1998.

[24] A. P. Vinod, “pycvxset: A python package for convex set manipula-
tion,” arXiv preprint arXiv:2410.11430, 2024.

http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/
http://systemanalysisdpt-cmc-msu.github.io/ellipsoids/
https://pypi.org/project/pycddlib/
https://github.com/heirung/pytope
https://tulip-control.github.io/polytope/
https://pypi.org/project/pypoman/
https://github.com/TUMcps/CORA
ttps://www.mpt3.org/
https://github.com/ESCL-at-UTD/zonoLAB
https://sreachtools.github.io
https://sreachtools.github.io

	Title Page
	page 2

	
	Introduction
	Set representations and operations
	Set representations
	Set operations

	The pycvxset package
	Set definitions
	Polytope
	Constrained zonotope
	Ellipsoid

	Visualizing polytopes and polytopic approximations
	Set operations
	Involving another vector v and/or matrix M
	Centering
	Other set-specific manipulations/computations
	Involving another set Y

	Overloaded operators
	Solving relevant optimization problems
	Installation and examples

	Reachability analysis using pycvxset
	Numerical examples
	Reachability analysis for a double integrator
	Reach-avoid computation for spacecraft rendezvous

	Conclusion
	Acknowledgements
	References

