
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Simultaneous Range and Velocity Measurement with
Doppler Single-Photon Lidar

Kitichotkul, Ruangrawee; Rapp, Joshua; Ma, Yanting; Mansour, Hassan

TR2025-050 April 26, 2025

Abstract
Single-photon lidar (SPL) can accurately measure distances to targets from extremely weak
reflections. However, the conventional wisdom holds that pulsed lidar cannot directly measure
velocity, unlike other forms of lidar. We present for the first time a detection model for
SPL that explicitly includes a target’s radial velocity, manifesting as a Doppler shift in the
repetition frequency of the received laser pulse train. We propose an approach called Doppler
SPL, comprising a pair of methods for jointly estimating range and velocity. Our first method
estimates the Doppler shift via Fourier analysis of the detection times. The second method
is a maximum likelihood (ML) estimator that can improve the Fourier estimate, and which
also enables joint estimation of the flux from signal and background sources. We derive
the Cramér–Rao bound for the estimation problem and show via simulations that the ML
estimator is statistically efficient across diverse acquisition settings. We also demonstrate
simultaneous estimation of range with sub-centimeter accuracy and velocity with 0.1 m/s root
mean square error for experimental measurements at 50 frames per second, despite a signal-to-
background ratio as low as 0.007. Finally, we present an example of a 3D video reconstruction
at 120 fps with per-pixel velocity estimates. With the addition of velocimetry, Doppler SPL
has the potential to introduce new capabilities in applications such as atmospheric monitoring
or autonomous navigation.
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Abstract: Single-photon lidar (SPL) can accurately measure distances to targets from extremely
weak reflections. However, the conventional wisdom holds that pulsed lidar cannot directly
measure velocity, unlike other forms of lidar. We present for the first time a detection model
for SPL that explicitly includes a target’s radial velocity, manifesting as a Doppler shift in the
repetition frequency of the received laser pulse train. We propose an approach called Doppler
SPL, comprising a pair of methods for jointly estimating range and velocity. Our first method
estimates the Doppler shift via Fourier analysis of the detection times. The second method
is a maximum likelihood (ML) estimator that can improve the Fourier estimate, and which
also enables joint estimation of the flux from signal and background sources. We derive the
Cramér–Rao bound for the estimation problem and show via simulations that the ML estimator
is statistically efficient across diverse acquisition settings. We also demonstrate simultaneous
estimation of range with sub-centimeter accuracy and velocity with 0.1 m/s root mean square
error for experimental measurements at 50 frames per second, despite a signal-to-background
ratio as low as 0.007. Finally, we present an example of a 3D video reconstruction at 120 fps with
per-pixel velocity estimates. With the addition of velocimetry, Doppler SPL has the potential
to introduce new capabilities in applications such as atmospheric monitoring or autonomous
navigation.

1. Introduction

In 2005, five autonomous vehicles completed DARPA’s Grand Challenge course, navigating
based on point clouds from lidar sensors [1–4]. Since then, the development of better, faster, and
cheaper lidar sensors has exploded [5]. One emerging technology is single-photon lidar (SPL), a
form of direct time-of-flight lidar that measures distances from the delays between sequences of
transmitted laser pulses and their received echoes. Using single-photon detectors and picosecond
time tagging enables SPL to tolerate extremely weak reflections [6–9]. As a result, SPL has
found success in a wide variety of applications, including atmospheric monitoring [10], airborne
and spaceborne terrestrial mapping [11–13], lunar ranging [14], autonomous navigation [15],
underwater depth sensing [16], and consumer devices [17].

In addition to capturing 3D structure, using lidar to measure the velocity of moving objects
can contribute important information in many applications. In automotive settings, for instance,
velocity information can improve detection of moving pedestrians and vehicles [18–21], correct
for motion distortion in point cloud registration [22], or assist in vehicle odometry [23]. However,
it is generally assumed that pulsed lidar cannot directly measure velocity. Velocity must instead
be estimated by regressing over a sequence of distance measurements and extracting a temporal
derivative. In SPL, for example, Jonsson et al. [24, 25] proposed splitting a lidar acquisition
into a sequence of sub-frames. A distance estimate is formed for each sub-frame, assuming the
scene is quasi-static, and the radial velocity is determined from a polynomial fit to the change in
distance over time. Subsequent methods follow this basic framework, either fitting curves or
applying Bayesian filtering to estimate velocity from sequences of frame- or sub-frame-based
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Fig. 1. Overview of Doppler Single-Photon Lidar. (a) A laser transmits short light
pulses towards a point in the scene, directed by galvo mirrors. The pulse train reflected
from a moving object – such as the rotating fan shown here – is scaled by the reflectivity,
time-shifted by the distance, and Doppler-shifted by the radial velocity. The SPAD
detects individual photons of reflected light as well as ambient light and time-stamps
them with a TCSPC module. (b) Based on the photon detection time sequence we
jointly determine the signal flux 𝑆 (grayscale), 3D position, and velocity 𝑣 (red-blue
color scale, shown for points with |𝑣 | ≥ 1 m/s). Further acquisition details for the
rotation scene are found in Section 4.2.2 and Visualization 1.

distance measurements [26–30]. One downside is that the component distance measurements,
which assume a quasi-static scene, suffer from motion blur at high velocities [31]. Another major
challenge in tracking 3D position across multiple measurements is identifying correspondence
for objects that also have lateral motion [32, 33], which often requires additional sensors such as
conventional cameras [34].

In contrast, several alternative lidar architectures directly measure both range and radial velocity
via the Doppler effect, which relates the observed frequency of wave phenomena to the relative
velocity between a wave source and observer [35]. Doppler lidar is conventionally based on
coherent detection, where the Doppler effect is observed as a shift in the optical frequency of
the light reflected from a moving target. For instance, frequency-modulated continuous-wave
lidar (FMCW) lidar applies triangular frequency modulation to a continuous-wave laser; range
and Doppler velocity are then estimated from the sum and difference of a pair of constant beat
frequencies. Joint range and velocity sensing – sometimes branded as “4D lidar” – is often touted
as an advantage of coherent lidar [36–38]. However, FMCW has other disadvantages compared
to time-of-flight systems, particularly that the optical systems are much more complex [39], and
the temporal coherence of the laser limits the maximum range [40]. Incoherent systems can
also be configured to measure velocity. Heide et al. [41] observed that for amplitude-modulated
continuous-wave (AMCW) lidar, a Doppler shift occurs in the amplitude modulation frequency,
which can be measured with an incoherent detector. However, AMCW is typically limited to
indoor environments due to moderate range and resolution capabilties [40], and noise sensitivity
can make it difficult to discern low-speed motion [42].

In this paper, we propose an approach to direct velocity measurement called Doppler Single-
Photon Lidar (see Fig. 1). Traditionally, SPL has been treated as a form of pulsed lidar, where
photon detection times are collected into a temporal histogram and used to estimate only
distances [43–45]. Key to Doppler SPL is the recognition that the periodic pulsing of SPL makes
it a form of AMCW lidar, so we can observe a Doppler shift between the transmitted pulse
repetition frequency and the received photon detection sequence. To capture the change in the
received pulse frequency, our detection scheme retains not only the photon times relative to the



most recent laser pulse but also the absolute detection times measured with respect to the start of
an SPL acquisition. We introduce two methods to estimate velocity from the absolute detection
times. Our first method directly estimates the Doppler shift independently of the distance, building
on recent advances in Fourier analysis of photon detection times [46]. Our second approach
is a maximum likelihood (ML) estimation procedure that jointly optimizes over the velocity
and starting distance, as well as the flux levels of signal and background photons. The Fourier
approach is not robust to uninformative detections from ambient light and dark counts [47],
but it provides a useful initialization for the ML estimator. We show that the ML estimator
is robust to strong background light and is statistically efficient, achieving the Cramér–Rao
Bound. We validate Doppler SPL through extensive simulations and experiments, successfully
demonstrating velocimetry for targets from 0 to 15 m/s and with signal-to-background ratio
(SBR) as low as 0.007 photons per period. We also present a 3D video reconstruction of a
repetitive scene at 120 frames per second (fps) with per-pixel velocity estimates. The ability to
directly measure velocity in addition to distance could impact existing SPL applications (e.g.,
atmospheric monitoring, autonomous navigation) as well as related photon counting methods in
non-line-of-sight imaging [48], quantum sensing [49], and microscopy [50, 51].

2. Measurement Model

Doppler SPL harnesses standard SPL hardware, including a picosecond-pulsed laser and a
single-photon avalanche diode (SPAD) detector. The laser emits a periodic sequence of 𝑛r short
pulses with repetition period 𝑡r for a total acquisition time 𝑡a := 𝑛r𝑡r. The SPAD detects individual
“signal” photons reflected back from the target, as well as “background” photons due to ambient
light and dark counts. A time-correlated single-photon counting (TCSPC) module time-stamps
the laser pulse times and SPAD detections with picosecond resolution. A pair of galvo mirrors
raster scans the laser to form images with the single-pixel detector.

The conventional photon detection model for single-photon lidar assumes a static target [6, 7].
Each pulse travels at the speed of light 𝑐, reflects from the target at distance 𝑧0, and returns to the
lidar system with a time of flight 𝜏0 = 2𝑧0/𝑐. Assuming non-idealities such as dead times and
afterpulsing are negligible, photon detection follows an inhomogeneous Poisson process [52]
with intensity function

𝜇(𝑡) = 𝑆

[
𝑛r−1∑︁
𝑛=0

ℎ(𝑡 − 𝜏0 − 𝑛𝑡r)
]
+ 𝑏, 𝑡 ∈ [0, 𝑡a). (1)

The temporal pulse shape is ℎ(𝑡), which we normalize such that
∫ ∞
−∞ ℎ(𝑡) d𝑡 = 1. The signal flux

𝑆 is defined as the mean number of detected signal photons per period, which absorbs scaling
effects of the illumination power, target reflectivity, view angle, radial fall-off, and detector
efficiency. The background is assumed to be constant over the acquisition time with intensity 𝑏,
so the background flux is 𝐵 = 𝑏𝑡r, and the signal-to-background ratio (SBR) is 𝑆/𝐵. TCSPC
records absolute detection times T := (𝑇𝑖)𝑁𝑖=1 relative to 𝑡 = 0. For static acquisitions, each
pulse period has an identical detection time distribution, so often only the relative detection
times X := (𝑋𝑖)𝑁𝑖=1, 𝑋𝑖 = 𝑇𝑖 mod 𝑡r relative to the most recent laser pulse time are retained in a
histogram without loss of information [53].

Instead, we consider the more general case of a target initially at distance 𝑧0 and moving with a
constant velocity 𝑣, where a positive 𝑣 indicates a target moving away from the detector. As noted
by Heide et al. [41], moving targets cause a Doppler shift in the frequency of a periodic amplitude
modulation. We recognize that pulsed illumination can be considered a form of amplitude
modulation, so a moving target will likewise cause a Doppler shift in the observed pulse repetition
frequency. As we derive in the Supplement, photon detection still follows an inhomogeneous



Poisson process, but the intensity function changes in accordance with the Doppler shift:

𝜆(𝑡) = 𝑆

[
𝑛r−1∑︁
𝑛=0

ℎ

(
𝑡 − 𝑐

𝑐 − 𝑣
𝜏0 − 𝑛

𝑐 + 𝑣

𝑐 − 𝑣
𝑡r

)]
+ 𝑏, 𝑡 ∈ [0, 𝑡a). (2)

We define the received repetition period 𝑡′r := ((𝑐 + 𝑣)/(𝑐 − 𝑣))𝑡r and time-of-flight 𝜏 :=
(𝑐/(𝑐 − 𝑣))𝜏0, as depicted in Fig. 1. Unlike in the static case, the detection time distribution
in each pulse period varies due to the velocity, so we retain the absolute detection times T for
estimating 𝑣.

3. Estimation Methods

3.1. Static Estimators

Most existing methods for ranging and reflectivity estimation from SPL measurements assume
that even dynamic scenes are static over short acquisition times [16,54–58]. Previously proposed
methods for velocimetry with SPL rely on parametric regression over multiple quasi-static
distance estimates [24–30]. For a baseline velocity estimator, we follow Jonsson et al. [24]
by dividing the acquisition time into 𝐿 equal sub-frames. The baseline method estimates the
distance for each sub-frame by using the ML estimator for static targets [53]. Let Xℓ denote the
relative detection times in the ℓth sub-frame. Then, the ML estimator for the distance in the ℓth

sub-frame is
�̂�ℓ = arg max

𝑧,𝑆,𝑏

∑︁
𝑋∈Xℓ

log
[
𝑆ℎ

(
𝑋 − 2𝑧

𝑐

)
+ 𝑏

]
. (3)

The parameters (𝑆, 𝑧, 𝑏) are initialized using the censoring estimator [9] and then refined by
optimizing the objective in (3) using a limited-memory, bound-constrained version of the
Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS-B) [59]. Given distance estimates for
all sub-frames {�̂�ℓ }𝐿ℓ=1, the baseline method then estimates the velocity and initial distance via
linear regression as

�̂�, �̂�0 = arg min
𝑣,𝑧0

𝐿∑︁
ℓ=1

[(𝑧0 + 𝑣𝑡ℓ) − �̂�ℓ]2
, (4)

where 𝑡ℓ = 𝑡a (ℓ − 1/2)/𝐿 is the midpoint of the ℓth sub-frame. We refer to (4) as the static
estimators. The number of sub-frames 𝐿 presents a trade-off between motion blur (higher 𝐿 is
better) and robustness (lower 𝐿 is better). In simulations and experiments, we use 𝐿 = 10; further
results demonstrating this tradeoff with 𝐿 = 2 are found in [47] and the Supplement.

3.2. Frequency-domain Estimators

Instead of assuming the scene is quasi-static over short sub-frames, we build upon the constant
velocity model in (2). Our first approach aims to estimate the velocity directly from the Doppler-
shifted frequency. The velocity is related to the transmitted frequency 𝑓r = 1/𝑡r and received
frequency 𝑓 ′r = 1/𝑡′r as

𝑣 = 𝑐( 𝑓r − 𝑓 ′r )/( 𝑓r + 𝑓 ′r ). (5)

Since 𝑓r is known, our goal is to estimate 𝑓 ′r from the photon detection times, which we achieve
via frequency-domain analysis without preliminary distance estimates. We subsequently consider
range estimation in the frequency domain.
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Fig. 2. (a) The magnitudes of the intensity spectrum 𝜆( 𝑓 ) and probed spectrum
𝜑T ( 𝑓 ) have peaks around integer harmonics of the received frequency 𝑓 ′r , which is
Doppler-shifted from the transmitted frequency 𝑓r. (b) The Doppler shift is easier to
observe at higher harmonics such as 𝑘 = 30.

3.2.1. Flux Probing

We first define the intensity spectrum as the Fourier transform of the detection intensity in (2):

𝜆( 𝑓 ) = 𝑆 𝑓 ′r 𝑡a

∞∑︁
𝑘=−∞

{
𝑒− 𝑗2𝜋 [𝑘 𝑓 ′r 𝜏+ 𝑡a

2 ( 𝑓 −𝑘 𝑓 ′r )] ℎ̃(𝑘 𝑓 ′r )sinc[𝑡a ( 𝑓 − 𝑘 𝑓 ′r )]
}

+ 𝑏𝑡a𝑒
− 𝑗 𝜋 𝑓 𝑡asinc(𝑡a 𝑓 ),

(6)

where ℎ̃( 𝑓 ) is the Fourier transform of the pulse shape ℎ(𝑡). Because the modulation in SPL is
a pulse train, not a sinusoid, the Doppler shift occurs not only for the fundamental repetition
frequency but also for higher harmonics. The spectrum magnitude |𝜆( 𝑓 ) | thus contains peaks
(local maxima) at 𝑓 ′r and its integer harmonics {𝑘 𝑓 ′r }𝑘∈Z. Background, assumed to be constant,
appears as a peak at DC, which negligibly affects the peak positions at higher frequencies. The
detection intensity in (2) is implicitly multiplied by an indicator function 1[0,𝑡a ) , which transforms
to the factors {sinc[𝑡a ( 𝑓 − 𝑘 𝑓 ′r )]}𝑘∈Z in the Fourier domain. The longer the acquisition time 𝑡a,
the narrower the frequency bands at the harmonics of 𝑓 ′r , and thus the more precise the velocity
estimation in the frequency domain.

We next use tools for Fourier analysis of point processes to compute an approximate spectrum
from the detection times. Following Bartlett [60], and more recently Wei et al. [46], the probed
spectrum given the detection times T is

𝜑T ( 𝑓 ) :=
∑︁
𝑇∈T

exp(− 𝑗2𝜋 𝑓𝑇). (7)

Figure 2 shows the probed spectrum |𝜑T ( 𝑓 ) |, plotted from a set of experimental detection times,
and the intensity spectrum |𝜆( 𝑓 ) |, which uses parameters (𝑆, 𝐵, 𝜏0, 𝑣) estimated via the maximum
likelihood method we will describe in Section 3C. The transmitted frequency is 40 MHz and
the target’s velocity is 0.35 m/s, resulting in a −0.094 Hz Doppler shift. We see there are
indeed peaks around 𝑓 ′r and its harmonics, but |𝜑T ( 𝑓 ) | also has a significant noise floor due
to the randomness of the photon detection times. Furthermore, randomness in the background
detections also contributes to the noise floor and can cause deviations in the peak position around
each harmonic. Nevertheless, even small Doppler shifts are visible in the spectrum, especially at
higher harmonics, as seen for the 30th harmonic in Fig. 2(b).



3.2.2. Fourier Velocity Estimator

Frequency estimation is often performed by maximizing the periodogram, i.e., the squared
magnitude of the spectrum [61]. We follow this basic approach, using the probed spectrum
𝜑T ( 𝑓 ) as a proxy for the intensity spectrum �̃�( 𝑓 ). Due to the presence of peaks at harmonics of
𝑓 ′r , we are not limited to estimating 𝑓 ′r from a single peak. Instead, we take advantage of the
harmonic relationship to propose an estimator based on multiple peaks:

�̂� ′r = arg max
𝑓 ∈[ 𝑓min , 𝑓max ]

∑︁
𝑘∈K

|𝜑T (𝑘 𝑓 ) |2 , (8)

where 𝑓min and 𝑓max bound the optimization domain for the local maxima, and K is a set of
integers indexing the harmonics of 𝑓 ′r . We solve the nonconcave maximization problem using
the L-BFGS-B algorithm initialized to a maximal point from a coarse grid search. The search
region [ 𝑓min, 𝑓max] is chosen for some reasonable maximum speed 𝑣max, where

𝑓min =
𝑐 − 𝑣max
𝑐 + 𝑣max

𝑓r, 𝑓max =
𝑐 + 𝑣max
𝑐 − 𝑣max

𝑓r. (9)

Choosing the set of indices K is a trade-off between accuracy and computation time. Probing
only the fundamental frequency 𝑓r, i.e., K = {1}, is identical to existing methods for frequency
estimation that maximize the Bartlett periodogram [62]. When we incorporate higher harmonics,
we observe in simulations that using a larger number of harmonics improves the robustness
to background detections; details are included in the Supplement. However, the computation
time depends linearly on the the number of harmonics |K |. We choose a set of harmonics
K = {1, 2, . . . , 𝑘max} that is as large as possible given the Nyquist rate and computation
constraints. According to Wei et al. [46], the Nyquist rate is 𝑓Nyquist = 1/(2𝑡res), where 𝑡res is the
effective timing resolution of the SPL system, including effects of the quantization of the timing
electronics, time jitter, and the laser temporal pulse width. In simulations and experiments, the
instrument response function is approximately Gaussian with standard deviation 𝜎, so we use
𝑡res ≈ 4𝜎. However, a Gaussian pulse assumption is not required, and other measures such as the
full width at half maximum (FWHM) could be used to determine the resolution instead. We
ensure the maximum probe frequency 𝑘max 𝑓max does not exceed the Nyquist rate. We may also
choose 𝑘max to be smaller than the value dictated by the Nyquist rate to reduce computation time.

3.2.3. Fourier Distance Estimator

Distance information is encoded in the phase of the probed spectrum. Assuming 𝑏 = 0 and ℎ(𝑡)
is real and even, the phase of the intensity spectrum 𝜆( 𝑓 ) at 𝑓 = 𝑓 ′r is

arg
[
𝜆( 𝑓 ′r )

]
≈ (−2𝜋 𝑓 ′r 𝜏) mod 2𝜋. (10)

We can thus estimate the time-of-flight by evaluating the phase at the estimated received frequency
�̂� ′r :

�̂� =

{
−̂𝑡′rarg

[
𝜑T ( �̂� ′r )

]
/(2𝜋)

}
mod �̂�′r , (11)

where �̂�′r := 1/ �̂� ′r . Then, the estimate of the initial time-of-flight is �̂�0 = (𝑐 − 𝑣)�̂�/𝑐, which
corresponds to the initial distance estimate �̂�0 = 𝑐�̂�0/2. However, nonzero background intensity
𝑏 changes the probed spectrum phase, degrading distance estimation as will be discussed in
Section 4. Fortunately, the Fourier velocity estimator does not depend on the distance and is
more robust to background.



3.3. Maximum Likelihood Estimators

The Fourier estimators for 𝑣 and 𝑧0 are computed via the periodogram. However, the periodogram
is only an efficient estimator for certain classes of periodic Poisson process intensities [62].
Maximum likelihood estimation tends to yield better results if the process intensity has a
known parametric form [63]. Given detection times T , the intensity function in (2) yields the
log-likelihood function [52]

L(𝑆, 𝐵, 𝜏0, 𝑣;T) = −
∫ 𝑡a

0
𝜆(𝑡) d𝑡 +

∑︁
𝑇∈T

log𝜆(𝑇). (12)

Assuming 𝑣 ≪ 𝑐, we show in the Supplement that the log-likelihood can be reasonably
approximated as

L(𝑆, 𝐵, 𝜏0, 𝑣) ≈ −𝑛r (𝑆 + 𝐵) +
∑︁
𝑇∈T

log
[
𝑆ℎ

(
𝑇 mod 𝑡r −

2𝑣𝑇
𝑐

− 𝜏0

)
+ 𝐵

𝑡r

]
. (13)

This approximation offers a simple interpretation (the target has moved by 𝑣𝑇 at time 𝑇 , resulting
in a change in the time-of-flight by 2𝑣𝑇/𝑐) and simplifies our subsequent Cramér–Rao bound
analysis. The ML estimators are

𝑆, 𝐵, �̂�0, �̂� = arg max
𝑆,𝐵,𝜏0 ,𝑣

L(𝑆, 𝐵, 𝜏0, 𝑣). (14)

If any of the parameters 𝑆, 𝐵, 𝜏0, or 𝑣 are known or estimated a priori, they can be fixed in the
ML estimation. Otherwise, all parameters are jointly estimated.

The optimization problem in (14) is hard, because the objective is non-concave in 𝜏0 and
𝑣. A practical implementation of (14) is to initialize the four parameters with a preliminary
estimator and then apply a gradient-based optimization routine to refine the solution. In our
simulation and experiments, we initialize 𝑣 using the Fourier velocity estimator. We then compute
motion-compensated relative detection times 𝑋𝑖 = 𝑇𝑖 mod 𝑡r−2�̂�𝑇𝑖/𝑐 and apply methods for static
targets to obtain initial estimates of the other three parameters from X̃ = (𝑋𝑖)𝑁𝑖=1. Specifically, we
jointly estimate signal and background fluxes using the censoring estimator [9], which has been
shown to be a fast approximation of the ML estimator for static targets [53]. Given the signal flux
estimate 𝑆 and the background flux estimate 𝐵, we apply the ML distance estimator for the initial
time-of-flight [7]:

�̂�0 = arg max
𝜏0

∑︁
𝑋∈X̃

log
(
𝑆ℎ(𝑋 − 𝜏0) + 𝐵

/
𝑡r

)
. (15)

Given an initialization 𝑆, 𝐵, �̂�0, and �̂�, we compute (14) using the L-BFGS-B algorithm [59].
While the procedure does not guarantee that its solutions reach global optimal points, we find
empirically that they are statistically efficient, as discussed in Section 3D and demonstrated in
Section 4A.

3.4. Cramér–Rao Bound

Assuming some regularity conditions, the Cramér–Rao Bound (CRB) states that the inverse
of the Fisher information matrix (FIM) is a lower bound for the covariance matrix – and thus
the mean-square error – of any unbiased estimator in a statistical estimation problem [64]. In
the Supplement, we show that the FIM for all 4 parameters is approximately block-diagonal,
implying that efficient estimates of 𝑆 and 𝐵 are approximately independent of those for 𝜏0 and 𝑣.
We thus focus only on the CRB for 𝜏0 and 𝑣 in this section. The 2 × 2 FIM about 𝜏0 and 𝑣 for the



Doppler SPL measurement model is

I = 𝐻


𝑛r 𝑛1

𝑛1 𝑛2

 , (16)

where

𝐻 := 𝑆

∫ 𝑡 ′r

0

[
ℎ′ (𝑡 − 𝜏0)2

ℎ(𝑡 − 𝜏0) + 𝑏/𝑆 − ℎ′′ (𝑡 − 𝜏0)
]

d𝑡 , (17)

𝑛1 :=
𝑛r−1∑︁
𝑛=0

(
2(𝑛𝑡′r + 𝜏0)

𝑐

)
, 𝑛2 :=

𝑛r−1∑︁
𝑛=0

(
2(𝑛𝑡′r + 𝜏0)

𝑐

)2
, (18)

and ℎ′ (𝑡) and ℎ′′ (𝑡) are the first and second temporal derivatives of the pulse shape ℎ(𝑡),
respectively. Suppose �̂� = [�̂�0 �̂�]𝑇 is an unbiased estimate of 𝜃 = [𝜏0 𝑣]𝑇 from some observed
detection times T given that 𝑆 and 𝐵 are known. Then,

Cov(�̂�) = E
[
(�̂� − 𝜃) (�̂� − 𝜃)𝑇

]
⪰ I−1, (19)

i.e., Cov(�̂�) − I−1 must be a positive semidefinite matrix. Consequently, the root-mean-square
errors (RMSE) of �̂�0 and �̂� are lower bounded by the diagonal entries of the inverse FIM:

RMSE(�̂�0, 𝜏0) ≥
√︁
(I−1)11, (20)

RMSE(�̂�, 𝑣) ≥
√︁
(I−1)22. (21)

We derive the CRB for joint estimation of 𝑆, 𝐵, 𝜏0, and 𝑣 in the Supplement. In simulations and
experiments, we refer to the lower bound on the RMSE simply as “CRB.”

4. Results

4.1. Simulations

We first present simulations in which ground truth parameters are precisely known. For the results
shown in Figures 3 and 4, we fix 𝑆 = 0.1, 𝜏0 = 500 ns, 𝑡r = 1 µs, and 𝑛r = 104. The temporal
pulse shape is Gaussian with scaling parameter 𝜎 = 0.1 ns. We run 5000 Monte Carlo trials for
each setting. In Fig. 3, we investigate the effect of the target velocity on estimation performance
varying the velocity from −50 m/s to 50 m/s. We examine scenarios with 𝐵 fixed to 0, 0.01, or
0.1, corresponding to SBRs of ∞, 10, or 1. We observe that the Fourier and ML estimators,
which include radial velocity in the acquisition model, maintain the same performance regardless
of the velocity. In contrast, the static baseline, which ignores motion within each sub-frame, has
greater error as the velocity increases.

However, the performance is not consistent across all SBR levels. The Fourier method
significantly degrades as the SBR decreases. In particular, the distance estimator, which assumes
negligible background, has RMSE increase by two orders of magnitude from SBR = ∞ to
SBR = 10. Meanwhile, the ML estimator continues to remain statistically efficient, achieving the
CRB. This effect is explored in greater depth in Fig. 4, where the velocity is fixed to 30 m/s, and
𝐵 decreases from 10 to 0.01, corresponding to increasing SBR from 0.01 to 10. Indeed, the ML
estimator achieves the CRB for all SBR levels. The CRB for both distance and velocity only
increases by approximately 8% in this SBR range, demonstrating the ML estimator’s robustness
to background photons. Additional experiments in the Supplement further demonstrate the
advantages of the ML estimator, including a robustness to short acquisition times, small numbers
of signal photons, and model mismatch (e.g., non-zero acceleration and varying signal flux). We
also show in the Supplement that Doppler SPL estimates outperform quasi-static measurements
when used as the input to a Kalman filter.
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Fig. 3. RMSE and CRB of velocity and range estimates for moving targets with different
velocities and SBRs.
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Fig. 5. Experimental demonstration of translational motion estimation using Doppler
SPL. The target moves in a line along the optical axis. The leftmost column shows ML
estimates of 𝑆 and 𝐵 and the corresponding range of values for SBR = 𝑆/𝐵. The rest
of the plots show estimates of initial distances 𝑧0 and velocities 𝑣 from ML, Fourier,
and static estimators, as well as the reference measurements from a linear encoder. The
RMSEs of the estimates with respect to the reference are displayed above each plot.
See Visualization 1 for a video of the acquisition.

4.2. Experiments

We next validate our approach through a series of experiments. The SPL system uses a pulsed
laser at 450 nm (PicoQuant Prima) and a silicon SPAD detector (ID Quantique ID100-50-ULN).
Laser synchronization pulses and SPAD events are time stamped via a TCSPC module (Swabian
Instruments Time Tagger Ultra). The combined instrument response function is approximately
Gaussian with 𝜎 = 97 ps, corresponding to a FWHM width of 228.4 ps. We observe that the
transmitted pulse period differs from the nominal value of 𝑡r = 25 ns (i.e., 𝑓r = 40 MHz) for the
laser. Although deviations on the order of femtoseconds are negligible for static measurements,
proper calibration is important for estimating small Doppler shifts. Additional experimental
details, including our procedure for calibrating 𝑡r and photographs of the setups, are contained in
the Supplement.

4.2.1. Translational Motion

We first investigate velocity estimation under linear translational motion. A custom linear motion
stage was constructed with T-slot framing and a sliding belt-driven carriage controlled by a hybrid
stepper motor. A position reference was measured with a draw-wire linear encoder synchronized
to the detection times. The collected detection times are split into contiguous frames of size
0.02 s (i.e., 50 fps) and 𝑛r ≈ 8×105 pulses per frame. Note that this definition of a “frame” differs
from the high-speed binary readout from some SPAD arrays that records at most one detection
event per frame [65,66]. We apply the ML, Fourier, and static estimators to the detection times
to yield velocity and range estimates. The ML estimator also returns signal and background flux
estimates.

Figure 5 highlights two experiments in which the motion stage was programmed to follow a
raised cosine trajectory, and parameter estimation was performed for varying laser power and
ambient light levels. Within each experiment, the signal flux varies with the target position due to
radial fall-off, and the background flux varies with the target position due to changing occlusion
of the ambient light. The distance and velocity estimation accuracy also varies with the target
position, since the SBR and detection rate are changing. At high SBR, with 𝑆/𝐵 ranging from
1.289 to 13.877, all methods have similar performance, achieving velocity RMSE around 5 cm/s
and sub-centimeter distance accuracy. Motion blur effects are minor for the static estimator



due to the low target velocity. We note that all methods show a negative spike in the velocity
estimates at 𝑡 = 5.93 s, which coincides with an anomalous 𝑡r estimate for that frame (see the
Supplement for more detail). This underscores the need for careful calibration of 𝑡r to achieve
accurate velocity estimates.

At low SBR, with 𝑆/𝐵 reaching as low as 0.007, the RMSE differences are much larger. The
ML estimator has the lowest error for both range and velocity estimation. The ML velocity RMSE
increases by a factor of 2.6, whereas the range RMSE is effectively unchanged from the high
SBR experiment. In contrast, the Fourier velocity RMSE increases by 4.1×, both the Fourier
and static range RMSEs increase by roughly 10×, and the static velocity RMSE increases by
over 100×. In accordance with the simulation results, both the Fourier and static estimators are
sensitive to low SBR, although they exhibit different types of errors. Further experiments in the
Supplement show that increasing the signal flux and the acquisition duration improve estimation
accuracy. However, a longer acquisition duration also increases the risk of model mismatch,
particularly when the velocity varies or objects enter and exit the field of view during a frame.

4.2.2. Rotational Motion
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Fig. 6. ML estimates of the radial velocity from captured Doppler SPL measurements
of a rotating fan versus angular velocity from the angular encoder. See Visualization 1
for a video of the acquisition.

We next perform experiments with a rotating target, which can achieve much higher radial
velocity than the linear motion stage. A rotating fan was custom-built from a DC motor, an
aluminum bar, and a 3D-printed mount. An angular encoder connected to the motor provided
angular reference measurements that were synchronized to the TCSPC module. In the first
rotational motion experiment, we vary the motor speed and take a measurement for a single point
on the fan blades. For each fixed motor speed, we extract the frame of length 0.01 s containing
the most detections, corresponding to the moment when the fan blades are normal to the laser.
We estimate the velocity by applying the ML estimator (14) to the detection times within the
frame. In rotational motion, the linear velocity of a point equals the angular velocity times the
radius. Hence, we expect a linear trend between the estimated velocity using Doppler SPL and
the angular velocity recorded by the motor’s encoder. The result shown in Fig. 6 confirms this
prediction, demonstrating Doppler SPL’s ability to estimate velocity accurately across a wide
range of speeds (0 to 15 m/s) using real measurements.

In our final experiment, we capture the entire 3D scene of the rotating fan using Doppler SPL.
Ideally, measurements for all pixels of a moving scene would be captured simultaneously using a
SPAD array and a flash illumination source. However, since we are limited to a single-element
SPAD, we instead use a pair of galvo mirrors to raster scan the laser over the scene with 128×128
pixel resolution. Due to the limited scan rate of our galvos, we capture the full dynamics of
the scene for one pixel at a time before moving to the next pixel. The repetitive nature of the
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Fig. 7. Demonstration of 3D + velocity imaging using Doppler SPL. The scene consists
of a fan with a 10 cm-long blade rotating at 40.3 rad/s (see Photograph). ML estimates
of the signal flux 𝑆, background flux 𝐵, initial distance 𝑧0, and velocity 𝑣 are determined
for detection times grouped into frames of length 8.33 ms (120 fps), synchronized by
an angular encoder connected to the fan motor. The rightmost column combines 𝑆,
�̂�0, and �̂� estimates into point clouds. Points with �̂� ≥ 1 m/s are colored red-blue; all
other points show 𝑆 in grayscale. See Visualization 1 for acquisition and reconstruction
videos.

rotational motion allows us to re-synchronize the measurements across different scan positions
by matching the motor angles from the encoder readings and emulating array measurements, as
in the experiments by Wei et al. [46]. We divide the measurements for each scan location into
contiguous frames at 120 fps. We calibrate 𝑡r for each frame and estimate the scene parameters
using the ML estimator (14). In Fig. 7 we present the ML estimates of each parameter for selected
frames, as well as an approximate photograph aligned to the scene position and a point cloud
that combines the signal flux, distance, and velocity maps into a single representation. A video
reconstruction for all frames is included in Visualization 1.

The range and velocity estimates agree with the expected rotational motion. The fan rotates
such that the top blade moves toward the detector, resulting in negative velocity estimates, and
vice versa. The blade length is approximately 10 cm and the angular velocity measured by
the encoder is 40.3 rad/s, so the edges of the fan blades move at around 4 m/s when they are
perpendicular to the detector, which is confirmed in Frame 1 of Fig. 7. The signal flux estimate 𝑆
is proportional to the reflectivity, so it reveals fine details in the scene such as the text printed
on the cardboard. The background flux estimate 𝐵 partly reveals the shape of the scene due to
multipath reflections from our experimental enclosure. These results demonstrate the potential for
Doppler SPL to simultaneously estimate the signal flux, background flux, range, and velocity for
fast targets, allowing video reconstruction of textured 3D scenes with per-pixel velocity estimates.



5. Conclusion

We demonstrate in this paper that, counter to the conventional wisdom, SPL can directly measure
velocity in addition to range. We derive an ML estimator and show through simulation and
experiments that it is robust to a wide range of SBR levels and velocities. Despite the nonconvex
ML estimation problem, our Fourier-based estimator of the Doppler shift provides a sufficient
initialization to achieve statistically optimal results.

One challenge of SPL is the high data throughput requirements when combining the desire for
high spatial and temporal resolution. This is a particular challenge when considering detector
arrays, which would be necessary for joint range and velocity estimation of non-repetitive scenes.
SPAD arrays with in-pixel time-to-digital converters (TDCs) also have a fixed bit depth that
can be allocated towards high time resolution or wide full-scale range, but not both. A recent
trend in SPL is the development of alternatives to detection time histograms to reduce the data
throughput [67–72]. However, Doppler SPL – as well as compensation for dead times [73–77] and
ultra-wideband single-photon imaging [46] – requires the retention of the absolute detection times,
recorded at high resolution over many pulse periods. Current alternative data representations are
likely incompatible with methods that need to preserve the order of photon detections. Doppler
SPL using SPAD arrays will require the development of both compressive representations and
the corresponding readout architectures to preserve both distance and velocity information.

The introduction of velocimetry for SPL also opens the door to pursuing many of the same
questions that have previously been addressed for distance and reflectivity imaging, such as how
to achieve good velocity accuracy at long range [78], with few photons [7], underwater [16],
through obscurants [57], in real time [55], etc., as well as the effects of non-idealities such as
dead times, afterpulsing, or the drift in the repetition period. Furthermore, the introduction of
radial velocity into the acquisition model suggests the need for a more complete model of how
motion affects SPL acquisition. For imaging applications, transverse components of the full
velocity vector are typically measured via optical flow, which has recently been investigated for
indirect ToF [42,79]. Applications that have lower requirements on spatial resolution, such as
wind measurement [80] or space navigation [81,82], may use three or more laser beam directions
to estimate the full velocity vector. Similar approaches could be adapted to work with Doppler
SPL. In addition, our frame-wise processing approach does not account for mid-frame occlusion,
such as when the fan blade enters a pixel midway during the acquisition, which is mitigated by a
high frame rate. A more sophisticated solution could instead perform online reconstruction from
the detection times directly [66] or use flexible frame durations and incorporate change detection
that accounts for occlusions in dynamic scenes [83, 84]. Finally, a better understanding is needed
of the differences in capabilities between SPL, FMCW, and AMCW for capturing distance and
velocity information given particular frame rates, power constraints, etc.
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