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Abstract

Classification models for electroencephalogram (EEG) data show a large decrease in perfor-
mance when evaluated on unseen test subjects. We improve performance using new regular-
ization techniques during model training. Approach. We propose several graphical models
to describe an EEG classification task. From each model, we identify statistical relationships
that should hold true in an idealized training scenario (with infinite data and a globally-
optimal model) but that may not hold in practice. We design regularization penalties to
enforce these relationships in two stages. First, we identify suitable proxy quantities (diver-
gences such as Mutual Information and Wasserstein-1) that can be used to measure statistical
independence and dependence relationships. Second, we provide algorithms to efficiently esti-
mate these quantities during training using secondary neural network models. Main Results.
We conduct extensive computational experiments using a large benchmark EEG dataset,
comparing our proposed techniques with a baseline method that uses an adversarial classi-
fier. We first show the performance of each method across a wide range of hyperparameters,
demonstrating that each method can be easily tuned to yield significant benefits over an
unregularized model. We show that, using ideal hyperparameters for all methods, our first
technique gives significantly better performance than the baseline regularization technique.
We also show that, across hyperparameters, our second technique gives significantly more
stable performance than the baseline. The proposed methods require only a small computa-
tional cost at training time that is equivalent to the cost of the baseline. Significance. The
high variability in signal distribution between subjects means that typical approaches to EEG
signal modeling often require time-intensive calibration for each user, and even re-calibration
before every use. By improving the performance of population models in the most strin-
gent case of zero-shot subject transfer, we may help reduce or eliminate the need for model
calibration.

Journal of Neural Engineering 2025

(© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






Improving Subject Transfer in EEG Classification
with Divergence Estimation

Niklas Smedemark-Marguliele Ye Wang?, Toshiaki
Koike-Akino?, Jing Liu?, Kieran Parsons?, Yunus Bicer?,
Deniz Erdogmus?

IKhoury College of Computer Sciences, Northeastern University, Boston, MA,
USA

2Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA
3Department of Electrical and Computer Engineering, Northeastern University,
Boston, MA, USA

Abstract. Objective. Classification models for electroencephalogram (EEG)
data show a large decrease in performance when evaluated on unseen test subjects.
We improve performance using new regularization techniques during model
training. Approach. We propose several graphical models to describe an EEG
classification task. From each model, we identify statistical relationships that
should hold true in an idealized training scenario (with infinite data and a globally-
optimal model) but that may not hold in practice. We design regularization
penalties to enforce these relationships in two stages. First, we identify suitable
proxy quantities (divergences such as Mutual Information and Wasserstein-1) that
can be used to measure statistical independence and dependence relationships.
Second, we provide algorithms to efficiently estimate these quantities during
training using secondary neural network models. Main Results. We conduct
extensive computational experiments using a large benchmark EEG dataset,
comparing our proposed techniques with a baseline method that uses an
adversarial classifier. We first show the performance of each method across a
wide range of hyperparameters, demonstrating that each method can be easily
tuned to yield significant benefits over an unregularized model. We show that,
using ideal hyperparameters for all methods, our first technique gives significantly
better performance than the baseline regularization technique. We also show
that, across hyperparameters, our second technique gives significantly more stable
performance than the baseline. The proposed methods require only a small
computational cost at training time that is equivalent to the cost of the baseline.
Significance. The high variability in signal distribution between subjects means
that typical approaches to EEG signal modeling often require time-intensive
calibration for each user, and even re-calibration before every use. By improving
the performance of population models in the most stringent case of zero-shot
subject transfer, we may help reduce or eliminate the need for model calibration.
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1. Introduction

In the field of signal modeling for electroencephalogram
(EEG) and related biosignals, a key challenge is
to train models that can extrapolate to unseen
test subjects. It has been repeatedly observed in
the literature [1] that signal models do not readily
transfer to new subjects. Multiple factors contribute
to this performance gap. First, non-invasive EEG
measurements often include substantial noise and
artifacts [2]. Second, supervised datasets for EEG and
related biophysical measurements may contain noisy
labels. In particular, such experiments often rely on
subjects to adhere to visual timing cues, maintain
attentiveness, or perceive and respond to a stimulus
with a consistent timing; however human subjects
may miss prompts, lose focus, or respond to incorrect
stimuli due to confusion or perceptual errors. As
a result, some data can be assigned the wrong task
labels [3, 4]. Third, the distribution of brain signals
can vary across subjects subjects (sometimes referred
to as domain shift or covariate shift), such that pre-
trained models may not be well-suited for unseen test
subjects [5, 6, 7, 8].

High-level Approach. We introduce two new regular-
ization methods to reduce this performance gap dur-
ing subject transfer. Our methods are based on a pre-
existing framework for subject transfer learning known
as “censoring” [9]. While the benefits of the censoring
framework have been demonstrated empirically in pre-
vious research, we provide new theoretical motivation,
as well as new implementations that are simple and
effective across a wide range of hyperparameters.

To derive a particular regularization penalty,
we first select a generative model for the task and
examine its conditional independence structure. We
choose a statistical relationship that should hold
true in an idealized classifier trained using data
from this generative model, but which may not hold
true in practice. We then convert this relationship
to a regularization term by identifying a suitable
quantity (a divergence such as mutual information
or Wasserstein distance) to measure the relationship,
and defining a simple algorithm for estimating this
quantity during classifier training. By enforcing these
relationships, censoring helps classifiers converge with
less overfitting, despite being trained on a finite, noisy
sample of data.

Ezperiments. We conduct extensive cross-validation
experiments on a large benchmark EEG dataset to
evaluate the effect of the proposed regularization
methods.§ This benchmark dataset consists of
binary EEG responses collected during a rapid serial
visual presentation (RSVP) paradigm [10]. In each
experiment, we train an EEG classifier model on a
subset of subjects, with or without regularization, and
measure the model’s balanced accuracy on a set of
unseen test subjects. To make a thorough statistical
evaluation of our proposed methods, we perform over
60K such experiments, varying hyperparameters such
as the regularization penalty, model structure, as well
the set of training, validation, and test subjects, and
the random initialization of the model.

The goal of these experiments is to measure how
performance varies across hyperparameters, especially
to compare the proposed methods against a baseline
approach in terms of peak performance and stability
of average performance. We measure test performance
after a fixed training schedule, since this gives a direct
comparison between a regularized and unregularized
model. In supplementary materials, we also include
experiments measuring test performance at the
epoch of best validation accuracy; these secondary
experiments evaluate how our techniques work in
combination with early stopping regularization.

Our method includes several important hyperpa-
rameters; an explicit coefficient in our training loss, as
well as several model design choices. Hyperparameters
are typically tuned using a validation set [11]. This can
be done using a variety of off-the-shelf software pack-
ages [12, 13, 14, 15]. Here, we present full results across
a large hyperparameter grid and consider two key per-
spectives. First, we check whether there exist regions
of hyperparameter space that give strong performance.
If so, and if these regions are sufficiently large, then we
may expect that practitioners could successfully ap-
ply our methods on future tasks after hyperparameter
tuning. Second, we check whether performance is con-
sistent across large regions of hyperparameter space. If
S0, then our methods may be useful even when careful
hyperparameter tuning is not feasible (due to limited
data or computational constraints).

§ Code to reproduce all experiments and analyses is available at:
https://github.com/merlresearch/eeg-subject-transfer.
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Results. When comparing the proposed methods to
an unregularized model, we find that there are many
regions of hyperparameters for which our methods
provide significant improvements in balanced accuracy
on unseen test subjects, and significantly improve
generalization (measured as the ratio of test over train
performance).

When comparing the proposed methods to a
baseline censoring method, we find two advantages.
First, we find that, given optimal hyperparameters
for all methods, the density ratio censoring technique
gives significantly higher balanced test accuracy than
the baseline censoring method. This indicates
that, with enough data and computational resources
to perform hyperparameter tuning, the density
ratio method is preferable to the baseline method.
Second, the Wasserstein censoring technique leads to
performance that is significantly more stable across
hyperparameters than the baseline censoring method.
This indicates that, when hyperparameter tuning is
infeasible, the Wasserstein method may be preferable
to the baseline. These benefits are most pronounced
when measured after training for a fixed number of
epochs, but supplementary experiments show these
effects are still significant when training is also stopped
early using validation metrics. This indicate that
our method provides regularization that is partially
separate from the effect of early stopping.
Contributions. The overall contributions of this work
are as follows.

e We provide a novel theoretical motivation for a
range of censoring regularization penalties.

e We derive two simple and efficient new estimation
techniques for enforcing these regularization
penalties, based on density ratio estimation and
Wasserstein distances.

e Using extensive computational experiments, we
find that one proposed technique significantly im-
proves peak performance, and the other technique
significantly increases stability of performance.

1.1. Related Work

Brain-computer interface research often focuses on
restoring communication in individuals with severe
speech and physical impairment (SSPI). Non-invasive
electroencephalography (EEG) is a well-established
modality for this purpose, with a wide variety of
established experimental paradigms. A key limitation
of these applications is the requirement for time-
consuming calibration for new users or before each
recording session. Our work focuses on reducing
this time burden by improving zero-shot transfer
performance.

In query-and-response paradigms, a subject is
queried with a stimulus (such as images on a screen)
and their EEG response is measured. In particular,
we focus on a paradigm called rapid serial visual
presentation (RSVP) [16]. Briefly, a subject first
imagines a target item from a pre-defined set, such
as one letter of the alphabet. The subject is queried
with a sequence of multiple images in quick succession;
each image in the sequence constitutes a binary trial,
and contains one possible item from the pre-defined
set. The subject’s EEG response to each trial provides
evidence about which symbol is desired. A symbol may
be selected from one trial or query sequence, or the
evidence from multiple sequences can be accumulated
to perform recursive Bayesian inference [17]. For
schematic explanations of the RSVP paradigm, see
Figures 1 and 2 of Zhang et al. [10], or Figure 1 of
Won et al. [18].

EEG is used for numerous other communica-
tion paradigms, including other query-and-response
methods such as steady-state visually-evoked poten-
tials (SSVEP) [19], and paradigms without a stimulus
prompt such as motor imagery (MI) [20] or classifica-
tion of emotional affect [21]. Subject transfer learn-
ing is a common challenge across these communication
paradigms and for the modeling of related biosignals
data types such as electromyography (EMG) and elec-
trocorticography (ECoG) [22].

Some work on subject transfer learning has
applied domain adaptation methods, with the goal
of harmonizing datasets from different subjects,
measurement devices, or experimental paradigms. The
goal in these approaches is to be able to train a single
model on these collected datasets [23, 24, 25].

Previous work has investigated the use of censor-
ing penalties in training variational autoencoders [26]
and learning disentangled representations[27]. Other
work has applied censoring penalties to enforce differ-
ent notions of conditional independence, using estima-
tion techniques such as kernel density estimation and
neural critic functions [28]. Our work extends these
approaches by providing a theoretical motivation for
each censoring penalty and providing two new meth-
ods for estimating censoring penalties that are highly
effective and simple to implement.

We compare our proposed methods to a widely-
used baseline technique that wuses a secondary
adversarial classifier model to guide regularization.
We select this baseline because it has been applied
in the same censoring framework that we use to
derive our new methods [9], and is therefore directly
comparable. Furthermore, this baseline is conceptually
simple, easy to implement, and has shown widespread
success and adoption.  Specifically, variations on
this method have been used to harmonize feature
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distributions in a range of transfer learning studies [29,
30, 31]. Many variations of this technique have been
successfully applied for representation learning and
transfer learning in EEG classification [9, 26, 32, 33,
34, 35, 36].

The algorithms we develop here rely on several
techniques from the generative modeling literature.
One technique uses density ratio estimation [37]
to approximately compute a Mutual Information
(MI) term; a similar technique has been previously
demonstrated for other applications [38]. More recent
work has explored other approaches to estimating
MI [39]. Our other technique replaces the use of
Kullback-Leibler (KL) divergence with Wasserstein-
1 distance in order to estimate dependence between
variables. This has been previously described as a
Wasserstein dependency measure [40]; our approach to
computing an estimate of the Wasserstein-1 distance
is based on previous research on sampling realistic
images [41].

2. Methods

Overview. Here, we define the unseen subject
classification task and motivate our approach. We
provide three generative models describing this task.
From these generative models, we select one or more
statistical relationships at a time to enforce during
model training for regularization; we refer to each
choice of one relationship as a “censoring mode.”
We formally define the components of our model
architecture. Next, we introduce several estimation
techniques for measuring the statistical relationships
that we hope to enforce, and show how to train
our model with the desired regularization. Finally,
we describe the computational experiments that we
perform to evaluate our proposed methods.

2.1. Problem Statement and Motivation

Consider a dataset of tuples {(z,y,s)}, with data x €
RP . discrete task labels y € {1,...,C}, and discrete
nuisance labels s € {1,...,5}. The nuisance labels
represent the combination of subject identifier and
session identifier. These tuples will be sampled from
an empirical data distribution (z,y,s) ~ p(X,Y,S),
whose generative model is described below. We seek to
train a classifier on a subset of subjects, and regularize
the model’s training to achieve high accuracy on unseen
test subjects. At test time, we will receive only a set
of data X from the test subject, and must infer the
corresponding set of task labels Y.

Idealized and Real-world Settings. In order to train
a classifier to infer p(Y|X), we can first choose a
generative model describing how we believe the dataset

was produced. If this generative model matches
the true generating process for the dataset, and if
training results in a classifier that is well-fit to the
dataset, then we would expect to find that the trained
classifier exhibits the same statistical relationships
that exist in the generative model. For example, we
would expect that variables which are independent
in the generative model are also independent in the
distribution learned by the classifier. In an idealized
setting where we have infinite, unbiased training data
and a global optimization algorithm, we may expect
this favorable outcome (where the learned model
matches the generative model) with no additional
effort.

In practice, however, we typically encounter
several key limitations. Tasks involving biosignals
such as EEG often have very limited training data
that is both noisy and may not reveal representative
features. Furthermore, typical classifiers are trained
using local optimization strategies, such as using
stochastic gradient descent on a non-convex loss
function. Thus, we do not expect models trained
using only a classification objective to necessarily
obey the correct dependence structure. In particular,
note that models for biosignals classification tasks
may incorrectly learn a distribution of features that
correlates strongly with the subject identifier [32];
essentially a form of overfitting to the training set. This
may explain the common experimental observation of
a “subject transfer gap” - a large decrease in model
performance when tested on unseen subjects [42].

We reduce this subject transfer gap using regular-
ization penalties. By specifying a certain generative
model, we have also implicitly defined a set of statis-
tical relationships such as conditional independences.
We can easily enumerate these relationships, e.g. us-
ing the “Bayes Ball” algorithm [43]. For a pair of
variables A and B, conditioned on a set of zero or
more additional observed variables C, we may iden-
tify that our model implies relationships such as a
marginal independence A 1 B, a conditional indepen-
dence A 1 B|C, or a conditional dependence A } B|C.
Note that the set of all such statements is combinato-
rially large in the number of individual variables of
the generative model; thus it is not feasible to enforce
them all. We select just one or two of these statistical
relationships at a time, and enforce them as a regu-
larization objective. This approach helps the model
converge to a better optimum that will generalize to
unseen subjects with less overfitting. We refer to these
regularization objectives as “censoring” objectives, be-
cause we deliberately choose relationships involving the
model’s latent features and the nuisance labels.
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Figure 1: Graphical models for EEG classification
that motivate different regularization approaches. (a):
the distribution of actions does not differ across
subjects p(Y]S) = p(Y); introducing a latent variable
Z facilitates regularization by enforcing marginal
independence Z L S. (b): actions may vary across
subjects p(Y']S) # p(Y); this correlation suggests
enforcing conditional independence Z L S|Y. (c):
a second latent variable is introduced to capture
nuisance-related information for use inferring task
labels; complementary regularization is performed with
a pair of penalties to enforce independence Z 1L S and
dependence W [ S.

2.2. Graphical Models and Censoring modes.

Figure 1 shows three possible graphical models for
an EEG classification task, each of which motivates
a different regularization strategy.

In Figure 1a, we consider the case of a single latent
variable Z and define the generative process as

p(X,Y, Z) = p(S)p(Y)p(Z]Y)p(X|S, Z). (1)

By introducing a latent variable, we separate the
step of extracting useful features from the step of
predicting task labels, and define a space in which we
can perform regularization. In this first model, the
latent variable should be marginally independent of the
nuisance labels Z L S, giving the first censoring mode
which we refer to as marginal censoring. This model
makes the simplifying assumption that the distribution
of task labels does not differ across different subjects
or sessions, so that there is no direct link between S
and Y (i.e. p(Y]S) =p(Y)).

Figure 1b relaxes this assumption and adds a
connection from S to Y; the resulting generative

process is defined as
p(X.Y, Z) = p(S)p(Y|S)p(Z]Y)p(X|S, Z).  (2)

This dependence could arise in an EEG typing task
where a subject tends to use their preferred letters or
words with higher frequency. The connection between
S and Y means that the latent variable is no longer
marginally independent of the nuisance variable; we
instead enforce conditional independence Z 1 S|Y,
giving our second censoring mode called conditional
censoring. Intuitively, this allows the latent features
to have some information about the nuisance variable,
but no more than the amount already implied by Y.

In Figure lc, to address the possibility that the
nuisance variable may be informative when predicting
the task label at test time, we include a second latent
variable W that captures nuisance-related information.
The generative process becomes

p(X,Y, Z) = p(S)p(Y)p(Z|Y )p(WY, S)p(X|Z, W)(- :
3

Recall that for unseen test subjects, the value of S
will not be available. Furthermore, its value would
not be directly useful to the model, since it comes
from a region of the domain of S that was never
observed during training. Instead, we hope to infer
the second latent variable W, including some nuisance-
related information, from the data X; this may help
the classifier model to better predict Y. In this model,
one latent variable is marginally independent of the
nuisance variable Z L S, while the other is strongly
determined by the nuisance variable, which we merely
describe as W [ S (note that we try to maximize this
dependence in our penalties, even though this notation
requires only a minimal correlation). This censoring
mode is called complementary censoring.

2.8. Model Architecture

To approach the unseen subject classification task,
we construct a task model to classify data and a
censoring model to regularize the task model, as shown
in Figure 2.

For convenience, let p(Z,Y, S) denote the distribu-
tion obtained by sampling from the empirical data dis-
tribution (z,y,s) ~ p(X,Y,S) and then applying the
encoder and projector z = Py, (Fp,(x)). Define p(Z, S)
as the same pushforward distribution after marginaliz-
ing over Y (easily achieved by dropping y after sam-
pling); likewise define p(Z) by marginalizing over both
Y and S.

The task model consists of an encoder Fp, () :
RP — RX that produces K-dimensional hidden
features Z € RE and a classifier Gy, (-) : RE —
A(C) that maps feature vectors to a vector in
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Figure 2: Model Architecture. Trapezoids are
trainable models: encoder Fp,, -classifier Gy,
projection Py, , and censoring model Jy,. Solid circles
are input variables: data X, true task labels Y, and
nuisance labels S. Dashed circles are intermediate
variables: hidden features Z , observed features Z, and
predicted task labels Y. Rectangles are loss terms:
cross-entropy loss Lcg and regularization penalty
Lcensor- Training alternates between updating blue
and green model components; both Lcg and Legnsor
are used to update the main model, while the censoring
model is only trained using Lepnsor (With appropriate
changes such as inverted sign; see below). Jy, receives
additional inputs in some settings.

the C-dimensional probability simplex. The task
model is trained so that predicted label distribution
9 = Go,(Fp,(x)),x ~ p(X) approximates the true
posterior distribution over labels y ~ p(Y|X). The
projection Py, (-) : RE — RX maps hidden feature
vectors to observed feature vectors Z > z; this
is included based on empirical benefits observed in
the contrastive learning literature [44]. In some
experiments, this projection is the identity mapping
with zero parameters, which we refer to as “trivial”
or “direct features”; otherwise, the projection is
“non-trivial” and gives “projected features.” During
training, the projection is updated along with the task
model.

The censoring model Jp,(-) : RT — RL
regularizes the task model. The censoring model’s
input and output dimensions vary between censoring
modes and estimation algorithms. Its input may
include half (T' = K/2) or all of the latent features
(T = K), or it may include one-hot encoded nuisance
values (T'= K +|S]) or task labels (T'= K +|S|+C).
Its output may be a scalar value (L = 1), or a predicted
probability vector over nuisance labels (L = |S]).
Sections 2.6, 2.7, or 2.8 explain the structure of this
model in more detail as well as how it is applied to the
projected features to compute a regularization penalty.
The censoring model’s parameters are updated in an
alternating optimization against the task model.

2.4. Unregularized and Regularized Training

In the empirical risk minimization (ERM) framework,
the risk R(0) is defined as the expected loss of a model
for a particular set of parameters 6, when applied
to samples from a particular dataset and evaluated
using a chosen loss function [45]. For convenience,
let Qy = qg0,(Y|X) represent the label posterior
estimated by our task model Gy (Fy, (X)), and let
Py = p(Y|X) represent the empirical label posterior.
We use the cross-entropy loss Lcg, and thus we can
define the empirical risk as:

R(6p,00) = E
(F G) p(X,Y,S)

{£CE(’PY; QY)] : (4)

To find optimal parameters, we minimize the risk:
minnggc,R(Gp,Gg).

2.5. Deriving Censoring objectives

In the censoring framework, we add a regularization
term Lcpnsor t0 the optimization problem above. Note
this regularization term depends on the parameters g
and Op of the task model’s encoder and projector, and
the parameters 6; of the censoring model. To find
the optimal regularized parameters, we minimize the
regularized risk:

min R(@F, HG) + Amax Lepnsor- (5)
0r,0c,0p 0;

The purpose of this regularization term is to help
enforce one or more statistical relationships that we
expect should hold true, according to the generative
model we assume for the task. To obtain a tractable
penalty, these statistical relationships (such as Z L
S) must be converted into concrete quantities that
we can estimate or compute analytically, such as
a mutual information or a divergence between two
distributions. Then, we can create algorithms to
estimate these concrete quantities. Finally, we can use
these estimates in our regularization objective while
training our model.

Implications of Introducing Hyperparameters Note
that using a regularized objective introduces several
hyperparameters. There is an explicit hyperparameter
A in the modified objective, and discrete model design
choices implicit in the auxiliary loss term Lcgnsor-
Since the overall performance of the model will be
sensitive to these choices, applying our methods to
new tasks will likely require hyperparameter tuning.
Standard techniques for hyperparameter optimization
are well reviewed elsewhere [11]), but the conceptually
simplest approach is to withhold a validation dataset,
perform a grid search in which hyperparameters are
varied one at a time, and select the hyperparameter
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values that yield best performance. While it can be
challenging and resource-intensive to perform tuning
in this way, many techniques exist for adaptively
adjusting search ranges and step sizes on each
parameter, and these techniques are available in off-
the-shelf software toolkits [12, 13, 15, 14]

Here, we perform a large hyperparameter grid
search in order to broadly characterize our proposed
methods. We consider two potential successful cases
for a method with important hyperparameters. On one
hand, if there exist regions of hyperparameter space
that achieve strong performance, then the method will
be useful, provided tuning is feasible. On the other
hand, if tuning is not feasible, then a method that
offers consistent benefit across hyperparameters may
be more useful.

Using divergences to measure statistical relationships.
The three censoring modes that we consider each
reflect a particular statement about the dependence
or independence of variables. We consider two
concrete quantities that can be used to measure
dependence between variables; mutual information
(MI) and Wasserstein-1 (W;) distance. In general,
we can replace a statement about the independence
of two variables A and B with a statement about
the statistical divergence between the joint distribution
p(A,B) and the product of marginal distributions
p(A)p(B). This comparison is often made using
the Kullback-Leibler (KL) divergence, which yields
Mutual Information (MI) I(A; B). We consider several
ways to estimate MI in order to enforce independence
(and dependence) relationships in Section 2.6 and
2.7. However, this comparison may also be made
using other measures; in Section 2.8, we replace KL
divergence with the Wasserstein-1 (W) metric.

2.6. Adversarial Classifier Baseline

As a baseline regularization method, we consider
a well-studied approach where the censoring model
Jo, () is an adversarial classifier (see Section 1.1 for
more background).

Marginal Censoring Algorithm 1 describes how to
compute the regularization penalty in (5) using this
adversarial classifier method for the case of marginal
censoring.  Recall that, in this case, we seek to
enforce Z 1 S; to achieve this, we will compute
a regularization penalty Lcpnsor that approximates
1(Z;8).

The adversarial classifier is trained alongside the
task model in an alternating optimization scheme; its
objective is to use the observed latent features Z to
predict the nuisance label S. Intuitively, if the MI

Algorithm 1: Marginal Censoring using
Adversarial Classifier
Input: Tuples of data, label, nuisance
{(z4s,yi,51)}}L,, encoder Fy,,
projector Py, , adversarial classifier
Jo,
Output: Lcgnsor approximating 1(Z; S)

1 foriel...N do

2 Zi < Fo () // Encode
3 zi < Pyp (%) // Project
4

Li < Lce(qs, (silzi), p(silz))

5 return — avg(L) // Mean CE loss

between these variables is high, the adversary will be
able to predict the nuisance label well, and thus the
adversary’s classification performance can serve as a
proxy measure for the mutual information I(Z;S).
For convenience, here let Qg = qp,(S|Z) refer
to the censoring model’s predicted distribution over
nuisance labels, and let Pg = p(S|Z) refer to
the corresponding ground-truth (one-hot) distribution.
We can see that the censoring model’s cross-entropy
loss Lcg (775, QS) serves as a lower bound on I1(Z;S),
as follows. Note that the MI can be decomposed as
I(Z;S) = H(S)—H(S|Z). The marginal entropy H(S)
is constant during our optimization process, since it
only depends on the data distribution. We can obtain
a bound on the other term, the conditional entropy
H(S|Z), by writing out the definition of cross entropy:

Lcp(Ps, Qs)=H(S|Z)+KL(Ps || Qs) > H(S|Z). (6)
— —

>0

Thus we can relate the censoring model’s cross-entropy
and the MI we seek to minimize:

1(Z;S) = H(S)-H(S|Z) > H(S)-Lce(Ps, Ls). (7)

In order to enforce Z L S, we seek to minimize I(Z;.S);
however if we minimize Lcog(Pg, Qg) as a proxy, we
are actually minimizing a lower bound on the desired
quantity. As shown above, this bound will be close
when KL(Pg || Qg) is small, which may occur when
the censoring model is sufficiently flexible and trained
to convergence.

Training a regularized model using the adversarial
classifier involves alternating between updating the
parameters of the censoring model using

0% = argmin Lcg(Ps, Qs), (8)
05

and updating the parameters of the task model using
(5) where the regularization penalty Lcgxsor is obtained
using Algorithm 1.
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Conditional and Complementary Censoring This
method can also be used for conditional censoring. Re-
call that in conditional censoring we seek to enforce
Z 1 S|Y. This corresponds to reducing the con-
ditional MI I(Z;S|Y) = H(S|Y) — H(S|Z,Y). We
can modify the censoring model so that it takes both
features and task label as input, and tries to predict
the conditional probability over nuisance labels; let
q0,(S|Z,Y) represent the output of this modified cen-
soring model. The first term H(S|Y) is constant with
respect to our optimization process; as before, the sec-
ond term H(S|Z,Y) can be bounded by the cross en-
tropy Lcg (p(S\Z, Y), q0,(S|Z, Y)) using an analogous
derivation. Thus the censoring model’s cross-entropy
again gives us a bound on the desired MI term.

In the case of complementary censoring, recall
that we seek to enforce one independence relationship
Z 1 S and one dependence relationship W [ S; we
achieve this by applying the same censoring model
twice. For the first set of latent features Z, we use
the same procedure as in the marginal censoring case;
for the second set of latent features W, we use the same
procedure and invert the sign of the final regularization
term. This results in an objective of the form

min R(QF, gg) + A maX(£CENS0R,Z - LCENSOR,VV)? (9)
J

Or.,0c,0p 0

where Lcgnsor,z regularizes Z and Legnsor, w regularizes

w.

2.7. Density Ratio Censoring

As described above, in the adversarial -classifier
approach, the adversary’s cross-entropy loss provides a
lower bound on one or more mutual information terms.
Here, the censoring model Jy, (-) is trained to directly
estimate the mutual information.

Density Ratio Estimation We first briefly introduce
a method for density ratio estimation established in
the generative modelling literature [37]. Given two
distributions over the same space p(x) and g(x), we can
estimate the log ratio of their densities log (p(x)/q())
by training a binary classifier C' to distinguish between
samples from p versus ¢q. By minimizing the cross-
entropy objective,

min E [-logo(C(z))] + E [-loga(-C(x))], (10)

¢ p(=) q(z)

where o(z) = 1/(1 4+ e~ #), and C(z) is the logit of
the binary classifier, we obtain an optimal classifier C*
whose output is the desired log ratio C*(x) = log %.
In the case of generating synthetic data, the objective
in (10) is used to train a discriminator between samples
of the true data distribution and the synthetic data
distribution [46, 47, 48, 49].

Algorithm 2: Computing Training Loss for
Density Ratio Estimator

Input: Tuples of data, label, nuisance
{(:Civ Yi, 573)}?;17 encoder FOF?
projector Py, , density ratio estimator
Jo,

Output: Loss for training 6 ;

1 S « permute(S)

2 fortvel...N do

3 Zi — Fp. () // Encode
4 zi Py, (%) // Project
5 LN« —logo(Jg,(z,5)) // p(Z,95)
6 | L7« —loga(=Jy,(2i,8:)) // p(Z)p(S)
7 return avg(Liowr) + avg(Leron) // Eq (12)

Marginal Censoring This density ratio estimation
technique can be directly applied for estimating the
mutual information between two variables; the censor
model Jy, plays the role of the binary classifier C'
above. Algorithm 2 describes how to train this density
ratio estimator model. Recall that mutual information
is defined as an expected log-likelihood ratio

p(Z,5) }
1(Z;8)= E |log——41. 11
(Z:5) p(z,S)[ ® p(Z)p(S) )

The censoring model’s training objective is,

in E [-1 Jo,(Z,8
win B _[=loga(J, (2, 5))

E [—logo(—Js,(Z,9))], 12
B lFloro =, (ZS)), (12)
such that Jg, learns t imate log 22255 Not
b, learns to approximate log -75-5 . Note

that this training objective requires samples from
the empirical joint distribution p(Z,S) as well as
from the product of marginal distributions p(Z)p(S5).
Samples from p(Z)p(S) can be approximated by simply
permuting one of the variables. To see that this
shuffling gives the desired samples, consider first
sampling and encoding a batch of items {Z,Y, S} and
discarding Y,S. This gives an approximate sample
from the marginal distribution p(Z), whose order is
unimportant. Likewise sample items from p(S) by
discarding Z,Y and optionally shuffling. By sampling
one batch and only shuffling S, we perform these two
processes in one step.

The density ratio estimator model can then be
used to approximate mutual information as

I(Z;S)~ E [Jy,(Z,9))].

p(Z,8

(13)

The overall procedure for training with density ratio
censoring involves alternating between updating the
parameters 0 of the censoring using Algorithm 2, and
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Algorithm 3: Marginal Censoring using
Density Ratio Estimator

Input: Tuples of data, label, nuisance
{(z4,vi,8) Y, encoder Fy,,,
projector Py, , density ratio estimator
Jo,

Output: Legnsor approximating I(Z;.S)

1 foriel...N do

2 Zi + Fo.(x;) // Encode
3 zi + Py (%) // Project
4 Li < Jo, (2, 8:) // Eq (13)

5 return avg(L)

updating the parameters of the task model using (5),
where the regularization penalty Lcpnsor i8S given by
Algorithm 3.

Conditional and Complementary Censoring To per-
form conditional censoring using the density ratio esti-
mation method, we adjust the training objective for 6
from (12) as follows. We seek to enforce the conditional
independence Z L S|Y, which corresponds to minimiz-
ing the conditional mutual information I(Z;S|Y"). By
chain rule of mutual information, we have I(Z; S|Y) =
I(Z,Y;S)—1(Y;S). Since I(Y;S) is fixed with respect
to our optimization process, I(Z,Y;S) is a suitable
proxy to minimize. In order to estimate this quantity,
we first adjust the censoring model to accept three in-
puts instead of two. The definition of MI states that

p(Z,Y,S) ]
1(Z,Y;9) := og—————— 14
( ) p(z,Y,s>[ ® p(Z.Y)p(S) (0
We can estimate the inner log density ratio
log % by training the censor model with
i E [-1 Jo,(Z,Y, S
min R 71080 (e, (2., 5))
E —logo(—Jy,(Z,Y,9))]. 15
B [Floa(=d, (Z V.S (15)

This objective requires samples from p(Z,Y)p(95),
which we can obtain by shuffling the nuisance labels
within a batch (analogous to the shuffling trick for the
marginal case).

To perform complementary censoring, we use the
marginal censoring approach twice; once to estimate
I(Z;S), and a second time to estimate I(WW;S).
The resulting objective has the same form as the
complementary censoring objective in (9).

2.8. Wasserstein Censoring

In the previous two sections, we enforce independence
(or dependence) by minimizing (maximizing) an

estimate of mutual information. Here, we replace
mutual information with the Wasserstein-1 (Wy)
distance between a joint distribution and a product
of marginal distributions.

For two variables A and B, the chain rule of
probability states that the joint distribution can always
be expressed as p(A4, B) = p(A)p(B|A). If A and B
are independent, then p(B|A) = p(B), and the joint
distribution p(A, B) equals the product of marginals
p(A)p(B). Whereas mutual information measures the
distance between p(A, B) and p(A)p(B) using the KL
divergence, any other notion of statistical divergence
may be used to similar effect. Following previous
work in the generative modeling literature, we consider
the Wasserstein-1 (W;) metric; this approach has
been previously described as a Wasserstein dependency
measure [40].

Marginal Censoring. To apply this for marginal
censoring, we seek to measure the W; distance between
p(Z,8) and p(Z)p(S). Under the Kantorovich-
Rubinstein duality theorem [50], this distance is

Wi(r,q) = sup E[f(Z,9)]-E[f(Z,5)],

Ifle<1” K
where 7 = p(Z,S) and ¢ == p(Z)p(S).

(16)

Note that the “critic” function f has Lipschitz norm
bounded by 1. As established in the generative
modeling literature, the critic function f can be
implemented using be a neural network with an
arbitrary Lipschitz constant K, giving an estimate of
KW (-,-) that suffices in practice for minimizing or
maximizing Wi (-, -)[41]. We satisfy this requirement in
the standard fashion using spectral normalization [51]
on each layer of the critic network. Note that (16)
requires samples from p(Z)p(S); we use the same trick
as in the Section 2.7 of shuffling the nuisance variable
within a batch to obtain such samples. Algorithm 4
describes how we can use a critic neural network to
estimate the Wasserstein distance in (16) in order
to perform marginal censoring. Note that the critic
model receives two inputs. Training a model using
Wasserstein censoring involves alternating between
updates to the parameters of the critic model 6; and
the parameters of the task model; when updating
the task model, the output from Algorithm 4 is used
directly; when updating the critic model, the same loss
is used with the sign flipped.

Conditional and Complementary Censoring To per-
form conditional censoring using the Wasserstein
method, we adjust the training scheme described above
as follows. First, the critic model is adjusted to accept
three inputs (observed features Z, task labels Y, and
nuisance labels S). Next, we begin with the same logic
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Algorithm 4: Marginal Censoring using
Wasserstein Critic
Input: Tuples of data, label, nuisance
{(z4,vi,8) Y, encoder Fy,,,
projector Py, , Wasserstein critic Jp,
Output: Lcpysor approximating
W1 (p(Z. ), p(Z)p(S))

1 S « permute(S)

2 fortvel...N do

3 Z;i + Fyp. () // Encode
4 zi < Py (%)) // Project
5 LN« Jo (2, 8;) /! p(Z,S)
6 | L7F <« Jp, (2, 5) /1 p(Z)p(S)
7 return avg(LO™7") — avg(LOP)

as in the case of conditional censoring using the den-
sity ratio estimator method (see Section 2.7). For that
method, we showed that the conditional independence
Z 1 S|Y can be enforced by minimizing I(Z; S|Y), and
in turn this can be replaced by minimizing I(Z,Y;.5).
We used this final quantity because we can easily ob-
tain samples from the relevant distributions (p(Z, Y, 5)
and p(Z,Y)p(S)). Here, we replace the use of KL diver-
gence in I(Z,Y; S) with Wy (p(Z, Y, 9), p(Z, Y)p(S)),
which we estimate using a critic neural network as in
Algorithm 4 and Equation (4).

In complementary censoring, the Wasserstein

critic is used twice, once to minimize W1 (p(Z, S), p(Z)p(S),

and once to maximize W1 (p(W, S), p(W)p(S)).

2.9. Computational Experiments

Dataset We use a large publicly-available EEG
dataset for all experiments [10]. This dataset
contains EEG recordings during a rapid serial visual
presentation (RSVP) task with binary trials. Subjects
were presented with a sequence of quickly flashed
images and asked to watch for target images, while
their EEG responses were recorded. FEach stimulus
presentation is associated with a binary label. Data
were recorded at 1000Hz and made available at a down-
sampled rate of 250Hz. The dataset includes just over
1 million binary trials, collected from 64 subjects, each
of whom participated in 2 recording sessions.

Ezxperimental Setup In each experiment, we evaluated
the performance of a single proposed regularized
training method, defined by the parameters listed in
Table 1. Models were trained for a fixed number of
epochs using all sessions of data from 28 subjects for
training, and using all sessions of data from 4 subjects
for testing.

We wused cross-validation to obtain reliable
estimates of model performance. Each experiment was

repeated 100 times using 10 different initial random
seeds and 10 different choices of train/val/test subject
assignment. Note that the dataset contains 64 total
subjects, while each experiment used 32 subjects; thus
the 10 subject splits are partially overlapping. Model
performance was quantified using balanced accuracy,
which is the average of accuracy on each class.

In addition to the data X and binary task labels Y,
experiments require a nuisance label S, computed as an
integer that uniquely identifies a particular subject and
session. Non-target trials were subsampled to achieve
a proportion of 10 non-target trials per 1 target trial
to be similar to real-world RSVP applications such as
assistive typing.

Hyperparameters Explored Table 1 summarizes the
hyperparameters varied across experiments.

Hyperparameter Range Explored
Marginal,
Censor Mode Conditional,
Complementary

Adversarial Classifier,
Density Ratio Estimator,
Wasserstein Critic
0.01, 0.02, 0.03, 0.05, 0.1,
0.2,0.3,0.5,1, 2, 3, 5,
10, 20, 30, 50, 100.0
Trivial (Py, = 1),
Non-trivial
Final Checkpoint,
Best Val Checkpoint

Censor Method

Censor Strength (1))

Projection Type

Evaluation Point

Table 1: Hyperparameters varied across experiments.
Each experiment was repeated 100 times, using 10
random seeds and 10 splits of train, validation, and
test subjects. Censor Mode: choice of graphical
model and statistical relationship to enforce (see
Section 2.2).  Censor Method: technique used to
compute regularization penalty (see Sections 2.6, 2.7,
and 2.8). Projection Type: whether projection network
Py, is the identity function (see Figure 2. Censor
Strength: value of coefficient X in (5). Ewaluation
Point: whether model is evaluated at epoch of best
validation accuracy, or final (100th) epoch.

For marginal and conditional censoring, the
dimension of Z and Z was 128. For complementary
censoring, 64 dimension were used for Z and 64 for
W. Models were implemented and trained using
PyTorch [52] and Pytorch Lightning [53], using the
AdamW optimizer [54] with constant learning rate
1074, default values of 8; = 0.9, 8> = 0.999, and batch
size 1024, for 100 epochs.

The encoder was a 1D convolutional network with
248K parameters 6. The classifier was a multi-layer
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perceptron (MLP) with 50K parameters 6g. When
present, the projection network was an MLP with 66K
parameters Op. The censoring model was an MLP,
with between 48K and 56K parameters 6, depending
on the number of input vectors (Z,S for marginal
censoring, Z,Y, S for conditional, Z,Y and WY with
dim(Z) = dim(W) = 64 for complementary) and the
dimension of the output (dim(S) for the adversarial
classifier method; 1D for the density ratio estimation
and Wasserstein censoring methods).

Cross-Validation To obtain a stable estimate of the
effect of our proposed methods, each experiment was
run 100 times, using 10 cross-validation folds for each
of 10 random seeds. This helped control for variation
due to the particular assignment of subjects into train,
validation, and test sets, as well as variation due
to weight initialization and batch selection during
training. Note that in a single cross-validation fold,
the subjects used for train, validation, and test are all
disjoint.

Statistical Evaluation After collecting the results of
our experiments, we perform several forms of statistical
evaluation.

First, for each choice of hyperparameters, we
obtain a collection of results that we compare to
the unregularized model using two-sided paired t-
tests, since each individual result corresponds to
using the same random seed and same data split for
the the regularized and unregularized models. This
allows us to determine whether each method provides
an advantage over the unregularized model at each
setting.  We did not perform any correction for
multiple hypothesis testing; since tests performed are
not independent, optimal correction is non-trivial. In
particular, the performance of one censoring method
using a certain hyperparameter value A\; may be highly
related to the performance using a nearby value Ay +e.

Second, we compare the peak performance of each
regularization method. We find the optimal value
of A in each censoring mode and pool the results
into three groups (one representing each censoring
method). Since the optimal values of A are not
necessarily the same, a paired may not be suitable;
furthermore, it may not be reasonable to assume equal
variance between groups. Therefore, we compare these
pooled values using two-sided Welch’s t-tests [55]. This
allows us to compare aggregate performance of our two
proposed methods against the baseline method, in the
scenario that careful hyperparameter tuning has been
applied to each.

Third, we compare the wvariability of mean
performance across hyperparameters, by taking the
mean performance value for every value of A\ across all

censoring modes, and pooling these into three groups
(one representing each method). We compare these
values using Levene’s test for unequal variance [56].
This allows us to determine whether the average
performance of our proposed methods is more stable
across hyperparameters than the baseline, in the
scenario that careful hyperparameter tuning would not
be feasible.

3. Results

To highlight the severity of the subject transfer gap
in this dataset, note that the unregularized model
achieves a mean balanced accuracy on train data of
99%, but a mean balanced accuracy on test data of
only 68%.

8.1. Balanced Accuracy across Hyperparameters

Figure 3 shows the distribution of balanced accuracy
on the test set at the end of training. The top
panel shows the baseline method, the middle panel
shows the proposed density ratio method, and the
bottom panel shows the proposed Wasserstein method.
In each panel, a group of boxplots on the X-axis
represents a single choice of censoring mode and
projection type (e.g. marginal censoring with a trivial
projection). Each single boxplot represents a single
value of A in (5), and shows 100 repetitions of the
experiment across different data folds and random
seeds. The unregularized model’s performance is
shown by horizontal black lines; solid lines show lower
quartile, median, and upper quartile, while the dashed
line shows the mean. A two-sided paired t-test was
performed between the 100 balanced accuracy scores
of each censored model and the 100 scores of the
unregularized model, and annotations are added when
the censored model’s mean is larger. No symbol is
added when the unregularized model’s mean is larger,
though in some cases this difference is also significant.
To provide context for our hyperparameter tuning
experiments, we first describe in a simplified manner
the space of possible outcomes that could occur and
highlight some possible outcomes of interest when
evaluating the results of hyperparameter tuning.
Recall that we have a training objective with
two terms (Eq. (5)). At very low values of A, the
regularization loss term is nearly multiplied by 0 and
will have no effect; thus the regularized model should
perform almost the same as the unregularized model.
At intermediate values of A, if the regularization is
beneficial, we may see a peak in performance where
the regularized model outperforms the unregularized
model; we refer to such ideal values as A*; if the
regularization is not helpful, then there will be no such
peak in performance. Finally, for very large values of
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A, the task loss term will no longer have a strong effect
on training, and the model’s performance may decrease
due to the excessive regularization.

In general, when examining the results of such
a hyperparameter sweep, we are interested to see
whether a peak in performance occurs for some \*
(indicating that a regularization technique can be
useful), whether this occurs for a narrow region of A
(indicating the need for very careful hyperparameter
tuning to achieve a benefit) or a broad region
of A (indicating that hyperparameter tuning may
be performed relatively easily), and finally whether
excessive regularization (for A > A*) is harmful to
model performance (indicating whether the technique
could be safely applied even without hyperparameter
tuning).

For all three censoring methods, we observe that
very small A\ values give performance that closely
matches the unregularized model. This indicates the
low end of our A search is sufficiently small to capture
the full range of behavior. Since this low end of A
is almost never below the unregularized model, when
searching for ideal A\* wvalue, it is generally safe to
use any A < A*. Across the three methods, we
observe a peak where performance is improved for
most censor modes, though the ideal value \* varies
between methods and censor modes, indicating that
hyperparameter searching would be required to use any
of these methods on a new dataset. The trend at large
A differs between the methods.

For the density ratio method, the performance at
optimal values A\* is particularly high, and consistent
across censoring modes. In each peak region, there
are several contiguous A values that yield strong
performance benefits; thus we may expect that
hyperparameter searching for a new dataset may be
successful (even when using a log-linear scale over a
very large range, as was done here). Importantly, when
A is too large (meaning that very strong regularization
is applied), the density ratio method can also greatly
decrease performance.

For the Wasserstein method, we again see that
there is a region of peak performance in each censoring
mode for some value A*, and in this region the
method offers a significant benefit compared to an
unregularized model. Interestingly, in most cases, we
do not observe any negative consequences from using
values A > \*.

For the baseline adversarial classifier method, we
see a strong benefit for the ideal A value in the
conditional and complementary censoring modes, but
the peak is reduced or absent in the marginal censoring
mode.

3.2. Comparing Peak Performance across Methods

In Figure 4, we compare the aggregate performance
of each method using optimal hyperparameter tuning.
For each method, we pool values from the best value
of A\ for each censor mode and projection type. This
includes 600 values for each censor method. As in
Figure 3, the unregularized model’s 100 performance
values are shown by horizontal black lines. We compare
each of our proposed methods against the adversarial
censoring baseline using the two-sided Welch’s t-test.
We find that peak performance for the density ratio
method is significantly greater than the baseline (p =
0.0354). We find that peak performance for the
Wasserstein method is slightly lower than the baseline,
though the difference is not significant (p = 0.0624).

3.83. Comparing Variability across Methods

In Figure 5, we group the mean performance from
each censor mode and all values of A, for each
method. This allows us to compare the variability
in mean performance across hyperparameters. To
emphasize the difference from Figures 3 and 4, we
show the individual points (each representing the
mean performance for a certain A, censor mode,
and projection type), and do not display boxplots.
Furthermore, we have only a single corresponding point
for the unregularized model’s performance (the mean
of its 100 runs), shown as a horizontal black line.
To compare variability across groups, we use Levene’s
test of unequal variance. While the variance of the
density ratio method’s mean performance (0.00162)
is about three times lower than the variance of the
adversarial method’s mean (0.00302), this difference is
not significant (p = 0.847). By contrast, we observe
that the variance of the Wasserstein method’s mean
(0.0002) is significantly lower than the adversarial
method (p < 0.001) This observation indicates that
the Wasserstein method’s performance is more stable
across hyperparameter choices, and may indicate that
making large changes to hyperparameters is safer when
using this method.

3.4. Comparing Generalization Ratios across Methods

To measure the effect of regularization on overfitting,
we compute a “generalization ratio,” which we define
to be the balanced accuracy on test data divided by the
balanced accuracy on train data. This ratio describes
the performance decrement that can be expected from
train to test set. A ratio of 1 would indicate that test
performance matched train performance and the model
did not overfit; a ratio less than 1 would indicate that
the model was overfit to the training set.

In Figure 6, we select the best value of A from
each censor mode and projection type (the same
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(c) Wasserstein Censoring

Figure 3: Hyperparameter sweep of balanced test accuracy. (a): adversarial classifier baseline (Sec 2.6). (b):
density ratio censoring (Sec 2.7). (c): Wasserstein censoring (Sec 2.8). Boxplots show 100 trials, varying random
seed and data split. Horizontal black lines show unregularized model performance. When regularized model’s
mean exceeds unregularized model’s, a symbol annotation shows significance from a two-sided paired t-test (-,
p > 0.05; * 0.01 < p < 0.05; 1, 0.001 < p < 0.01; f, p < 0.001). Left violin plot (‘best A values’) shows
pooled results from best A of each censor mode and projection type. Right violin plot (‘all’) shows all data
pooled. Marginal, conditional, complementary: censoring modes (Sec 2.2). Projected: projection model Py, is
non-trivial; direct: Py, is omitted. A: strength of regularization in (5).

collection of experiments used in Figure 4) and plot the We use the two-sided Welch’s t-test to compare
distribution of generalization ratios. The unregularized  performance between groups. In these experiments,
model’s generalization ratios are shown by horizontal —we find that neither method is significantly different
black lines. from the baseline (density ratio p = 0.393; Wasserstein
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Figure 4: Peak performance across methods. Each
method includes results from the A values with best
mean balanced accuracy in each censor mode and
projection type (same values used in left violin plot
of Fig. 3). Horizontal black lines show unregularized
model performance. Annotations show results of
Welch’s t-test (ns, non-significant; *, p < 0.05).
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Figure 5: Stability of performance across methods.
Each point is mean of a single boxplot in Fig. 3 (one
censor mode, projection type, and A value). Horizontal
black line represents mean of unregularized model.
Annotations show significance of Levene’s test for
unequal variance (ns, non-significant; 1, p < 0.001).

p = 0.571). Since we saw in Figure 4 that the
balanced test accuracies for the density ratio method
were significantly higher than for the adversarial
method, this indicates that the density ratio method’s
training accuracies were also higher. Both the baseline
and the newly proposed censoring methods achieve
generalization ratios dramatically higher than the
unregularized model; this shows that all three methods
are able to greatly reduce overfitting.
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Figure 6: Generalization ratio across methods. Each
method includes results from the A values with best
mean balanced accuracy in each censor mode and
projection type (same values used in left violin plot
of Fig. 3 and in Fig. 4). Horizontal black lines show
unregularized model performance. Annotations show
results of two-sided Welch’s t-test (ns, non-significant;
* p <0.05).

4. Discussion

We study the problem of regularized model training
to perform zero-shot subject transfer learning for
EEG classification tasks. We provide a mnovel
motivation for the censoring regularization strategy.
Two assumptions must be met for classifier models
to achieve high performance: the dataset being used
for training must match the assumed generative model
for the task, and the classifier model must learn
the dependency structure implied by this generative
model. When we observe low model performance, this
might occur because one or both of these assumptions
is violated. We provide regularization penalties to
address the second source of error.  Specifically,
for any particular generative model, we select a
statistical relationship that should hold, convert this
to a divergence that should be minimized (here, a
mutual information term or a Wasserstein distance),
and then add this as a regularization term in the
training objective. By considering several graphical
models and their conditional independence structure,
we identify three different statistical relationships that
can be enforced to regularize the model.

In computational experiments on a large bench-
mark EEG dataset, we found that our techniques sig-
nificantly improve performance compared to an unreg-
ularized model across a wide range of hyperparame-
ters. When using optimal hyperparameters, we found
that the benefits of the proposed density ratio method
were significantly greater than the benefits of a baseline
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adversarial classifier method. Across the full range of
hyperparameters explored, we found that mean perfor-
mance of the proposed Wasserstein method was signifi-
cantly more stable than the adversarial baseline. While
all three methods significantly reduce overfitting com-
pared to an unregularized model, we did not find sig-
nificant differences in overfitting between methods.

5. Conclusion

Significance In this work, we provide a theoretically
well-founded, end-to-end procedure to obtain a useful
regularization penalty for an EEG classification task.
The benefits of the proposed methods for unseen
subject transfer learning may help reduce the burden
of calibration time in BCI applications.

Future Work The current techniques may be adapted
to use other quantitative measures of statistical
dependence. When comparing the joint distribution
and product of marginals as a means of estimating
dependence between two variables, we considered
KL divergence (leading to the mutual information
measure) and Wasserstein-1 distance (leading to the
Wasserstein critic technique). Any other measure
of statistical distance or divergence would also be
suitable, such as other f-divergences [57, 58, 59,
Maximum Mean Discrepancy [60], or other methods for
estimating Wasserstein distance and related measures
such as Sinkhorn divergences [61]. Depending on the
experimental context and availability of calibration
data for an unseen subject, models trained using our
method may be fine-tuned using standard techniques,
as reviewed in previous literature [62].

As mentioned previously, there are a variety of
standard techniques and software tools for offline
hyperparameter tuning using validation data. Future
work may consider techniques for online and adaptive
tuning of hyperparameters, to accommodate gradual
changes in data characteristics or user behavior.

Our work may be extended to new tasks by
adjusting the graphical model and following the same
procedure to derive a regularization algorithm.

Limitations The proposed regularization strategies
have several important drawbacks. To obtain the
largest benefit, these techniques should be used with
careful hyperparameter tuning. Such tuning requires
allocating a held-out validation set, and can be
computationally expensive, depending on the size of
models, datasets, and the range of hyperparameters
search.  The proposed Wasserstein method offers
stable performance across hyperparameters; however,
using these or other regularization methods with
inappropriate hyperparameters can cause a decrease
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in task performance. Using these regularization
penalties also incurs a small computational cost
during training, when compared to the unregularized
model, since there is an alternating optimization
with a small secondary model. While the present
study made thorough examination of hyperparameter
sensitivity, only one dataset and one underlying model
architecture were explored. We focus on measuring
the relative performance of different models; absolute
performance could be further improved by tuning
standard hyperparameters such as model architecture
and data preprocessing steps.

References

[1] Dongrui Wu, Yifan Xu, and Bao-Liang Lu.
“Transfer learning for EEG-based brain—computer
interfaces: A review of progress made since
2016”. In: IEEE Transactions on Cognitive and
Developmental Systems 14.1 (2020), pp. 4-19.

[2] Chi Qin Lai et al. “Artifacts and noise removal
for electroencephalogram (EEG): A literature
review”. In: 2018 IEEFE Symposium on Computer
Applications & Industrial Electronics (ISCAIE).
IEEE. 2018, pp. 326-332.

[3] Erin Gibson et al. “EEG wvariability: Task-
driven or subject-driven signal of interest?” In:
NeuroImage 252 (2022), p. 119034.

[4] Anne K Porbadnigk et al. “When brain and
behavior disagree: Tackling systematic label
noise in eeg data with machine learning”. In:
2014 International Winter Workshop on Brain-
Computer Interface (BCI). IEEE. 2014, pp. 1-
4.

[6] Simanto Saha and Mathias Baumert. “Intra-
and inter-subject variability in EEG-based sen-
sorimotor brain computer interface: a review”.
In: Frontiers in computational neuroscience 13

(2020), p. 87.

[6] Jakub Stastny, Pavel Sovka, and Milan Kostilek.
“Overcoming Inter-Subject Variability In BCI
Using EEG-Based Identification.” In: Radioengi-
neering 23.1 (2014).

[7] Chun-Shu Wei et al. “A subject-transfer frame-
work for obviating inter-and intra-subject vari-
ability in EEG-based drowsiness detection”. In:
NeuroImage 174 (2018), pp. 407-419.

[8] Bo-Qun Ma et al. “Reducing the subject variabil-
ity of EEG signals with adversarial domain gen-
eralization”. In: Neural Information Processing:
26th International Conference, ICONIP 2019,
Sydney, NSW, Australia, December 12-15, 2019,
Proceedings, Part I 26. Springer. 2019, pp. 30—42.



REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

Ye Wang, Toshiaki Koike-Akino, and Deniz
Erdogmus. “Invariant representations from ad-
versarially censored autoencoders”. In: arXiv
preprint arXiv:1805.08097 (2018).

Shangen Zhang et al. “A benchmark dataset
for RSVP-based brain—computer interfaces”. In:
Frontiers in neuroscience 14 (2020), p. 568000.

Tong Yu and Hong Zhu. “Hyper-parameter op-
timization: A review of algorithms and appli-
cations”. In: arXiww preprint arXiw:2003.05689
(2020).

Fabian Pedregosa et al. “Scikit-learn: Machine
learning in Python”. In: the Journal of machine
Learning research 12 (2011), pp. 2825-2830.

Takuya Akiba et al. “Optuna: A next-generation
hyperparameter optimization framework”. In:
Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data
mining. 2019, pp. 2623-2631.

James Bergstra, Dan Yamins, David D Cox, et
al. “Hyperopt: A python library for optimizing
the hyperparameters of machine learning algo-
rithms”. In: Proceedings of the 12th Python in
science conference. Vol. 13. Citeseer. 2013, p. 20.

Richard Liaw et al. “Tune: A research platform
for distributed model selection and training”. In:
arXiv preprint arXiv:1807.05118 (2018).

Stephanie Lees et al. “A review of rapid
serial visual presentation-based brain—computer
interfaces”. In: Journal of neural engineering

15.2 (2018), p. 021001.

Niklas Smedemark-Margulies et al. “Recur-
sive Estimation of User Intent From Noninva-
sive Electroencephalography Using Discrimina-
tive Models”. In: ICASSP 2023-2023 IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2023, pp. 1-
5.

Kyungho Won et al. “EEG dataset for RSVP
and P300 speller brain-computer interfaces”. In:
Scientific Data 9.1 (2022), p. 388.

Anthony M Norcia et al. “The steady-state visual
evoked potential in vision research: A review”. In:
Journal of vision 15.6 (2015), pp. 4-4.

Piotr Wierzgala et al. “Most popular signal
processing methods in motor-imagery BCI: a
review and meta-analysis”. In: Frontiers in
neuroinformatics 12 (2018), p. 78.

Edgar P Torres et al. “EEG-based BCI emotion
recognition: A survey”. In: Sensors 20.18 (2020),
p. 5083.

[24]

[26]

[27]

[29]

[30]

[31]

[32]

16

Vinay Jayaram et al. “Transfer learning in brain-
computer interfaces”. In: IEEE Computational
Intelligence Magazine 11.1 (2016), pp. 20-31.

Marco Congedo, Alexandre Barachant, and
Rajendra Bhatia. “Riemannian geometry for
EEG-based brain-computer interfaces; a primer
and a review”. In: Brain-Computer Interfaces 4.3
(2017), pp. 155-174.

Bingchuan Liu et al. “Align and pool for
EEG headset domain adaptation (ALPHA) to
facilitate dry electrode based SSVEP-BCI”. In:
IEEE Transactions on Biomedical Engineering

69.2 (2021), pp. 795-806.

Wei-Long Zheng and Bao-Liang Lu. “Personal-
izing EEG-based affective models with transfer
learning”. In: Proceedings of the twenty-fifth in-
ternational joint conference on artificial intelli-
gence. 2016, pp. 2732-2738.

Ozan Ozdenizci et al. “Transfer learning in
brain-computer interfaces with adversarial varia-
tional autoencoders”. In: 2019 9th International
IEEE/EMBS Conference on Neural Engineering
(NER). IEEE. 2019, pp. 207-210.

Mo Han et al. “Disentangled adversarial transfer
learning for physiological biosignals”. In: 2020
42nd Annual International Conference of the
IEEFE Engineering in Medicine & Biology Society
(EMBC). IEEE. 2020, pp. 422-425.

Niklas Smedemark-Margulies et al. “AutoTrans-
fer: Subject transfer learning with censored
representations on biosignals data”. In: 2022
44th  Annual International Conference of the
IEEFE Engineering in Medicine & Biology Soci-
ety (EMBC). IEEE. 2022, pp. 3159-3165.

Yaroslav Ganin et al. “Domain-adversarial train-
ing of neural networks”. In: The journal of ma-
chine learning research 17.1 (2016), pp. 2096—
2030.

Eric Tzeng et al. “Adversarial discriminative
domain adaptation”. In: Proceedings of the
IEFEE conference on computer vision and pattern
recognition. 2017, pp. 7167-7176.

Mingsheng Long et al. “Conditional adversarial
domain adaptation”. In: Advances in neural
information processing systems 31 (2018).

Ozan Ozdenizci et al. “Adversarial deep learning
in EEG biometrics”. In: IEEFE signal processing
letters 26.5 (2019), pp. 710-714.

Bo-Qun Ma et al. “Depersonalized cross-subject
vigilance estimation with adversarial domain
generalization”. In: 2019 International Joint
Conference on Neural Networks (IJCNN). IEEE.
2019, pp. 1-8.



REFERENCES

[34]

[36]

[39]

[40]

Samaneh Nasiri and Gari D Clifford. “Attentive
adversarial network for large-scale sleep staging”.

In: Machine Learning for Healthcare Conference.
PMLR. 2020, pp. 457-478.

Xingliang Tang and Xianrui Zhang. “Conditional
adversarial domain adaptation neural network
for motor imagery EEG decoding”. In: Entropy
22.1 (2020), p. 96.

He Zhao et al. “Deep representation-based
domain adaptation for nonstationary EEG
classification”. In: IEEE Transactions on Neural
Networks and Learning Systems 32.2 (2020),
pp. 535-545.

Masashi Sugiyama, Taiji Suzuki, and Takafumi
Kanamori. “Density ratio estimation: A compre-
hensive review (statistical experiment and its re-
lated topics)”. In: 1703 (2010), pp. 10-31.

Taiji Suzuki et al. “Approximating mutual infor-
mation by maximum likelihood density ratio esti-
mation”. In: New challenges for feature selection
in data mining and knowledge discovery. PMLR.
2008, pp. 5-20.

Ben Poole et al. “On variational bounds of mu-
tual information”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 5171-
5180.

Sherjil Ozair et al. “Wasserstein dependency
measure for representation learning”. In: Ad-
vances in Neural Information Processing Systems
32 (2019).

Martin Arjovsky, Soumith Chintala, and Léon
Bottou. “Wasserstein generative adversarial net-

works”. In: International conference on machine
learning. PMLR. 2017, pp. 214-223.

Zitong Wan et al. “A review on transfer learning
in EEG signal analysis”. In: Neurocomputing 421
(2021), pp. 1-14.

Ross D Shachter. “Bayes-ball: The rational pas-
time (for determining irrelevance and requisite
information in belief networks and influence di-
agrams)”. In: arXiv preprint arXiv:1301.7412
(2013).

Kartik Gupta et al. “Understanding and Im-
proving the Role of Projection Head in
Self-Supervised Learning”. In: arXiv preprint
arXiv:2212.11491 (2022).

Vladimir Vapnik. “Principles of risk minimiza-
tion for learning theory”. In: Advances in neural
information processing systems 4 (1991).

[47]

17

XuanLong Nguyen, Martin J Wainwright, and
Michael I Jordan. “Estimating divergence func-
tionals and the likelihood ratio by convex risk
minimization”. In: IEEE Transactions on Infor-
mation Theory 56.11 (2010), pp. 5847-5861.

Sebastian Nowozin, Botond Cseke, and Ryota
Tomioka. “f-gan: Training generative neural sam-
plers using variational divergence minimization”.
In: Advances in neural information processing
systems 29 (2016).

Yuchen Pu et al. “Adversarial symmetric varia-
tional autoencoder”. In: Advances in neural in-
formation processing systems 30 (2017).

Benjamin Rhodes, Kai Xu, and Michael U Gut-
mann. “Telescoping density-ratio estimation”.
In: Advances in neural information processing
systems 33 (2020), pp. 4905-4916.

Cédric Villani et al. Optimal transport: old and
new. Vol. 338. Springer, 2009.

Takeru Miyato et al. “Spectral normalization
for generative adversarial networks”. In: arXiv
preprint arXiv:1802.05957 (2018).

Adam Paszke et al. “Pytorch: An imperative
style, high-performance deep learning library”.
In: Advances in neural information processing
systems 32 (2019).

William Falcon and The PyTorch Lightning
team. PyTorch Lightning. Version 1.8.6. Mar.
2019. por1: 10 . 5281 / zenodo . 3828935. URL:
https : / / github . com / Lightning - AI /
lightning.

Ilya Loshchilov and Frank Hutter. “Decoupled
weight decay regularization”. In: arXiv preprint
arXiv:1711.05101 (2017).

Bernard L Welch. “The generalization of ‘STU-
DENT"S’ problem when several different popula-
tion varlances are involved”. In: Biometrika 34.1-
2 (1947), pp. 28-35.

Howard Levene. “Robust tests for equality of
variances”. In: Contributions to probability and
statistics (1960), pp. 278-292.

Alfréd Rényi. “On measures of entropy and
information”. In: Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Contributions to
the Theory of Statistics. Vol. 4. University of
California Press. 1961, pp. 547-562.

Paul Rubenstein et al. “Practical and consis-
tent estimation of f-divergences”. In: Advances
in Neural Information Processing Systems 32
(2019).


https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

REFERENCES

[59]

[62]

Sreejith Sreekumar and Ziv Goldfeld. “Neural
estimation of statistical divergences”. In: The
Journal of Machine Learning Research 23.1
(2022), pp. 5460-5534.

Arthur Gretton et al. “A kernel two-sample test”.
In: The Journal of Machine Learning Research
13.1 (2012), pp. 723-773.

Aude Genevay, Gabriel Peyré, and Marco Cu-
turi. “Learning generative models with sinkhorn
divergences”. In: International Conference on
Artificial Intelligence and Statistics. PMLR.
2018, pp. 1608-1617.

Wonjun Ko et al. “A survey on deep learning-

based short/zero-calibration approaches for
EEG-based brain—computer interfaces”. In: Fron-

tiers in Human Neuroscience 15 (2021), p. 643386.

18



6. Appendix

6.1. Effect of Censoring on Generalization Ratio

As described in Figure 6, we quantify the effect of
regularization on model generalization by computing
a “generalization ratio,” which we define as the ratio
of balanced accuracy on test data divided by balanced
accuracy on train data.

Figure 7 shows plots of balanced test accuracy
on the vertical axis, and generalization ratio on the
horizontal axis. Due to space constraints, results of
only a few selected model hyperparameters are shown.
Each plot shows the performance of a single censoring
method for one choice of mode and projection type;
this corresponds to one X-axis group from Figure 3.
Just as with Figure 3, the colors indicate changing
values of . Here, the unregularized model (with A = 0)
is shown in red. Note that the Y-axis coordinates here
show the same values shown in Figure 3, while the
X-axis shows the generalization ratio. For each value
of A, colored points show the 100 independent reruns
across data folds and random seeds; the colored box
represents the interquartile range (IQR) of the points
along each axis. The unregularized model (A = 0) is
also shown in each plot.

An ideal model would have a large Y-axis value,
indicating strong test performance, and a large X-
axis value, indicating that it retains its training
performance when transferring to unseen test subjects.
As )\ increases, we observe that the distribution
for all three censoring methods moves towards the
upper-right, indicating improvements in both metrics.
Beyond an ideal value of A, the distributions change
direction and move towards the lower-right, indicating
that regularization is too strong. Specifically; excess
regularization brings both training and test accuracy
down at about the same rate. In general, a
method which can be easily tuned would show gradual
movement on this plot; we observe that the adversarial
baseline has larger jumps in X-axis coordinate as A
changes, though we have not quantified this effect.

6.2. Experiments Combining Censoring with Farly
Stopping

In our main experiments, models were trained for a
fixed number of epochs, and we compared performance
of each regularization method to the unregularized
model, and to each other. Here, we also present
results showing the performance of models when early
stopping is also performed using a held-out validation
set. Early stopping is a commonly used regularization
technique that is both easy to apply and very effective,
though it requires sacrificing a portion of training
data, and therefore may sometimes be infeasible. The
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mode, without FPy,. Points show 100 trials, varying
random seed and data split. Boxes show interquartile
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purpose of these experiments is to explore whether
the regularization benefits of each method censoring
are subsumed by the regularization benefits of early
stopping. These experiments may be informative
when considering whether it is useful to try censoring
regularization in conjunction with early stopping (or
other regularization techniques). Note that early
stopping based on validation performance requires
sacrificing a portion of training data, and may not be
applicable in some settings.

Whereas in the main experiments models were
trained on data from 28 subjects and tested on data
from 4 subjects, in these early-stopping experiments,
models were trained with all sessions of data from
24 subjects for training, 4 subjects were withheld for
validation, and 4 subjects were used for testing. The
model checkpoint from the epoch of best validation
performance was used for testing. Training lasted up
to 30 epochs (since the point of optimal early stopping
almost always occurs before this).

6.2.1.  Balanced Accuracy across Hyperparameters
Figure 8 shows results analogous to Figure 3, but
models were tested using the checkpoint of best
validation performance. This optimal early stopping
already provides a strong regularization to both
unregularized and censored models, reducing the
potential incremental benefit of censoring.

The most apparent trend here is that the benefit
of censoring has been greatly reduced, because the
“unregularized” model is now actually regularized by
early stopping, and achieves much higher balanced
accuracy on test data.

As before, we are also interested in the shape
of performance as the hyperparameter A varies. We
again see that, for small enough values, performance is
mostly unaffected; and that for excess values of A, task
performance suffers due to over-regularization. In this
case, we find that the density ratio method still shows
significant benefits in all censor modes and projection
types, compared to the model with only early stopping.
For the adversarial censoring baseline, there are a few
choices of censor mode, projection type, and A that give
significant benefit over the early-stopped model. For
Wasserstein censoring, there are many cases that give
a non-significant benefit, but none that give significant
benefit. Another difference between these results and
the main results is that the point where A becomes
too large has been shifted left; this indicates that, in
the presence of another form of regularization, it is
important to err on the side of smaller A when tuning
hyperparameters.

We make quantitative comparison of the peaks
and variability of these trends below, but these results
generally shows that the density ratio method has the
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highest peaks, the Wasserstein method has the least
variability across A.

6.2.2. Comparing Peak Performance across Methods
Figure 9 shows results analogous to Figure 4, but
when censoring was combined with optimal early
stopping as described above.  From each censor
mode and projection type, we selected the A\ value
giving the best mean test performance. These pooled
results were compared using the two-sided Welch’s t-
test. Here, we find the same trend as observed in
our main experiments. The density ratio method
gives significantly higher peak performance than the
adversarial baseline (p = 0.030), while the Wasserstein
method’s peak performance was not significantly
different from the adversarial baseline (p = 0.411).

6.2.3.  Comparing Variability across Methods Fig-
ure 10 shows results analogous to Figure 5, but using
both censoring and optimal early stopping. We group
the mean performance from each censor mode and all
values of A\ for each method to measure variability in
the mean performance across hyperparameters.

We observe the same trends here as in Figure 5.
The variability of mean performance for the adversarial
baseline method and density ratio method are not
significantly different (p = 0.971), but variability is
significantly lower for the Wasserstein method than the
baseline (p = le — 5). This demonstrates again that
performance of the Wasserstein method is more stable
across hyperparameters than performance of the other
two censoring methods tested.

6.2.4. Comparing Generalization Ratios across Meth-
ods Figure 11 shows results analogous to Figure 6,
when both censoring and optimal early stopping are
applied. We select the best value of A\ from each cen-
sor mode and projection type (the same collection of
experiments used in Figure 9) and plot the distribution
of generalization ratio. The model with early stopping
only is shown by horizontal black lines.

We use the two-sided Welch’s t-test to compare
performance between groups. Here, we find that
generalization ratios for the density ratio method are
significantly higher than for the adversarial baseline
(p < le — 6), while ratios for the Wasserstein method
are significantly lower than the baseline (p = 0.0097).
Since early stopping provides useful regularization,
models have stopped training earlier, at a point when
balanced train accuracy is lower. This effect is
particularly strong for the density ratio method (its
train accuracies are particularly reduced), resulting in
improved generalization ratio. Here, we see that the
model with only early stopping achieves much better
generalization ratios than in the main experiments,
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Figure 8: Balanced test accuracy using censoring and optimal early stopping. (a): adversarial classifier baseline
(Sec 2.6). (b): density ratio censoring (Sec 2.7). (c): Wasserstein censoring (Sec 2.8). Boxplots show 100 trials,
varying random seed and data split. Horizontal black lines show reference performance with early stopping only.
When censored model’s mean exceeds this reference, a symbol annotation shows significance from a two-sided
paired t-test (-, p > 0.05; *, 0.01 < p < 0.05; f, 0.001 < p < 0.01; £, p < 0.001). Left violin plot (‘best A values’)
shows pooled results from best A of each censor mode and projection type. Right violin plot (‘all’) shows all data
pooled. Marginal, conditional, complementary: censoring modes (Sec 2.2). Projected: projection model Py, is
used; direct: Py, is omitted. \: strength of regularization in (5).

though all three censoring methods still offer an
additional benefit.
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stopping only. Annotations show results of two-sided
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Figure 10: Stability of performance across methods
using censoring and optimal early stopping. Each point
is mean of a single boxplot in Fig. 8 (one censor mode,
projection type, and A value). Horizontal black line
represents mean performance with only early stopping.
Annotations show significance of Levene’s test for
unequal variance (ns, non-significant. §, p < 0.001).
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