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Abstract—Large-scale audio tagging datasets like AudioSet usually
suffer from severe class imbalance comprising many audio examples for
common sound classes but only few examples of rare sound classes.
The latter, however, may yet be equally or even more important to
recognize. Therefore, it is common practice to sample examples from rare
classes more frequently during training. At the same time, the effects of
such balancing on a model’s training and tagging performance are still
little understood. In this work, we investigate how it affects training
convergence and tagging performance. We consider varying degrees of
balancing and investigate whether classes converge simultaneously or
if there is a benefit from selecting different balancing rates for each
class. Furthermore, we investigate data efficient oversampling, which
keeps audio files from rare classes in memory, and repeats them in
close succession over multiple batches, minimizing data loading from
disk. Finally, we show that for AudioSet, the optimal amount of class
balancing is different when fine-tuning a model pre-trained via self-
supervised learning, versus training a supervised model from scratch.

Index Terms—audio-tagging, class balancing, AudioSet

I. INTRODUCTION

Audio tagging systems apply time-invariant class labels to audio
recordings based on the present sound events, and multiple class
labels can be applied to each audio clip. Progress in audio tagging
research accelerated significantly with the release of AudioSet [1], a
large dataset of approximately 10-second-long audio recordings col-
lected from YouTube videos and human-annotated from a list of 527
audio class labels. Many widely-used pre-trained audio representation
models were trained on the audio tagging task of AudioSet [2]–
[5], and it is the standard task when extending successful network
architectures originally developed for the ImageNet classification task
in computer vision to the audio domain [2], [4]. Because of its
importance in the field, many researchers have focused attention on
subtleties in the recipes used for training AudioSet tagging models.

These training improvements include data augmentation [6], [7],
knowledge distillation [8], [9], and label enhancement [10], among
others. However, because there is a large skew in the available number
of audio samples for each of the 527 classes in AudioSet, balancing
the class distribution [11] has emerged as a promising way to improve
performance by ensuring that trained models are not overly biased
towards the most commonly occurring classes. Class balancing on
AudioSet is further motivated because the commonly used evaluation
set was designed to be balanced, i.e., contain an equal number of
examples per class, although some class imbalance remains due to
the multi-label nature of the dataset (i.e., many audio files have
labels corresponding to both rare and prevalent classes). Furthermore,
performance on the evaluation set is usually reported as the mean of
per class average precisions (mAP), so both prevalent and rare classes
contribute equally to overall performance. Thus, sampling training
samples in a manner that encourages a uniform distribution over
AudioSet labels is expected to better match both the test distribution
and the evaluation metric, leading to higher performing models. Class
balancing, by either oversampling training examples or weighting the
loss function for different classes, has also been widely used in other

fields such as vision [12], [13], audio onset detection [14], and source
separation [15].

While multiple works have demonstrated benefits of class balanc-
ing strategies for audio tagging performance [3], [4], [10], [16], it
was pointed out in [10] that class-wise performance on AudioSet is
often not well correlated with the number of samples in the training
set containing that class label, or the quality of the class labels, which
were also collected by the AudioSet authors. Furthermore, a recent
paper by many of the AudioSet creators [17] shows that the benefits
of class balancing are fragile and do not extend to another dataset
with similar class distribution characteristics. They also showed
that, while some classes benefited from balanced sampling during
training, others exhibited a drop in performance, and the performance
improvements from balancing were not significantly correlated to the
prior probability on the presence of that class in the training set.
However, [17] did note that models with class balancing converged
more quickly, likely because fewer training batches were required to
see all classes a sufficient number of times.

Given this conflicting evidence on the benefits of naive class
balancing for AudioSet, we further study its impact in this work. We
first train a set of models with different amounts of class balancing
to investigate their impact on performance and convergence. We
further propose and evaluate an approach for determining class-
specific oversampling amounts. Moreover, we investigate a local
oversampling approach, which keeps oversampled training samples in
memory and repeats them in close succession over multiple batches.
This minimizes data loading operations (which can be a bottleneck in
modern training pipelines) compared to global oversampling, which
naively reads oversampled files from disk every time they are used.

An additional aspect of class balancing for AudioSet that, to the
best of our knowledge, has yet to be studied, is how conclusions
on its effectiveness differ for training a model from scratch using
supervised learning, versus the currently in vogue training paradigm
that first pre-trains a model using self-supervised learning, and then
uses supervised fine-tuning [5], [18]–[22]. On experiments fine-tuning
the BEATs [5] model, we show that stronger class balancing (i.e,
making the class distribution more uniform) is more effective for
fine-tuning compared to training a supervised model from scratch.

II. CLASS BALANCING FOR AUDIO TAGGING

A. Preliminaries

Following the notation from [17], we denote by N the total number
of training audio files and by Nk the number of files where sound
class k is present. An imbalance ratio can be computed as

ρ =
Nmax

Nmin
=

maxk Nk

mink Nk
(1)

Typically ρ ≫ 1, e.g., in the case of AudioSet the training set’s
imbalance ratio is ≈15 k meaning the most frequent sound class
“Music” (≈1M examples) appears 15 k times more often than the
least frequent class “Toothbrush” (67 examples).
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Fig. 1. Ratio of clips containing each class k after oversampling using the
balancing exponent approach from Eq. (3).

To overcome such imbalance, different balancing strategies have
been employed. A common approach is full oversampling [3], [4],
[10], where training examples are sampled uniformly across classes.
Consequently, an example containing a rare class is sampled more
often than examples of more common classes. Denoting by cj,k a
binary tag label indicating absence (cj,k = 0) or presence (cj,k = 1)
of sound class k in the j-th audio example, this is analogous to
oversampling the j-th audio example by a factor of

mj =
∑

k:cj,k=1

Nmax

Nk︸ ︷︷ ︸
rk

, (2)

where the class oversampling rk is set such that each class has the
same pool size of Nmax examples.

To prevent excessive oversampling of audio examples which have
multiple tags, the authors of [17] oversample an example only for
the rarest present sound class rather than oversampling it for each of
the present classes. Further, they introduce a balancing exponent β
allowing to control the degree of oversampling and eventually round
a class’s oversampling rk to an integer number:

mj = max
k:cj,k=1

⌊(Nmax

Nk

)β
⌉

︸ ︷︷ ︸
rk

. (3)

As an alternative, we propose the following linearly interpolated
oversampling scheme:

mj = max
k:cj,k=1

1 + α
(Nmax

Nk
− 1

)
︸ ︷︷ ︸

rk

(4)

which does interpolate between no oversampling (α = 0) and full
oversampling (α = 1), with α ∈ [0, 1] denoting the balancing rate.
Note that we do not round the oversampling to an integer number
here. Instead, we implement a non-integer oversampling by randomly
selecting ceiling or flooring of mj in each epoch such that the
expected oversampling of audio j over epochs matches mj .

Note that all the above oversampling strategies follow the scheme

mj = aggregate
k:cj,k=1

rk, (5)

with different methods for aggregation and for computing rk.
Given clip oversampling mj , ∀j, the total number of oversampled

examples N ′, the number of examples N ′
k in which class k is present,

and eventually the class prior p′k, i.e., the probability of a class being
present in a training example, can be derived as

N ′ =
∑
j

mj , N ′
k =

∑
j

mj · cj,k, p′k = N ′
k/N

′. (6)

Figures 1 and 2 plot the prior (or rate) p′k over classes k (with
classes sorted according to Nk) for different values of the balancing
exponent β and the balancing rate α, respectively, for AudioSet. It can
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Fig. 2. Ratio of clips containing each class k after oversampling using the
linear interpolation approach from Eq. (4).

be seen that without balancing (β = 0.0 and α = 0.0), class priors
differ by multiple orders of magnitude. When using full oversampling
(β = 1.0 and α = 1.0), most classes have an approximately equal
rate p′k, with the “noise” in the rates resulting from the multi-label
nature of AudioSet, as repeating any audio clip with multiple labels
will impact the rate of all its classes. Changing β and α allows for
controlling the degree of balancing.

Note that, for α = 10−2, class priors already almost match the
distribution of full oversampling. This is because for most classes
Nk ≪ Nmax · 10−2 so that rk ≈ αNmax

Nk
when α ≥ 10−2. Further

increasing α hence mainly scales up the dataset size without changing
class distribution much. As found in [10], the size of the oversampled
data with full oversampling is over 400M. In practice, this results
in many audio clips, especially those from less-oversampled classes,
to never be seen in training. In contrast, using α = 10−2, which
gives almost the same class priors, results in a dataset size of
only approx. 6M (×3 compared to original dataset size). Using a
balancing exponent of β = 0.8 instead to obtain a nearly balanced
class distribution (c.f. Fig. 1), also yields a huge dataset size of over
100M clips, making our proposed interpolation approach favorable
for strong balancing (i.e., for larger values of α resp. β).

B. Tuned Oversampling

When it comes to finding the ideal degree of oversampling (α
or β), we hypothesize that this may vary across classes, with some
classes benefiting from stronger balancing than others. Hence, we
find for each class different optimal class priors p̂′k originating from
different values for α or β.

Then, the question arises how to derive corresponding class over-
sampling r̂k, ∀ k so that the desired class priors can be simultaneously
achieved in a single training run. To do so, we first express compu-
tation of p′k from rk (Eqs. (5)-(6)) as a matrix operation as follows:

p′ = CTm/N ′, with m = Ar, (7)

where m = (mj)
N
j=1, r = (rk)

K
k=1, and p′ = (p′k)

K
k=1 are vectors,

C is the (N ×K) matrix of tag labels cj,k ∈ {0, 1}, and A is the
(N ×K) matrix representing aggregation from Eq. (5).

For a given p̂′ and N̂ ′, with the latter being the desired number
of examples in an epoch, we can obtain r̂k as the solution of the
constrained optimization problem

minimize ||p̂′ −Wr̂/N̂ ′||2

subject to 1TAr̂ = N̂ ′ and r̂k ≥ 1 ∀ k. (8)

with W=CTA and 1 being a vector of ones so that 1TAr̂ =
∑

j m̂j .
However, when aggregation in Eq. (5) is the max operation, as in
Eqs. (3) and (4), A itself depends on r and hence cannot be computed
beforehand to solve the optimization problem in Eq. (8). Therefore,
we use the mean operation here so that A is independent from r.
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Fig. 3. Evaluation results for trainings with different degree of balancing by using different values for α from Eq. (4).

C. Data Efficient Oversampling

The common way of implementing oversampling is by simply
duplicating the examples in the dataset, which results in the j-
th example being loaded mj times (on average) across different
training steps of an epoch. The duplicates of an example are randomly
scattered across the epoch, which we refer to as global oversampling.

However, with the constantly increasing training data throughput
due to hardware and software improvements, there is also an in-
creasing need for efficient data loading pipelines to not overload data
servers and network connections.

Therefore, we propose a more data efficient way of oversampling,
which we refer to as local oversampling in the following, and which
temporally keeps a loaded example j in memory and reuses it
mj times in close succession over different batches. This further
allows for bundling multiple examples with different mj in larger
files, which makes data loading more efficient compared to loading
many small files. In contrast, this is not easily realizable with global
oversampling, as examples with different mj have to be reloaded
multiple times. Hence, local oversampling loads data less frequently
and more efficiently. On the counter side, it does not uniformly scatter
duplicate examples over an epoch as global balancing does, the effects
of which are to be evaluated in this work.

D. Class Balancing for Fine-tuning

Recently, self-supervised pre-trained models have been shown
to achieve state-of-the-art performance in audio tagging [5], [20],
[22]. In these approaches, models are first pre-trained on AudioSet
using self-supervised objectives such as masked spectrogram mod-
eling [21]. Then, the model is fine-tuned for the target task with
a supervised objective. Interestingly, when fine-tuning on AudioSet,
this approach appears to outperform models trained with a supervised
objective from scratch even without using any additional data.

With this new paradigm of training audio tagging models, the
question arises as to what extent the requirements for class balancing
differ between the fine-tuning of a pre-trained self-supervised model
versus fully supervised training of a model.

III. EXPERIMENTS

We conduct a set of experiments to evaluate the impact of balancing
on the training of state-of-the-art Transformer-based audio tagging
models. Particularly, we want to answer the following questions:

1) How does balancing impact convergence of the model?
2) How does the ideal degree of oversampling vary across classes?
3) Can we achieve competitive performance using the data efficient

local oversampling instead of global oversampling?
4) How does the impact of balancing differ when fine-tuning a

pre-trained self-supervised model vs. fully supervised training?
For the first experiments, we consider the training of an state of the

art Audio Spectrogram Transformer (AST) [4], [23] model following

the Vision Transformer Base (ViT-B) architecture from [24] and using
pre-trained weights from the vision domain1 as weight initialization.
As classification head, we use a two-layer MLP with BatchNorm [25]
and GeLU [26] activation function in the hidden layer. As input
feature map, we extract a log-mel spectrogram using a short-time
Fourier transform (STFT) window size and shift of 60ms and 20ms,
respectively, and 128 mel filters up to a maximum frequency of
16 kHz yielding a feature map size of 500× 128 for a 10 sec audio
clip. Patch size is chosen to be 16×16 with a patch stride of 10×10.

All experiments are performed using AudioSet with approx. 2M
and 20 k clips in the official training and evaluation sets, respectively.
From the training data, we further split three disjoint validation folds
by randomly selecting 60 examples per class or, for classes with
less than 300 examples, 20% of the available examples, which yields
validation folds with approx. 20 k examples.

For training, we use a batch size of 128 clips, AdamW [27]
optimizer with a weight decay of 10−4 and a cosine learning rate
(lr) annealing schedule with lrmax = 10−4, lrmin = 10−6, and warm
restarts [28] every 20 k training steps. We further apply mixup, time-
and frequency-warping data augmentation [29] as well as structured
patchout [23] to counteract memorization of oversampled clips.

To explore the impact of different degrees of balancing on the
training process we conduct experiments with global balancing and
linearly interpolated oversampling according to Eq. (4) with differ-
ent α ∈ {0.0, 10−3.5, 10−3, 10−2.5, 10−2}. We choose the linear
interpolation approach here as it does not overly increase the dataset
size when considering strong balancing as discussed in Sec. II-A.
The same set of experiments could similarly be conducted using
the balancing exponent from Eq. (3) for interpolation. Mean average
precision (mAP) is used as performance metric as is common for
audio tagging on AudioSet.

In the left plot of Fig. 3, we report, for each α, the mAP
performance on the evaluation set for checkpoints every 20 k training
steps, i.e., after each lr annealing cycle. Each training was repeated on
each of the three cross validation folds and averages and standard de-
viations of mAP values are reported. We further show, for each α, the
performance obtained by using stochastic weight averaging (SWA) of
multiple checkpoints as an asterisk of the same color. The checkpoints
used for SWA were determined for α={10−2.5, 10−3, 10−3.5, 0.0}
by finding the training steps giving on average the best validation
mAP, which are steps 100 k, 200 k, 280 k and 420 k, respectively, and
selecting the respective 3, 5, 7, and 9 checkpoints centered around it
for SWA. We chose larger number of checkpoints for smaller α to
take advantage of their flatter performance curves.

It can be seen that stronger balancing drastically reduces the
required training time. Here, a mAP of 46.5% can be achieved with
only 120 k training steps and SWA when using α = 10−2.5 (red
asterisk), which poses and important finding along the lines of recent

1https://huggingface.co/timm/deit3 base patch16 384.fb in22k ft in1k

https://huggingface.co/timm/deit3_base_patch16_384.fb_in22k_ft_in1k
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TABLE I
EVALUATION RESULTS FOR RE-TRAINING ON ALL TRAINING DATA AFTER
HYPER-PARAMETERS WERE TUNED USING HELD-OUT VALIDATION DATA.

Oversampling type α = 10−3.5 r̂k β = 0.2
(Eq. (4)) (Eq. (8)) (Eq. (3))

mAP 47.76 % 47.94 % 48.20 %

efforts to balance performance versus energy consumption [30], [31].
For best performance, however, only light balancing and longer
training appears better. Using α = 10−3.5 with 360 k training steps
and SWA achieves 47.1% mAP (dark blue asterisk).

We now evaluate if and how the ideal degree of balancing varies
across classes. For that, we derive for each α an SWA model from
the same range of training checkpoints, namely the 7 checkpoints
centered around step 280 k. From these models, each corresponding
to different α, we then select for each sound class individually
the model that gives best validation AP performance for that class,
eventually giving us “ideal” α̂k and p̂′k for each class k, for the
considered SWA range. The corresponding average performance gain
by this selection is +1.0%pt. and +0.21%pt. mAP on the validation
and evaluation sets, respectively, suggesting that the selection may
not generalize very well. The resulting p̂′k are shown in Fig. 4.

Considering the pink curve (“smoothed”), which is a moving
average of the raw black curve (“best on valid”), and comparing
it to the distribution obtained for α = 10−3.5 (blue curve), it can
be observed that rare classes tend to favor lighter balancing, with
the tuned class priors falling below the blue curve, whereas the
more prevalent classes tend to favor stronger balancing, i.e., tuned
class priors higher than the blue line. This suggests that, when using
stronger oversampling for the rare classes, the model may tend to
overfit to these classes earlier than for the more prevalent classes.

To investigate whether we can train a better single model with
these supposedly better class priors, we derive oversampling rates
r̂k that yield class priors p̂′k by solving the optimization problem in
Eq. (8). We further notice that the shape of the pink curve is well
matched by the class distribution from Fig. 1 when using a balancing
exponent of β = 0.2 (dark blue curve). This may indicate that the
interpolation method from Eq. (3) may be better suited in this case
when applying only light balancing.

Therefore, we compare model trainings using the tuned r̂k, linearly
interpolated oversampling with α = 10−3.5, and interpolated over-
sampling with a balancing exponent of β = 0.2, respectively, where
we train on the whole training data now without held-out validation
set. For each, we show performance of SWA model (averaging 7
checkpoints centered around training step 280 k) in Table I. While the
tuned r̂k improve performance only insignificantly (+0.18%pt) over
using α = 10−3.5, the oversampling interpolation with a balancing
exponent β = 0.2 improves mAP by +0.44%pt. Note, however, that
for stronger balancing it is still advisable to use linear interpolation
to avoid scaling up the dataset size by orders of magnitude.

We turn now to the third question above, namely whether we can
use local balancing for improved data loading efficiency instead of
global balancing. To answer it, we run the same set of trainings
we conducted previously to investigate training convergence (left
subplot of Fig. 3) but use local balancing instead as described in
Section II-C. We again derived checkpoints for SWA from validation
results. Evaluation results are shown in the middle plot of Fig. 3. It
can be seen that, for light balancing rates (green and blue curves), the
local balancing approach does achieve results similar to or slightly
better than global balancing. For stronger balancing (red curve),
however, performance deteriorates. With clips (especially from rare
classes) then being repeated many times, it makes intuitive sense
that clustered repetitions will perform worse than scattering a large
number of duplicates across the whole epoch. As we previously found
that light balancing does give better results though, local balancing
presents a good option for improving data loading efficiency.

Finally, as many recent state-of-the-art models are obtained by
fine-tuning a pre-trained self-supervised model [5], [20], [22], we
investigate how balancing affects the convergence of a model during
fine-tuning. To do so, we consider the fine-tuning of the BEATs
model [5], which we initialize with the pre-trained “BEATS iter3”
checkpoint2. The BEATs architecture is also Transformer-based,
matching ViT-B in terms of number of Transformer layers and layer
widths, but it does differ in some details. For example, it does not use
pre-norm and uses a convolutional positional embedding. Its log-mel
spectrogram input feature map uses a short-time Fourier transform
(STFT) window size and shift of 25ms and 10ms, respectively, and
128 mel filters up to a maximum frequency of 8 kHz. Further, the
patch size and stride are both 16×16 (non-overlapping patches). We
use the same classification head as with ViT-B here.

We again run trainings for different oversampling interpolations
α and present results in the right plot of Fig. 3. Note that, due to
an increased training time, we only run a single training for each α
with one of the validation folds. As before, checkpoints for SWA are
determined on validation results. While performance obtained with
α = 0.0 and α = 10−3.5 are similar to our previous results, it
can be seen that we see significantly higher performance when using
stronger balancing with α ≥ 10−3. We argue that this is due to the
fact that, with longer training, the model diverges more from the pre-
trained model, thereby losing the advantage of the pre-training. When
performing fine-tuning with α = 10−2 (red curve) on the whole
training set, i.e., without held-out validation set, and performing SWA
on the same range of checkpoints as determined beforehand with
held-out validation set, a mAP of 48.15% is achieved.

IV. CONCLUSIONS

In this paper, we investigated different aspects of class balancing
for audio tagging. We showed that, when training state-of-the-art
AST models on AudioSet, best performance can be achieved by
only employing light oversampling of rare classes. However, stronger
balancing can significantly speed up training convergence thus saving
development time and energy consumption. We further found it
advantageous to not overly oversample rare classes, as it possibly
leads to early overfitting for these classes. Moreover, we proposed
a data-loading-efficient local balancing scheme that yields similar
or even better performance than conventional balancing for light to
medium balancing rates. Finally, we found that for fine-tuning of
pre-trained self-supervised models, stronger balancing and shorter
training time gives superior performance.

2https://github.com/microsoft/unilm/tree/master/beats

https://github.com/microsoft/unilm/tree/master/beats
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