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Abstract—Emitted sounds may drastically change when using different
microphones, when properties of the sound sources change, or when
recording in different acoustic environments. Ideally, anomalous sound
detection (ASD) systems should be able to generalize well to unseen
target domains by only providing a few target domain samples to
define how normal data samples sound like, without needing to re-train
or modify the system. In contrast with the source domain, for which
many normal training samples are available, accurately estimating the
underlying distribution of normal data after a domain shift based on very
few samples is challenging. This usually leads to a mismatch between
the corresponding anomaly scores of source and target domains and
significantly reduces performance. In this work, we propose a framework
for re-scaling anomaly scores based on the ratio between the cosine
distance of a test sample to a normal reference sample and the distances to
this sample’s next-closest neighbors in the reference set. In experimental
evaluations, it is shown that the re-scaled anomaly scores reduce the
domain mismatch for multiple domains. As a result, we obtain new
state-of-the-art performances on the DCASE2020 and DCASE2023 ASD
datasets.

Index Terms—anomalous sound detection, domain generalization, ma-
chine condition monitoring

I. INTRODUCTION

The goal of semi-supervised anomalous sound detection (ASD)
is to detect anomalous sounds by using normal training data only,
as anomalous data is rare and thus costly to obtain. The main
difficulties of the task as set up in the DCASE challenge for acoustic
machine condition monitoring [1]–[5] are that the target sounds are
not isolated but occur within complex acoustic scenes that may
be very noisy, and anomalies are usually just subtle differences
away from normal sounds. ASD systems need to be sensitive to
the anomalies but insensitive to unrelated sound events and noise.
Furthermore, there is no inherent property highlighting anomalous
data as anomalies are entirely application-dependent: sound events
that are normal for one application may be anomalous for another and
vice versa. On top of that, raw audio data is very high-dimensional,
making a direct comparison between different recordings difficult.
To overcome all these issues, the main idea is to learn to project
audio data into an embedding space where normal data is clustered
and anomalies substantially differ from the normal data [6]. The
state-of-the-art approach to train such an embedding model is to
use an auxiliary classification task based on meta information or
self-supervised learning (SSL). This helps to be less sensitive to the
noise by closely monitoring the target sounds in an acoustic scene
[7]. Ideally, the system should be able to generalize well to unseen
domain shifts of the data caused by modifying any properties of the
target sounds, the acoustic environment, or the recording equipment.
In practice, users of ASD systems do not want to re-train or tune their
systems but only provide a few recordings in the new conditions to
show the system how normal data should sound like.

After projecting the data into an embedding space, one can measure
the distance between embeddings belonging to different recordings
or estimate the distributions of normal training data to distinguish

between normal and anomalous sounds. For individual domains, the
performance improves with more accurate estimates of the distri-
butions of the embeddings [8], e.g., by using a Gaussian mixture
model (GMM) [9]–[11] or the Mahalanobis distance [12]. However,
for target domains with only a few training samples, it is impossible
to estimate the underlying distribution, leading to very different
distributions of the anomaly scores of the source and target domains
(domain mismatch), which degrades performance when using a single
decision threshold. In this multi-domain case, using a simple distance-
based nearest-neighbor approach leads to anomaly scores that are
more similar and thus also to better performance than when trying
to estimate the distribution [13].

In this work, we introduce a novel and highly effective re-scaling
approach of cosine-distance-based anomaly scores; in multiple ex-
periments, we investigate different design choices as well as the
robustness of hyperparameter settings, and show that the proposed
approach significantly and consistently improves resulting ASD per-
formance by reducing the domain mismatch of anomaly scores; based
on this approach, we obtain a new state-of-the-art performance on the
DCASE2020 and DCASE2023 ASD datasets.

II. ANOMALY SCORE CALCULATION

The goal of anomaly detection systems is to map a sample x to
an anomaly score A(x) ∈ R such that normal samples have a low
anomaly score and anomalous samples have a high score. Then, a
decision threshold can be applied to detect anomalous samples. In
this section, we will first discuss multiple methods for computing
an anomaly score, then move on to the description of the proposed
approach. As most state-of-the-art ASD systems first map the audio
recordings (or derived features) into an embedding space by using a
neural network, we will equate the sample x with its embedding in
the embedding space X .

A. Baseline approach

When trying to detect anomalous samples among a set of test
samples Xtest in an embedding space, one of the simplest approaches
is to just compare the distance of each test sample to a set of normal
reference samples Xref, such as the training set Xtrain. Here, the
assumption is that normal test samples will have a much smaller
distance than anomalous samples to the closest normal training
sample. Angular margin losses tuned through training on auxiliary
classification tasks are known to lead to good ASD performance.
In this case, the embedding space is on the unit sphere and thus a
distance between two samples can be calculated using the cosine
distance. Then, for example, the anomaly score of test sample
x ∈ Xtest can be defined as the distance to its nearest neighbor in a
set Xref as

ANN
cos (x,Xref) := min

y∈Xref
Acos(x, y)

:= min
y∈Xref

1

2
(1− ⟨x, y⟩) ∈ [0, 1],



where ∥x∥2 = ∥y∥2 = 1 for elements x, y on the unit sphere. One
can also easily apply this to multiple domains by just considering the
distance to all samples in the combined source and target domains.

In the case of multiple data domains, this simple cosine distance
based approach is known to lead to better performance than more
sophisticated approaches based on estimating the distribution of
the normal embeddings, such as GMMs [13]. The reason for this
performance degradation is that, while it is certainly possible to
improve the performance on the source domain [10], it is impossible
to accurately estimate the distribution in the target domain when only
a few target-domain samples are available and the dimension of the
embedding space has a magnitude of several hundreds. In contrast,
the simple nearest neighbor approach does not require any training
or distribution estimation and thus works equally well (or bad) in
both domains. Possible extensions of this approach are to not only
measure the distance to a single nearest neighbor but to multiple
closest ones (i.e., k-nearest neighbors (k-NN)) [12], [14] or to apply
k-means to the source domain samples first and then to measure the
distance to these means and the original target domain samples [13].
Both approaches lead to slight improvements in performance as they
are more robust to per-sample noise.

B. Proposed re-scaling approach

Although the previously discussed baseline approach works rea-
sonably well to detect anomalies, it has one major problem: namely,
the approach still assumes that the distances to the normal training
samples behave similarly for the source and target domains. However,
one would assume that the target domain samples have less dense
distributions, i.e., are more scattered, and thus have higher distances
between themselves than source domain samples, particularly as
the target domain samples are not used for training the embedding
models. Moreover, the distributions of normal samples can look
very irregular in high dimensions with several differently scaled
overlapping clusters corresponding to sub-classes of the normal data
spaces, even for the source domain alone. This leads to a strong
mismatch between the distributions of the anomaly scores belonging
to different domains or sub-classes, and trying to detect anomalous
samples with a single decision threshold is highly sub-optimal. Our
goal here is to develop an approach for re-scaling the anomaly
scores that reduces the mismatch between the scores by being less
dependent on the absolute distances to specific reference samples. For
speaker verification, score re-scaling approaches are known as score
calibration [15], [16] and also help to improve the performance.

We propose two such approaches, the first one based on k-NN
and the second on global weighted ranking pooling (GWRP) [17] as
also used in [18]. Both approaches rely on the idea of comparing
the distance between the test sample and a reference sample with the
distances between that reference sample and its closest neighbors.
For a given x ∈ Xtest, we denote by y ∈ Xref a reference sample
and by yk the k-th closest sample to that reference sample in Xref,
for k = 1, . . . ,K. Our proposed re-scaled anomaly scores are then
defined as

Ak-NN
scaled(x,Xref |K) := min

y∈Xref

Acos(x, y)
K∑

k=1

Acos(y, yk)

∈ R+, (1)

AGWRP
scaled (x,Xref | r) := min

y∈Xref

Acos(x, y)
|Xref|−1∑
k=1

Acos(y, yk) · rk−1

∈ R+, (2)
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Fig. 1. Illustration of the proposed anomaly score re-scaling approach Ak-NN
scaled

for K=3. On the left, the distance to the closest neighbor and the distances
to this neighbor’s closest neighbors are very different, leading to a high re-
scaled anomaly score. On the right, all distances are similar, leading to a small
re-scaled anomaly score.

where K ∈ N+ denotes the number of next closest samples to con-
sider and r ∈ [0, 1] the weight factor, both acting as hyperparameter.

As illustrated in Fig. 1, the intuitive idea of the proposed re-
scaling is to balance the distances to samples belonging to clusters
with different densities, which are likely to correspond to different
domains or sub-classes. The distance between a test sample and a
given reference sample is normalized based on the local density
of that reference sample, expressed as the mean distance to its
local neighborhood. The reference sample with lowest renormalized
distance to the test sample is used to defined the anomaly score.
Thus, if two reference samples are similarly close, we favor the
sample that is more isolated, i.e., the one that probably belongs to
the target domain. Essentially, high-density samples are interpreted
as further apart from other samples, while low-density ones are
interpreted as closer, compared to what they would be according to
the unnormalized distances. It shall be noted that the normalization
factors for each reference sample can be pre-computed as they only
depend on the reference set and thus there are no losses in efficiency
during inference.

k-NN and GWRP start from the same points (when K = 1 and r =
0), and work from different directions. k-NN directly picks a limited
number of neighbors to consider, while giving them equal weights.
GWRP, on the contrary, considers every data point in the domain,
but emphasizes closer ones by imposing exponentially decreasing
weights. In the end, they intersect again when K in k-NN equals to
the number of data points (k = N ), and r = 1.

It shall be emphasized that the proposed approach has several
advantages. First, the anomaly scores are not directly related to
the absolute distances between different samples as only relations
between distances are considered. Thus, the domain mismatch be-
tween the distributions of anomaly scores is significantly reduced.
Furthermore, no training or estimation of a distribution, which is
difficult in high-dimensional spaces, is needed to compute an anomaly
score because the scores effectively only depend on the distance to the
local neighborhood of the closest reference sample of a test sample.

C. Relation to a local outlier factor-based approach

In this section, we discuss local outlier factor (LOF) [21] in more
detail as it is in some ways related to our proposed approach. LOF
detects anomaly outliers by assessing how isolated a data point is
with respect to a pre-determined number K of nearest neighbors. It
calculates a notion of local density for the test sample x and each of
its K nearest neighbors. The outlier factor that is used as an anomaly
score is defined as the ratio of the local density of x to those of x’s



TABLE I
HARMONIC MEANS OF ALL AUCS AND PAUCS OBTAINED WITH DIFFERENT RE-SCALING APPROACHES OF THE ANOMALY SCORES. MEAN AND

STANDARD DEVIATION OVER TEN INDEPENDENT TRIALS CORRESPONDING TO TEN TRAINED EMBEDDING MODELS ARE SHOWN. TO ALLOW FOR BETTER
COMPARISON, THE SAME TEN TRAINED EMBEDDING MODELS ARE USED FOR ALL EVALUATIONS. HIGHEST NUMBERS IN EACH COLUMN ARE IN BOLD.

DCASE2023 development set [4], [19], [20] DCASE2023 evaluation set [4], [19], [20]

single model ensemble single model ensemble

re-scaling parameter reference samples Xref source domain target domain both domains both domains source domain target domain both domains both domains

- - source means and target samples 68.6± 1.2% 66.3± 1.0% 67.4± 0.6% 68.7% 68.1± 1.4% 62.7± 1.0% 65.2± 0.6% 67.7%
- - all samples 68.6± 1.1% 64.9± 1.0% 66.7± 0.8% 67.9% 72.3± 1.6% 59.0± 0.9% 65.0± 0.8% 66.8%

LOF K= 8 all samples 65.4± 0.9% 58.4± 1.6% 61.7± 1.1% 63.6% 73.7± 1.2% 55.1± 1.9% 63.0± 1.4% 64.1%
LOF K= 16 all samples 65.1± 0.9% 58.3± 1.7% 61.5± 1.2% 62.8% 71.9± 1.5% 53.3± 2.2% 61.2± 1.4% 63.2%

k-NN K= 8 source means and target samples 67.5± 1.3% 68.5± 1.3% 68.0± 0.7% 69.6% 65.3± 2.0% 62.0± 1.5% 63.6± 1.3% 66.6%
k-NN K= 16 source means and target samples 67.6± 1.1% 68.5± 1.4% 68.0± 0.7% 69.6% 66.5± 1.1% 63.4± 1.1%63.4± 1.1%63.4± 1.1% 64.9± 0.8% 67.5%
k-NN K= 8 all samples 68.7± 1.2%68.7± 1.2%68.7± 1.2% 68.2± 1.0% 68.4± 0.8%68.4± 0.8%68.4± 0.8% 72.0%72.0%72.0% 73.9± 1.7%73.9± 1.7%73.9± 1.7% 62.1± 1.6% 67.4± 1.3% 71.2%
k-NN K= 16 all samples 68.2± 1.5% 68.5± 0.8% 68.3± 0.8% 71.7% 73.8± 1.6% 62.7± 1.4% 67.8± 1.2%67.8± 1.2%67.8± 1.2% 71.2%

GWRP r = 0.85 source means and target samples 68.1± 1.2% 68.3± 1.6% 68.2± 0.8% 70.0% 67.0± 1.4% 62.8± 1.1% 64.8± 0.9% 67.3%
GWRP r = 0.90 source means and target samples 67.6± 1.3% 68.3± 1.5% 67.9± 0.8% 69.7% 67.0± 1.0% 63.2± 1.0% 65.0± 0.7% 67.4%
GWRP r = 0.95 source means and target samples 67.7± 1.4% 67.9± 1.6% 67.8± 0.8% 69.5% 67.1± 1.3% 63.1± 0.8% 65.0± 0.5% 67.4%
GWRP r = 0.85 all samples 68.5± 1.2% 68.3± 1.0% 68.4± 0.8%68.4± 0.8%68.4± 0.8% 71.8% 73.9± 1.7%73.9± 1.7%73.9± 1.7% 62.4± 1.4% 67.7± 1.2% 71.3%71.3%71.3%
GWRP r = 0.90 all samples 68.2± 1.4% 68.5± 0.9% 68.3± 0.8% 71.6% 73.8± 1.7% 62.6± 1.5% 67.8± 1.2%67.8± 1.2%67.8± 1.2% 71.2%
GWRP r = 0.95 all samples 68.1± 1.6% 68.6± 0.9%68.6± 0.9%68.6± 0.9% 68.3± 0.8% 71.5% 73.5± 1.5% 62.9± 1.5% 67.8± 1.3%67.8± 1.3%67.8± 1.3% 71.1%

K neighbors. Thus, there is a clear connection between our method
and LOF. Both methods’ decision boundaries take into account the
distance with target points’ neighbors, and do not require any implicit
or explicit clustering. However, LOF computation relies on identify-
ing the closest reference neighbors to the target sample before density
estimation. Hence, closer (in unnormalized distance) but high-density
neighbors would end up included in the computation. Conversely,
our proposed method identifies the closest reference sample after
normalization. Hence, a far-away (in unnormalized distance) but low-
density reference could end up being selected for anomaly scoring.
Additionally, we only consider a single reference sample while LOF
averages over many, risking the undesirable scenario where samples
from both source and target domains are combined. Furthermore, our
approach does not involve computing the local density of a given
test sample, which for the case where the test sample is anomalous
may not be well defined. Finally, in previous works on ASD, LOF
was used to compute anomaly scores [11], [12], but mostly in large
ensembles or as a cherry-picked computation method for individual
machine types, without any noticeable gains in overall performance.

III. EXPERIMENTAL EVALUATIONS

A. ASD system design

For all experimental evaluations in this work, we used a modified
version of the state-of-the-art ASD system presented in [22] to map
the audio signals into an embedding space. The system consists of two
feature branches based on the magnitude of the entire spectrum, i.e.,
the discrete Fourier transform of the audio signal, and the magnitude
short-time Fourier transform (STFT) with a Hann window of size
1024 and a step size of 512 samples. The STFT features are further
processed by subtracting the temporal mean to remove stationary
frequency information and make both feature branches more different
while also denoising the data. Next, a different convolutional neural
network is applied to each feature branch to map the features
into a 256-dimensional embedding space. Both embeddings are
concatenated to obtain a single embedding. The model is trained
for 5 epochs with a batch size of 64 using Adam [23]. The training
objective is an auxiliary classification task based on identifying meta
information such as machine types, machine IDs, and additional
parameter settings. Here, each combination of provided values is
considered as a separate class. Furthermore, feature exchange [22],
an SSL approach that randomly exchanges the embeddings of both
feature branches between two training samples and asks the model to
distinguish between original and modified embeddings, is used as an
additional training objective. Note that a single model is used for the

entire dataset and only normal data belonging to the source domain
is used for training the embedding model. The ensembles used for
the experimental evaluations in this work are obtained by averaging
the anomaly scores of ten individual models. More details about the
system can be found in [13] and [22].

In contrast to the original version of the system, no statistics
exchange [24] was used to train the model as we noticed only
marginal or even no performance gains. Furthermore, the sub-cluster
AdaCos loss [10] was replaced with the AdaProj loss [25] to slightly
improve the performance. The AdaProj loss is an angular margin
loss that learns entire class-specific linear sub-spaces on the unit
sphere instead of trying to project a sample as close as possible to
its corresponding class centers.

B. Experimental results

1) Comparison of re-scaling approaches: First, we compared
different design choices for re-scaling the anomaly scores. The results
can be found in Table I. We also verified that using LOF leads to
worse performance, and that applying k-means in the source domain
to obtain reference samples, as proposed in [13], improves the perfor-
mance when not re-scaling the scores. Interestingly, when re-scaling
the scores, the opposite is true: using means as reference samples
leads to much worse results than directly using the training samples.
For the evaluation set, the performance slightly degrades when using
the means. A possible explanation is that individual samples are not
close enough to individual means and thus measuring the distance
is less meaningful. Furthermore, different means may also represent
different sub-classes of the source domain data corresponding to
minor domain shifts within the source domain, resulting in anomaly
score distributions that are not necessarily well-aligned. This is also
supported by the fact that most of the performance gains for the eval-
uation set are obtained on the source domain. We also experimented
with domain-dependent score standardization approaches similar to
the one presented in [33], but in our experiments this did not lead to
any improvements in performance.

2) Effect of varying the constant r of GWRP: Figure 2 shows the
influence of the value of the constant r on the GWRP performance.
In general, the model favors higher values of r, and the advantage of
higher r (> 0.6) is more obvious on the evaluation set than on the
development set. Particularly, the performance curve reaches its peak
within the range of 0.85 to 0.95, thus we propose to make r = 0.9
the default parameter setting. When all the data points have equal
contribution, the performance is prone to bias caused by distant and/or
outlier points possibly belonging to very different clusters. Reflected



TABLE II
HARMONIC MEANS OF ALL AUCS AND PAUCS OBTAINED WITH DIFFERENT ASD SYSTEMS. WHENEVER APPLICABLE, MEANS OF ALL INDEPENDENT

TRIALS ARE SHOWN. HIGHEST NUMBERS IN EACH COLUMN ARE HIGHLIGHTED WITH BOLD LETTERS.
DCASE2020 dataset [1], [26], [27] DCASE2023 dataset [4], [19], [20] DCASE2024 dataset [5], [19], [20]

ASD system number of trials dev. set eval. set arithm. mean dev. set eval. set harm. mean dev. set eval. set harm. mean

baseline (single model) 10 92.1% 91.5% 91.8% 67.4% 65.2% 66.3% 60.5% 55.1% 57.7%
baseline (ensemble) 1 93.3% 92.4% 92.9% 68.7% 67.7% 68.2% 61.6% 56.2% 58.8%
proposed approach (single model) 10 90.6% 89.9% 90.3% 68.3% 67.8% 68.0% 60.6% 56.6% 58.5%
proposed approach (ensemble) 1 93.6%93.6%93.6% 92.7% 93.2%93.2%93.2% 71.7%71.7%71.7% 71.2% 71.4%71.4%71.4% 63.4%63.4%63.4% 58.6%58.6%58.6% 60.9%60.9%60.9%

Wilkinghoff [10] (single model) 1 90.7% 92.8% 91.8% − − − − − −
Wilkinghoff [10] (ensemble) 1 − 94.1% − − − − − − −
Liu et al. [28] 1 89.4% − − − − − − − −
Wilkinghoff [13] 5 − − − 62.8% 63.0% 62.9% − − −
Hou et al. [29] 1 88.8% 92.0% 90.4% − − − − − −
Wilkinghoff [22] (single model) 5 − − − 64.2% 66.6% 65.4% − − −
Wilkinghoff [22] (ensemble) 5 − − − − 70.9% − − − −
Han et al. [30] 1 − − − 64.3% − − − − −
Zhang et al. [31] 1 − − − − 71.3% − − − −
Jiang et al. [32] 1 90.9% 94.3%94.3%94.3% 92.6% 64.2% 74.2%74.2%74.2% 68.8% − − −
Wilkinghoff [25] 10 − − − 62.9% 64.5% 63.7% − − −
Saengthong et al. [33] 1 74.7% − − − 73.8% − − − −
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Fig. 2. Effect of varying the GWRP constant r on the performance when
re-scaling the anomaly scores with the proposed approach. Mean results over
ten independent trials are shown.

in Fig. 2, the performance at r = 1 is much worse than the baseline,
thus a value of r < 1 should be ensured. Another observation to be
made is that simply using the second closest neighbor alone (r = 0)
leads to strong performance gains.

3) Effect of varying the number K of k-NN: In Fig. 3, we show
the performance as a function of K. On the evaluation set, the
performance of k-NN drops for the first few values of K, and starts
reaching the peak from around K = 16, followed by a long tail that
eventually meets the ending point of GWRP (r = 1). Compared to
GWRP, k-NN shows a higher performance upper bound. Although
GWRP and k-NN start and end at the same points, k-NN has a much
flatter peak than that of GWRP, making it easier for hyperparameter
tuning. Our experiment runs on a dataset containing 1000 datapoints
(N = 1000). In this case, [16, 32] is easily a safe range for K.
Considering performance, efficiency, and hyper-parameter tuning, our
findings suggest k-NN as the better choice for most use cases.

4) Comparison to the state of the art: As a final experiment,
we verify the effectiveness of the proposed re-scaling approach
on the DCASE2020 and the DCASE2024 ASD datasets [1], [5],
and compare its performance to the state-of-the-art systems on the
DCASE2020 and DCASE2023 datasets [1], [4]. For all experiments,
no parameters have been changed or tuned except for the number of
training epochs. For the DCASE2020 dataset and the DCASE2024
dataset, 15 epochs and 10 epochs were used, respectively. Otherwise,
the ASD system was used and evaluated as presented above, with (or
without) a k-NN re-scaling using K = 16 next nearest neighbors.

The results can be found in Table II and the following observations
can be made. Most importantly, it can be seen that the re-scaling
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Fig. 3. Effect of varying the number K for k-NN on the performance when
re-scaling the anomaly scores with the proposed approach. Mean results over
ten independent trials are shown.

consistently improves the resulting performance in domain-shifted
conditions, especially in the target domain (cf. Table I), for both
the single models and the ensembles. Even for the challenging
DCASE2024 ASD dataset, for which the baseline system does not
perform well, the performance still substantially improved. When
evaluating the effect on the performance on a dataset without do-
main shifts, i.e., the DCASE2020 dataset, one can observe that the
performance of the individual models degrades but, interestingly,
the ensemble still performs similarly well regardless of whether
the re-scaling approach is applied or not. Overall, the performance
we obtained is very similar on the development and evaluation
splits of individual datasets, indicating that not much fine-tuning of
hyperparameters is needed to obtain a good performance. Last but
not least, the experimental results show that the presented system
outperforms the state-of-the-art systems on both the DCASE2020 and
DCASE2023 ASD datasets.

IV. CONCLUSIONS

In this work, a simple yet effective re-scaling approach to calibrate
anomaly scores of different data domains was presented. This is
achieved by computing the ratio between the distance of a test sample
to a given reference sample and the distances of this reference sample
to its nearest neighbors, and using the minimum of these normalized
distances over the reference set as an anomaly score. In experiments
conducted on multiple datasets in domain-shifted conditions, this
re-scaling approach was shown to significantly improve the perfor-
mance. As a result, our proposed system achieves a new state-of-the-
art performance on the DCASE2020 and DCASE2023 ASD datasets.
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