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Abstract
The data reuploading trick, originally proposed for universal quantum computing, enables
the universal approximation property. We recently extended this concept to achieve uni-
versal non-quantum photonic computing using practical photonic integrated circuits (PICs)
composed solely of 50:50 beam splitters and phase shifters, eliminating the need for nonlinear
photonic devices. In this approach, input data are repeatedly embedded as rotation angles.
In this presentation, we explore strategies to enhance the performance of this method by
increasing the number of layers and optical channels (lanes) in various configurations. For
a classical two-dimensional, four- class classification problem of wavy lines, we evaluated a
two-mode class-embedding circuit with output, a four- mode configuration, and four stacking
methods of two-mode circuits with average pooling, alongside a baseline configuration using
projection in a complex domain. The first three configurations demonstrated excellent accu-
racy. Additionally, we investigated the effect of shifting the order of input data layer by layer,
which significantly improved performance in certain applications. These findings highlight
a novel architectural approach to photonic neural networks enabled by data reuploading in
PICs. This approach offers unique features that set it apart from traditional photonic neural
network architectures, providing a promising direction for future advancements in photonic
computing
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ABSTRACT

The data reuploading trick, originally proposed for universal quantum computing, enables the universal approx-
imation property. We recently extended this concept to achieve universal non-quantum photonic computing
using practical photonic integrated circuits (PICs) composed solely of 50:50 beam splitters and phase shifters,
eliminating the need for nonlinear photonic devices. In this approach, input data are repeatedly embedded as
rotation angles.

In this presentation, we explore strategies to enhance the performance of this method by increasing the
number of layers and optical channels (lanes) in various configurations. For a classical two-dimensional, four-
class classification problem of wavy lines, we evaluated a two-mode class-embedding circuit with output, a four-
mode configuration, and four stacking methods of two-mode circuits with average pooling, alongside a baseline
configuration using projection in a complex domain. The first three configurations demonstrated excellent
accuracy. Additionally, we investigated the effect of shifting the order of input data layer by layer, which
significantly improved performance in certain applications.

These findings highlight a novel architectural approach to photonic neural networks enabled by data reupload-
ing in PICs. This approach offers unique features that set it apart from traditional photonic neural network
architectures, providing a promising direction for future advancements in photonic computing.

Keywords: optical neural networks, optical computing, optical quantum computing, data reuploading, photonic
integrated circuits

1. INTRODUCTION

Optical neural computing holds the potential to significantly reduce energy consumption compared to con-
ventional digital neural computing. Various proposals and demonstrations of optical neural network (ONN)
implementations have emerged, encompassing both quantum and non-quantum approaches.

Most quantum optical neural networks (QONNs)1,2 require cryogenically controlled photon counters, limiting
their scalability. On the other hand, non-quantum ONNs3 eliminate the need for cryogenics but often rely on
nonlinear photonic devices to achieve universality. While linear photonic neural networks4 have been proposed
as an alternative, their inherent unitarity and lack of nonlinear attenuation control often restrict their inference
performance.

Data reuploading,5 originally proposed for quantum computing, achieves the universal approximation prop-
erty (UAP) by embedding input data x⃗ as Pauli rotation angles repeatedly across layers. Nonlinearity is effectively
introduced without requiring optical nonlinear components, leveraging repeated embeddings. The validity of this
approach has been experimentally demonstrated using quantum photonic devices.6
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We recently extended the concept of data reuploading to non-quantum applications, focusing on linear pho-
tonic integrated circuit (PIC) implementations7 as shown in Fig.1, wherein the continuous wave (CW) light input
is modulated by the input signals (x1, x2, ...) repeatedly, sandwiched by the trainable weight parameters. Each
block consists of phase shifters (PSs) and 50 : 50 directional couplers.

In this paper, we further explore its potential for multi-label classification applications, with particular atten-
tion to enhancing input data embedding strategies. We propose methods to downsize optical components and
enable multi-label classification with a limited number of photonic ports. Our demonstrations through simula-
tions across diverse machine learning tasks showcase the viability of this framework as a practical alternative to
existing ONN methods.

Figure 1: Schematic of a data reuploading block diagram consisting of three layers and three-dimensional input
data.

2. NON-BINARY CLASSIFICATION

We first consider a non-binary classification task in a two-dimensional wavy lines problem5 with N = 4 classes.
Several strategies can adapt binary classifiers for multi-label classification, including one-vs-one (OvO), one-vs-
rest (OvR), and output-coding (OC) approaches.8 OvO, OvR, and OC require N(N − 1), N , and ceil[log2(N)]
binary classifiers for N -class predictions, respectively.

We first apply the basic data reuploading method with a complex output (Fig. 2). In this photonic implemen-
tation, we assume the use of a coherent receiver to detect the complex output. The four target points correspond
to distinct classes in the complex plane. The four target points correspond to distinct classes in the complex
plane. Next, we consider OvR-based stacking, where N binary-classification data reuploading circuits operate in
parallel to generate N -class logits. This approach, however, requires N -times more weight parameters, compared
to a single binary classifier, increasing the complexity of the system.

To address the circuit complexity issue, we recently proposed a novel strategy called implicit classification.7

In this method, trainable parameters are shared across all N binary classifiers, reducing the total number of
parameters. Additional parameters are introduced for positional embeddings, which encode class information
uniquely for each binary classifier. As shown in Fig. 4, class information is added at each layer, enabling
weight sharing while extending the circuit length slightly to incorporate the additional class embeddings. This
approach strikes a balance between parameter efficiency and classification accuracy, providing a scalable solution
for multi-class problems in photonic implementations.

Here, we also introduce another method called multi-mode method. In the case of N = 4, we have four input
ports and four output ports as shown in Fig. 5. Each block contains multiple Clements-type unitary processors9

to encode input and weight parameters. We use the basis for the input of (1, 0, 1, 0), which gives better results
than (1, 0, 0, 0) or (1, 0, 0, 1) in our configuration.

3. PERFORMANCE EVALUATION

Using four configurations for the PIC building block (summarized in the Appendix), we compared these above
four methods, as shown in Fig. 6.

For simulations, we use 4096 training data and 1024 test data, and a batch size of 256. The AdamW optimizer
of the PyTorch library is used for training with a learning rate of 0.06. Ten runs with different random number
seeds are repeated, and the median and standard deviations for the training and test accuracy are plotted.



Figure 2: Example of complex classification
method where the output is expressed in four tar-
get points on the Block sphere. Figure 3: Example of stacking four lanes each

with N layers.

Figure 4: Schematic of the implicit classification
method where the class information C is embed-
ded and re-written at each training and inference
instances.

Figure 5: Schematic of four mode method, wherein
each output corresponds to each class. Each block
contains multiple Clements-type unitary proces-
sors.

Figure 6: Accuracy of the four methods as a function of the number of layers for the two-dimensional four-class
wavy line problem. Rot, Rot-PIC, RZY, and RZY-PS denote the circuit configurations.



Figure 7: Accuracy of the four methods as a function of the number of layers for the two-dimensional four-class
wavy line problem.

This figure demonstrates that overall accuracy tends to improve rapidly with an increase in the number of
layers. While the complex method, despite its minimal resource requirements per layer (measured by the number
of PSs), does not perform well, the resource-intensive stacking method delivers excellent performance even with
just two layers. The resource-efficient implicit classification method also performs remarkably well. In contrast,
the four-mode method, despite its higher resource consumption, does not achieve comparable performance.

The same data are now grouped by method and shown in Fig. 7. For the complex method, it is evident
that RZY -PS performs poorly, as it lacks the flexibility to fully represent the Bloch sphere. Both Rot-PIC and
RZY also exhibit suboptimal performance.

For the other three methods, except in cases with a small number of layers, no significant differences are
observed. This suggests that simplifying the circuit using RZY or RZY -PS could provide more efficient circuit
designs without compromising performance.

The classification results of the complex classification method are shown in Fig. 8. Fig. 8 (a) displays the
training data, while Fig. 8 (d) shows the test data. With one layer, the classification result Fig. 8 (b) is very
poor, as indicated by the error plotted in blue in Fig. 8 (e). With 10 layers, the classification results are improved
as seen in Fig. 8 (c), and the error performance is also improved as shown in (f).

Fig. 9 presents the classification results for the four methods using two layers. The results clearly show that
the stacking method performs the best, while the complex method performs the worst.

4. EFFECT OF THE DIRECTONAL COUPLER VARIATIONS

It is known that multiport interferometers are sensitive to beamsplitter imperfections,10 including Clements
configurations.9 The splitting ratio of directional couplers is expressed as (50 ± σBS) %, where σBS represents
the standard deviation of the splitting ratio. Typical silicon photonics fabrication processes can achieve a
standard deviation of 2 % or better10

Fig. 10 illustrates the classification accuracy for the two-dimensional wavy lines problem using implicit clas-
sification, four-mode, and four-stack configurations, each evaluated with five and ten layers under standard



(a) Traing data (b) 1 layer classification (c) 10 layer classification

(d) Test data (e) 1 layer classification error (f) 10 layer classification error

Figure 8: Classification results by complex classification method. (b) and (c) show the classification results as
indicated by the color, and (e) and (f) show the classification results highlighted by the blue dots.

(a) Complex classification (b) Implicit classification (c) 4 mode classification (d) Stacking classification

(e) Complex error (f) Implicit error (g) 4 mode error (h) Stacking error

Figure 9: Classification results by four methods with 2 layers. (a)-(d) show the classification results as indicated
by the color, and (e)-(h) show the classification results highlighted by the blue dots.

deviations of 0, 2 %, and 4 %. It is assumed that all imperfections are compensated for during the online train-
ing process. The accuracy tends to decrease gradually as the standard deviation increases. However, in the case
of 10 layers, the accuracy remains high when the initial accuracy is already high. Nevertheless, it is desirable to
consider the fabriation-tolerant directional coupler designs when implemented in actual PICs.11



Figure 10: Accuracy of the three methods as a function of the number of layers for the two-dimensional four-class
wavy line problem with directional coupler standard deviations of 0, 2 %, and 4 %.

5. PERFORMANCE COMPARISON WITH RESPECT TO THE NUMBER OF
PHASE SHIFTERS

Data reuploading demonstrates high accuracy without requiring nonlinear optical components, while its resource
demands vary depending on the configuration. A key metric for comparison is the number of phase shifters
(PSs). We evaluate the accuracy of the classical neural network (NN) method alongside the four data reuploading
methods described earlier. For the data reuploading methods, we use the RZY -PS configuration, except for the
complex classification method, which employed the Rot configuration.

For classical NNs, we consider a single hidden layer with ReLU activation, as outlined by Perez et al.9 It
is important to highlight that classical NNs do not directly utilize the Clements configuration for accuracy
calculations and assume a perfect ReLU nonlinear function—an implementation that remains challenging in
optical neural networks (ONNs).

Figure 11 presents the simulated accuracy for the four data reuploading methods and the classical NN method.
The results indicate that the implicit classification method achieves the highest accuracy when the number of
PSs is very small, while the stacking method outperforms others as the number of PSs increases.

Interestingly, the classical NN method performs poorly when evaluated using the mean of 10 data points,
though the mean plus sigma results suggest higher accuracy. This disparity underlines the variability in its
performance.

It is particularly noteworthy that data reuploading achieves accuracy comparable to or better than classical
NNs, all without relying on nonlinear optical components. This highlights the potential of data reuploading as
a resource-efficient alternative in scenarios where nonlinear optical devices are impractical or undesirable.

Figure 11: Accuracy of the four methods and the classical NN as a function of the number of PSs for the two-
dimensional four-class wavy line problem.



6. INPUT DATA ORDERING

So far, we have used the same ordering for input data across all layers, specifically (x1, x2). However, there
is no inherent reason to maintain the same order. For instance, in the two-dimensional four-class problem, we
evaluated (x1, x2) for odd layers and (x2, x1) for even layers. The difference in performance was marginal and
not statistically significant. However, in certain problems, this approach led to significant improvements.

For the three-dimensional hypersphere problem, which involves classifying whether a point lies inside or
outside a unit sphere, we compared two scenarios. In one, no input data shift was applied; in the other, input
data alternated as (x1, x2, x3), (x2, x3, x1), and (x3, x1, x2). As shown in Fig. 12, the method with input data
shifts demonstrated a clear advantage.

This suggests that for data reuploading, reordering input data can provide significant benefits in certain
applications.

Figure 12: Training and test accuracy for the three-dimensional two-class sphere problem, comparing cases with
and without input data order shifting.

7. CONCLUSION

Data reuploading was evaluated for multi-class classification problems using four distinct methods and various
circuit configurations. Configurations such as two-mode class-embedding circuits, four-mode configurations,
and stacked two-mode circuits with average pooling demonstrated excellent accuracy for tasks like the two-
dimensional, four-class wavy lines problem. Additionally, layer-by-layer input data reordering was shown to
significantly enhance performance in certain applications.

A key advantage of this approach is its ability to achieve universal photonic computing using only 50:50 beam
splitters and phase shifters, eliminating the need for nonlinear photonic devices, photon counters, or squeezed
light sources. This simplicity reduces resource requirements while maintaining strong performance, offering a
practical and efficient alternative to conventional optical neural network architectures. These findings highlight
the potential of data reuploading as a promising direction for advancing photonic computing.

Appendix

For the building block of the PIC in Fig. 1, we summarize the four distinct configurations for rotations as
described in previous work.7 Any arbitrary single-qubit operation can be decomposed into a sequence of Pauli
Z, Y, and Z rotations:12

Rot(ϕ, θ, ω) = RZ(ω)RY (θ)RZ(ϕ) =

[
e−i(ϕ+ω)/2 cos(θ/2) −ei(ϕ−ω)/2 sin(θ/2)
e−i(ϕ−ω)/2 sin(θ/2) ei(ϕ+ω)/2 cos(θ/2)

]
. (1)

Rot: The configuration for mathematical direct implementation to Eq. 1 is shown in Fig. 13 (a). It employs
three pairs of differential phase shifters (PSs) to perform rotations along the Pauli Z, Y, and Z axes.



Rot-PIC: By removing two π-delays from the first 50:50 coupler in Rot, this becomes equivalent to a 2× 2
universal unitary optical processor used by Macho-Ortez et al.,13 and also equivalent to Rot(ϕ−π, θ+π, ω), and
is shown in Fig. 13 (b). The fixed phase difference is absorbed during training.

RZY: In cascaded blocks, the last PS pair of one block merges with the first PS pair of the next (Fig. 13
(c)), provided electrical summation is feasible.

PZY-PS: As shown in Fig. 13 (d), differential PS pairs are replaced by single-ended PSs with twice the
phase shift.

(a) Rot (b) Rot-PIC

(c) RZY (d) RZY-PS

Figure 13: Schematics of PIC building blocks.
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