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Integrated Optimal Control for Fast Charging and
Active Thermal Management of Lithium-Ion
Batteries in Extreme Ambient Temperatures

Zehui Lu, Hao Tu, Huazhen Fang, Yebin Wang, Shaoshuai Mou

Abstract—This paper presents an integrated control strategy
for fast charging and active thermal management of Lithium-ion
batteries in extreme ambient temperatures. A control-oriented
thermal-NDC (nonlinear double-capacitor) battery model is pro-
posed to describe the electrical and thermal dynamics, accounting
for the impact from both an active thermal source and ambient
temperature. A state-feedback model predictive control algorithm
is then developed for integrated fast charging and active thermal
management. Numerical experiments validate the algorithm un-
der extreme temperatures, showing that the proposed algorithm
can energy-efficiently adjust the battery temperature to enhance
fast charging. Additionally, an output-feedback model predictive
control algorithm with an extended Kalman filter is proposed
for battery charging when states are partially measurable.
Numerical experiments validate the effectiveness under extreme
temperatures.

Index Terms—Energy storage, Predictive control for nonlinear
systems, Control-oriented modeling, Kalman filtering

I. INTRODUCTION

Lithium-ion batteries (LiBs) have become widely accepted
in various fields, including electrified transportation [1], con-
sumer electronics [2], and renewable energy [3], due to their
favorable characteristics such as high voltage and power
density, low self-discharge rates, and lack of memory effects
[4]. However, a critical concern for LiBs is their lifespan,
which is highly sensitive to battery deterioration. Factors
influencing longevity include charging techniques [5] and
operating temperature [6], [7]. Research has increasingly fo-
cused on advanced battery energy management to enhance LiB
performance, safety, and durability.

The suitability of LiBs for specific applications is limited
by concerns about battery charging techniques and operating
temperature. For instance, electric vertical takeoff and landing
(eVTOL) aircraft typically require batteries with a discharging
rate three times that of electric vehicles (EVs) during takeoff
and landing, as well as four times the fast charging frequency
of EVs [8]. Charging and discharging LiBs in such systems can
generate significant heat, which can pose a risk to the entire
system, not to mention the existing frequent fires during EV
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charging [9]. Moreover, as electrified systems have been de-
ployed in wildly diversified areas, managing battery charging
quickly and safely, even under extreme ambient temperatures,
has become an imperative research topic. Therefore, this paper
aims to investigate an integrated strategy for LiB fast charging
and thermal management under extreme temperatures.

A. Literature Review

Optimal LiB charging relies on accurate and comprehensive
modeling of battery dynamics, including electrical, thermal,
and aging aspects. Two primary categories of LiB models
are widely recognized: 1) Electrochemical Models: These
models are derived from electrochemical principles and aim
to explain the electrochemical reactions and physical phe-
nomena occurring inside a battery cell during charging and
discharging. They are typically characterized by high-order
partial differential equations [10], [11]. 2) Equivalent Cir-
cuit Models (ECMs): In contrast, ECMs replicate a battery’s
current-voltage characteristics by utilizing electrical circuits
consisting of resistors, capacitors, and voltage sources [12],
offering excellent computational efficiency and making them
particularly suitable for real-time battery energy management.

A fundamental ECM, commonly known as the Rint (in-
ternal resistance) model, consists of an open-circuit voltage
(OCV) source cascaded with an internal resistor, where the
voltage source is state-of-charge (SOC)-dependent [13]. To
describe the transient voltage response within a cell, the
Rint model can be expanded by adding some serially con-
nected resistor–capacitor (RC) pairs, leading to the Thevenin
model [13]. When multiple RC circuits are integrated into
the Thevenin model, it evolves into the Dual Polarization
(DP) model, which captures multi-timescale voltage transients
during charging and discharging [14]. Another ECM gaining
attention is the double-capacitor model [15], comprising two
capacitors in parallel, representing the bulk inner portion
and surface region of an electrode, respectively. This model
describes charge diffusion and storage mechanisms in a bat-
tery’s electrode [16]. Unlike the Thevenin and DP models,
this circuit structure accounts for rate capacity effects and
charge recovery phenomena, making it appealing for battery
charging control [16]. However, this model, being linear,
struggles to capture nonlinear battery phenomena such as the
nonlinear SOC-OCV relation. To address these limitations,
a Nonlinear Double-Capacitor (NDC) model is proposed in
[12], effectively capturing the battery’s nonlinear behaviors by
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introducing a nonlinear-mapping-based voltage source and a
series RC circuit.

Regarding the thermal dynamics of LiB, Lin et al. [17]
developed an electro-thermal model for cylindrical batteries,
consisting of two sub-models: a DP model and a two-state
thermal model. The thermal model represents the dynamics
of the battery surface and core temperatures, while the DP
model characterizes electrochemical processes. These models
are interconnected through heat generation and temperature-
dependent electric parameters. Perez et al. [18] expanded on
the work [17] by creating an electro-thermal-aging battery
model. In this model, the electric and aging sub-models are
influenced by the battery core temperature, as captured by the
two-state thermal sub-model. Biju and Fang [19] proposed an
electro-thermal model that combines an ECM with a single
particle model for electrolyte and thermal dynamics. This
model uses multiple circuits to simulate a LiB cell’s electrode,
electrolyte, and thermal dynamics, considering their effects on
terminal voltage. Consequently, the model accurately approx-
imates major electrochemical and physical processes during
charging and discharging.

Over the past two decades, there has been continuous
attention on exploring suitable methods for charging LiBs. One
of the most common approaches in the industry is constant-
current/constant-voltage (CC/CV) charging. This method in-
volves applying a constant current to charge LiB cells until
they reach a specific voltage threshold [20]. Subsequently,
a constant voltage is maintained to charge the cell with a
gradually decreasing current [20]. However, these model-free
methods typically rely on tuning some heuristic-based charg-
ing parameters, offering empirical or conservative assurances
for charging safety and speed.

Researchers have been developing model-based charging
strategies by integrating physics-based LiB models with op-
timization techniques to achieve faster charging. Nonlinear
model predictive control (MPC) has gained significant atten-
tion for this purpose, as it can handle nonlinear objectives,
system dynamics, and constraints related to the state and
control of the entire system [21]. However, solving a nonlinear
MPC problem at run-time can be computationally expensive,
especially with a longer prediction horizon. To reduce the
computational load, Klein et al. [22] formulate a nonlinear
MPC charging problem with a 1-D electrochemical model
of LiBs and only one-step prediction. Another approach to
reducing the computational load is model reduction, often
used in literature to simplify a battery model and enable
real-time MPC strategies. Ref. [23], [24] formulate a linear
MPC problem based on the linear Thevenin model. Fang et
al. [16] employ linear quadratic control to achieve health-
aware charging using the linear double-capacitor model. Zou
et al. [25] linearize a nonlinear electrochemical model along
a reference SoC trajectory and then solve an optimal tracking
problem at run-time. A hierarchical MPC strategy in [26]
generates a reference current trajectory at a slow time scale
and performs current reference tracking at a faster time scale,
reducing the run-time computational load.

With the increase in computational power over the past
decade, more literature has emerged on charging strategies

to achieve specific objectives related to LiB charging speed,
safety, health, aging, etc. Perez et al. [18] propose a multi-
objective optimal charging control based on the electro-
thermal-aging battery model mentioned earlier. The objective
function is a linear combination of total charging time and
the loss of the battery’s state-of-health (SOH). Based on an
RC-based linear equivalent circuit model for a LiB cell, Fang
et al. [27] optimize both the magnitudes and duty cycles of
current pulses to balance health considerations and charging
rates. Tian et al. [28] utilize explicit MPC to achieve real-
time optimal charging control. They propose a health-aware
constraint on the voltages on two capacitors to limit the
battery’s internal stress during charging. Azimi et al. [29]
formulate and solve a multi-objective optimal control problem
for a LiB module made of series-connected cells, aiming for
fast charging while minimizing degradation.

Among the various aspects of LiB characteristics, safety
and health (or aging) during fast charging are considered the
most important factors. Many studies, e.g. [16], [18], [28]–
[30], investigate how to incorporate safety and health-related
constraints into optimization frameworks. These constraints
ensure that the state and input at each time instance do
not violate safety and health constraints. Proper constraint
formulation is crucial for developing model-based charging
strategies to maintain battery safety and health.

To summarize the literature review, there is a gap in
modeling LiB systems, particularly in capturing the nonlin-
ear electro-thermal dynamics where electrical dynamics are
influenced by thermal dynamics, and vice versa. Existing
thermal models also lack a description of how external heat
sources affect the battery beyond ambient heat convection.
This paper aims to address these gaps by proposing a model
that incorporates nonlinear electro-thermal dynamics and ac-
counts for external heat sources. The modeling of external
heat sources could potentially enable battery charging under
extreme ambient temperatures. Additionally, the paper aims to
investigate a model-based charging strategy to ensure safe and
fast charging, as well as active battery thermal management,
even under extreme ambient temperatures.

B. Contributions, Organization, and Notations

This paper presents an integrated control strategy for fast
charging and active thermal management of LiBs in extreme
ambient temperatures. A control-oriented thermal-NDC bat-
tery model is proposed to describe the electrical and thermal
dynamics, accounting for the impact from both an active
thermal source and ambient temperature. The thermal-NDC
model enables the development of a state-feedback MPC
algorithm, which integrates fast charging and active thermal
management for LiBs under extreme ambient temperatures.

Numerical experiments validate that the proposed algorithm
under extreme temperatures can energy-efficiently adjust the
battery temperature to enhance fast charging. Several insights
are revealed and summarized in Section IV to explain why
the decisions made by the proposed algorithm lead to energy-
efficient fast charging. The observations and explanations are
consistent with the literature. Additionally, an output-feedback
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MPC algorithm with an extended Kalman filter (EKF) is
proposed for battery charging when states are partially measur-
able. Numerical experiments validate the effectiveness under
extreme temperatures. The contributions of this paper are
summarized as follows:

1) a thermal-NDC model for control-oriented battery dy-
namics;

2) a state-feedback MPC algorithm;
3) an output-feedback MPC algorithm with battery state

estimation from an EKF.
The rest of this paper is organized as follows:

1) Section II proposes the thermal-NDC model;
2) Section III formulates a state-feedback MPC algorithm

for battery charging and active thermal management;
3) Section IV performs several numerical experiments to

evaluate the performance of the proposed algorithm with
different ambient temperatures and investigate some fac-
tors that affect charging performance;

4) Section V proposes an EKF-based output-feedback MPC
strategy and performs numerical experiments to evaluate
its performance;

5) Section VI concludes this paper and discusses future
work.

Notations. The real number set is denoted by R. The
natural number set is denoted by N. Let Ja, bK denote a set
of all integers between integers a and b, with both ends
included. For x,y ∈ Rn, x ≤ y indicates element-wise
inequality. Let col{v1, · · · ,va} denote a column stack of
elements v1, · · · ,va, which may be scalars, vectors or matri-
ces, i.e. col{v1, · · · ,va} ≜

[
v1

⊤ · · · va
⊤]⊤. For a matrix

A ∈ Rn×m, A[i, j] indicates the entry in the i-th row and the
j-th column of A, i ∈ J1, nK, j ∈ J1,mK. Denote In as an
identity matrix in Rn×n. The exponential function is denoted
by exp(·), i.e. exp(x) ≜ ex, where x ∈ R. diag(a, b, · · · , c)
denote a square real matrix, where the non-diagonal elements
are zeros and the diagonal elements are a, b, · · · , c ∈ R.

II. BATTERY ELECTRO-THERMAL MODELING

This section presents a control-oriented battery model
named the thermal-NDC (nonlinear double-capacitor) model,
which contains a nonlinear NDC model [12] and a two-state
lumped thermal model, where the battery surface temperature
is affected by the heat generated from the electro-thermal pro-
cess within the battery, the heat diffusion between the ambient
environment and the battery surface, and active thermal input.

As shown in the lower portion of Fig. 1, the thermal-
NDC model uses electrical circuits to describe the diffusion
and electrical process inside a Lithium-ion battery (LiB) cell.
It contains two coupled sub-circuits. The first (left) circuit
contains two parallel connected capacitors, Cb and Cs, and
one resistor Rb,T. The migration of charge between Cb and
Cs mimics the change of Lithium-ion concentrations within the
electrode. Conceptually, Cb and Cs represent the electrode’s
bulk inner region and surface region, respectively. The second
(right) circuit contains two components in series, a voltage
source U and a resistor Ro,T. Here, U = h(Vs) serves as an
open-circuit voltage source. Ro,T corresponds to the ohmic

Figure 1. The thermal-NDC (nonlinear double-capacitor) model.

resistance and solid electrolyte interface resistance. The first
portion of the thermal-NDC model’s governing equations is
summarized in the following state-space form:[

V̇b(t)

V̇s(t)

]
= A1(t)

[
Vb(t)
Vs(t)

]
+B1I(t), (1a)

V (t) = h(Vs(t)) +Ro,T(t)I(t), (1b)

where Vb(t) and Vs(t) are the voltage across Cb and Cs,
respectively; I(t) is the input current; I(t) < 0 for discharging
and I(t) > 0 for charging; h : R 7→ R denotes a mapping from
Vs(t) to the open circuit voltage source, which is determined
by experiments; the matrices A1(t) and B1 are given by

A1(t) =


−1

CbRb,T(t)

1

CbRb,T(t)
1

CsRb,T(t)

−1
CsRb,T(t)

 , B1 =

 0
1

Cs

 . (2)

The state of charge (SoC) is given by:

SoC(t) = (CbVb(t) + CsVs(t))/(Cb + Cs)× 100%. (3)

This paper aims to formulate a minimal state-space repre-
sentation for the battery dynamics, thus SoC is not a state
of the system but acts as another state coordinate of the
states Vb and Vb. In other words, according to (3), one
can determine SoC by Vb and Vb, and replace SoC by
(CbVb(t) +CsVs(t))/(Cb +Cs). Here, Vb = Vs = 0 V when
the cell is depleted (SoC = 0%), and Vb = Vs = 1 V when the
cell is fully charged (SoC = 100%). The internal resistance
Ro,T is assumed to be dependent on both temperature and
SoC and is given by:

Ro,T(t) = Ro(SoC(t)) · exp(κ1(
1

Tcore(t)
− 1

Tref
)),

Ro(SoC(t)) = γ1 + γ2 · exp(−γ3SoC(t)),
(4)

where κ1, γ1, γ2, γ3 ∈ R are battery-dependent parameters and
determined by experiments; Tcore is the core temperature of
the cell, which is later described in the lumped thermal model;
Tref is the reference temperature in the Arrhenius law. The
diffusion resistance Rb,T is also temperature-dependent and
given by:

Rb,T(t) = Rb · exp(κ2(
1

Tcore(t)
− 1

Tref
)), (5)
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where κ2 ∈ R is a battery-dependent parameter and deter-
mined by experiments.

As shown in the upper portion of Fig. 1, a two-state lumped
thermal model is used to capture the thermal dynamics of a
cylindrical LiB cell. The temperature along the cell’s axial
direction is assumed to be uniform. The cell’s temperature
distribution along the radial direction is simplified to two
singular points which represent the core and surface. The
battery surface temperature is affected by Q̇act from active
thermal input and the diffusion between the surface and the
environment. The second portion of the thermal-NDC model’s
governing equations is given by:

[
Ṫcore(t)

Ṫsurf(t)

]
= A2

[
Tcore(t)
Tsurf(t)

]
+B2

Q̇gen(t)
Tamb(t)

Q̇act(t)

 , (6)

where

A2 =

 −1
RcoreCcore

1

RcoreCcore
1

RcoreCsurf

−1
RsurfCsurf

+
−1

RcoreCsurf

 ,

B2 =

 1

Ccore
0 0

0
1

RsurfCsurf

1

Csurf

 .

Here, Tcore(t) and Tsurf(t) are the temperature at the core
and surface of the cell, respectively; Tamb(t) is the known
ambient temperature at time t; Ccore and Csurf are the cell’s
core and surface heat capacity. A thermal resistance Rcore

is used to model the conduction between the cell’s core and
surface. Rsurf is the other thermal resistance that captures the
convection between the cell’s surface and the environment. In
addition, the heat generation inside the cell is assumed to be
concentrated in the core of the cell, which is considered to be

Q̇gen(t) = I(t)(V (t)− h(SoC(t))). (7)

The effect of the heating and cooling systems is reflected in
the heat exchange between the hot/cold plates to the cell’s
surface, i.e.

Q̇act(t) = ηactPact(t), (8)

where Pact(t) > 0 and Pact(t) < 0 indicates the active heating
and cooling power, respectively; ηact ∈ [0, 1] is the efficiency
coefficient.

Remark 1. For simplicity, (8) assumes the same efficiency for
heating and cooling. Nevertheless, one can directly convert
(8) into heating and cooling power with different efficiency. In
detail, (8) can be written as

Q̇act(t) = Pneat(t) ≡ ηheatPheat(t) + ηcoolPcool(t), (9)

where Pneat(t) is a decision variable. Let Pheat(t) ∈ [0, P heat]
and Pcool(t) ∈ [P cool, 0]. Then given the sign of Pneat(t),
one can directly determine the value of Pheat(t) and Pcool(t).
Given the power limit of Pheat(t) and Pcool(t), Pneat(t) ∈
[ηcoolP cool, ηheatP heat].

To summarize, given the thermal-NDC model, the state of
the entire battery system at time instance t is defined as

x(t) ≜
[
Vb(t) Vs(t) Tcore(t) Tsurf(t)

]⊤ ∈ R4.

The input of the system at time instance t is defined as

u(t) ≜
[
I(t) Pact(t)

]⊤ ∈ R2.

The output of the system at time instance t is defined as

y(t) ≜
[
Tsurf(t) V (t)

]⊤ ∈ R2.

The continuous-time system dynamics can be written as

ẋ = f c(x,u),

y = g(x,u),
(10)

where the mapping f c : R4×R2 7→ R4 and g : R4×R2 7→ R2

are nonlinear and given by the combination of (1) - (8).

III. MODEL PREDICTIVE CONTROL FORMULATION

The problem of interest is to design a discrete-time control
law for optimal charging while considering some safety and
health constraints on LiBs, even if the ambient temperature
is extremely high or low. This section formulates a battery
charging problem with a discrete-time MPC strategy.

A. Constraints
This subsection first introduces some constraints which

ensure safe and health-conscious charging. To begin with, the
SoC must be constrained to avoid overcharging, i.e.

SoC ≤ SoC(t) ≤ SoC, ∀t. (11)

The current, terminal voltage and temperature must be within
limits, i.e. ∀t,

I ≤ I(t) ≤ I, (12a)

V ≤ V (t) ≤ V , (12b)

T core ≤ Tcore(t) ≤ T core. (12c)

In the thermal-NDC model, Vb and Vs serve as an analogy
to the Li-ion concentrations at the bulk inner and surface
region of the electrode, respectively. Hence, the Vb and Vs

also need constraints, as suggested in [28]. Since Vb ≤ Vs

during charging, one only needs to limit Vs, i.e.

V s ≤ Vs(t) ≤ V s, ∀t. (13)

Vs− Vb indicates the Li-ion concentration gradient within the
electrode, which is related to the battery’s capacity degradation
and cycle life. The constraint is designed to be

Vs(t)− Vb(t) ≤ β1SoC(t) + β2, ∀t, (14)

where β1, β2 ∈ R are coefficients. Together with (3), this
constraint can be rewritten as

ζ(t) ≤ β2, ∀t, (15)

where ζ(t) ≜ −Cb+Cs+β1Cb

Cb+Cs
Vb(t) +

Cb+Cs−β1Cs

Cb+Cs
Vs(t). Fi-

nally, a constraint on the active battery temperature regulation
system is considered, i.e.

P act ≤ Pact(t) ≤ P act, ∀t, (16)

where P act and P act indicate the battery cooling and heating
power limits, respectively.
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B. State-Feedback Model Predictive Control

This subsection introduces the formulation of a discrete-
time state-feedback MPC for the battery charging problem.
Let N ∈ N denote the number of steps in a prediction horizon
and xk := x(tk). By Euler integration with a planning time
interval ∆p > 0, one obtains the following discretization of
the continuous system in (10) for MPC:

xk+1 = xk +∆pf c(xk,uk),

yk = g(xk,uk).
(17)

Denote x0:N |k ≜ col{xk,xk+1|k · · · ,xk+N |k} ∈ R4(N+1)

the state at time tk and the states from the future time
tk+1 to tk+N that are predicted at time tk; similarly
u0:N−1|k ≜ col{uk|k, · · · ,uk+N−1|k} ∈ R2N ; particularly
denote SoC0:N |k ≜ col{SoCk|k, · · · ,SoCk+N |k} ∈ RN+1

and V0:N−1|k ≜ col{Vk|k, · · · , Vk+N−1|k} ∈ RN . Define the
objective function J := J(x0:N |k,u0:N−1|k) as

J ≜w1

∑N
j=0(SoCk+j|k − SoCr)

2+

w2

∑N−2
j=0 (Ik+j+1|k − Ik+j|k)

2+

w3

∑N−2
j=0 (Pact,k+j+1|k − Pact,k+j|k)

2,

(18)

where SoCr is the target SoC to be charged, w1, w2, w3 > 0
are some weights. The first term of this objective function
reflects that the battery is desired to be charged as soon as
possible. The second and third terms encourage the current’s
and thermal power’s smoothness over time, respectively.

Remark 2. Depending on the specific configuration of the
battery cooling and heating system and their actuators, the
definition of Pact’s smoothness could be different. This paper
adopts the general form to define smoothness since modeling
the actuators is not within this paper’s scope.

Then at time tk, given the state xk and the ambient
temperature Tamb,k := Tamb(tk), assuming that Tamb,k+j|k ≡
Tamb,k, ∀j ∈ J0, NK, the optimal control can be determined
by

min
u0:N−1|k

J(x0:N |k,u0:N−1|k)

s.t. xk+j+1|k = xk+j|k +∆pf c(xk+j|k,uk+j|k),

yk+j|k = g(xk+j|k,uk+j|k),

∀j ∈ J0, N − 1K with given xk,

constraints (11), (12c)− (16), ∀j ∈ J0, NK,
constraints (12a), (12b), ∀j ∈ J0, N − 1K.

(19)
The state-feedback MPC algorithm is summarized in Algo-

rithm 1. As shown by Line 2, the system state is observed
with a smaller sampling time ∆s, i.e. ∆s < ∆p. The MPC is
computed for every time interval ∆p given the present state xk

at time tk, as shown by Line 3. Then for every time instance ti,
the input ui is calculated by interpolating the optimal control
trajectory from the MPC with zero-order hold, as indicated in
Line 8.

Algorithm 1: State-Feedback MPC
Input: k = −1, i = 0, t0 = 0, ∆p, ∆s

1 while SoCi < SoCr do
2 observe xi and Tamb,i at time ti
3 if ti % ∆p == 0 then // for every time

interval ∆p

4 k ← k + 1
5 u∗

0:N−1|k ← solve (19) given xk at time tk and
Tamb,k+j|k ≡ Tamb,k, ∀j ∈ J0, NK

6 tk ← tk +∆p

7 else
8 perform ui by interpolating u∗

0:N−1|k with
present time ti and zero-order hold

9 ti ← ti +∆s, i← i+ 1

Table I
BATTERY PARAMETERS

Parameter Value Param. Value Param. Value

Cb 10037 F Ccore 40 F SoC 0%
Cs 973 F Csurf 10 F SoC 100%
Rb 0.019 Ω Rcore 4 Ω I 0 A
γ1 0.026 Rsurf 7 Ω I 3 A
γ2 0.061 κ1 30 V 0 V
γ3 14.36 κ2 70 V 4.2 V
α0 3.2 Tref 25 ◦C T core -10 ◦C
α1 2.59 ηact 87% T core 55 ◦C
α2 -9.003 β1 -0.04 V b 0 V
α3 18.87 β2 0.08 V b 0.95 V
α4 -17.82 P act -8 W V s 0 V
α5 6.325 P act 8 W V s 0.95 V

C. System Parameters

The necessary parameters for the battery dynamics (10) and
the constraints (11) - (16) are given by Table I. The system
parameters are given in [12], using a 3 Ah Panasonic NCR-
18650B LiB battery. The constraint parameters are derived
from [28]. P heat and P cool are determined by scaling the
power limits in [31]. The mapping h(·) in (1b) is parame-
terized by a fifth-order polynomial [12], i.e.

h(Vs) =
∑5

i=0 αiV
i
s . (20)

The model parameters are validated for charging current up
to 4.5 A, whose maximum charging C-rate is 1.5 C. This
paper defines the upper bound for charging current as I =
3 A. Note that the unit for all the temperature variables or
bounds is Kelvin. But for the sake of readability, the rest of this
paper adopts degree Celsius to express the same temperature
in Kelvin.

IV. NUMERICAL EXPERIMENTS

This section presents several case studies with numerical
experiments to illustrate the effectiveness of the proposed
thermal-NDC model in integrated charging and active thermal
management under extreme ambient temperatures. Addition-
ally, this section investigates the impact of MPC parameters,
battery core temperature, and active thermal power on fast
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Table II
STRATEGY DESCRIPTION FOR BASIC CASE STUDY

Name Description

P the proposed MPC (19), optimization initial guess given by
forward propagating dynamics with zero inputs

P1 same as P, optimization initial guess given by forward propa-
gating dynamics with maximum charging current and Pact,k;
Pact,k is forwardly calculated by (21) with Tcore,r = 45 ◦C

A the proposed MPC (19) without active thermal management, i.e.
P act = P act = 0 W, Pact(t) = 0, ∀t

B A, battery temperature is separately controlled by the PID
controller (21), Tcore,r = 25 ◦C

C same as B, Tcore,r = 35 ◦C

D same as B, Tcore,r = 45 ◦C

E same as B, Tcore,r = 50 ◦C

charging. Several insights are revealed and summarized in this
section to explain why the decisions made by the proposed
algorithm lead to energy-efficient fast charging.

A. Basic Case Study

With the proposed thermal-NDC model, this subsection
performs several case studies with low, mild, and high am-
bient temperatures and compares the battery charging perfor-
mance with several strategies to verify the effectiveness of
the proposed charging strategies. The list of all strategies is
summarized in Table II. Strategy B adopts the same MPC
scheme (19) without active thermal management involved in
the MPC formulation to mimic the existing battery modeling
without external thermal influence. B utilizes a separate PID
temperature controller, which is common in industry, i.e.

e(tk) := ek = Tcore,r − Tcore,k,

Pact,k = [KPek +KI

∑k
j=0 ej +KDė(tk)]

P act

P act
,

(21)

where Tcore,r is the desired battery core temperature; Tcore,k

is the battery core temperature at time tk; KP,KI,KD ≥ 0
are the proportional, integral, and derivative gain, respectively;
[·]P act

P act
denotes the clip function with maximum value P act

and minimum value P act; ė(tk) := −Ṫcore(tk), and Ṫcore(tk)
is estimated by applying the optimal control u∗

k|k at time tk
without active thermal control to the system dynamics (6).

The parameters used in the basic case study are: SoCr =
0.90, w1 = 40, w2 = 0.1, w3 = 0.1, ∆p = 5 s, ∆s = 1 s,
N = 40, KP = 0.5, KI = 0.01, KP = 150. The discrete-time
system dynamics in the simulation is updated in every time
interval ∆s and given by

xi+1 = xi +∆sf c(xi,ui). (22)

The PID gains are tuned appropriately to minimize the ris-
ing time, overshoot, and steady-state error on temperature
tracking. When strategies involve solving the optimal control
instance (19), the optimal control instance is programmed by
Python with CasADi [32], compiled as a C library with a
nonlinear programming solver IPOPT [33] with MUMPS, and
then executed at run-time in Python. All the simulations are

Table III
BATTERY CHARGING RESULT IN MILD AMBIENT TEMPERATURE

Strategy Tchg [s] Energy [kJ] Efficiency Tcomp [ms]

P 3005 38.98 83.10% 23.59± 4.38
P1 3005 38.99 83.08% 21.66± 4.99
A 3017 33.42 96.93% 22.14± 3.67
B 3019 35.25 91.90% 21.47± 2.16
C 3013 37.24 86.98% 21.90± 2.36
D 3009 42.88 75.54% 21.53± 2.38
E† 3416 47.39 68.35% 23.40± 6.58

† Infeasible at 690 - 1090 s; violates T core

run on a 2017 MacBook Pro equipped with a 3.1-GHz Inter
Core i7 and 16 GB RAM.

1) Mild Ambient Temperature: The ambient temper-
ature Tamb = 25 ◦C. The initial state x0 =[
0.1 V 0.1 V 25 ◦C 25 ◦C

]⊤
. The simulation results are

shown in Table III, where Tchg indicates the total charging
time; Tcomp indicates the average computational time and its
standard deviation; Energy indicates the total energy used for
charging and thermal management; Efficiency indicates the
charging efficiency (the ratio of the energy used for raising
SoC to the total energy), i.e.∑Tchg/∆s

k=0 Ik · h(SoCk)∆s∑Tchg/∆s

k=0 (IkVk + |Pact,k|)∆s

.

According to Table III, strategies P and P1 have the smallest
charging time. As for total consumed energy and efficiency,
A outperforms the others since charging the battery with-
out active thermal management will not violate the battery
temperature constraint when the ambient temperature is mild.
Fig. 2a illustrates the trajectories of battery core and surface
temperature and active thermal power for strategies P and A,
where strategy P chooses to warm the battery after about 1800
s and thus results in faster charging. From strategies B to D, as
the desired battery core temperature Tcore,r increasing from 25
◦C to 45 ◦C, the charging time decreases from 3019 s to 3009
s. But when the desired core temperature Tcore,r = 50 ◦C is
closed to the upper bound T core = 55 ◦C, the PID controller
violates T core at 690 s - 1090 s since it has no predictive
information on how the system dynamics will evolve. These
observations are consistent with the statement that heating the
battery could benefit the charging speed [6], [7].

2) High Ambient Temperature: The ambient temper-
ature Tamb = 70 ◦C. The initial state x0 =[
0.1 V 0.1 V 50 ◦C 70 ◦C

]⊤
. Note that this initial state

is more challenging than Tcore = Tsurf = 50 ◦C since the heat
convection from the surface to the core could further increase
the core temperature. The simulation results are shown in
Table IV, where strategies P and P1 have the smallest charging
time but have slightly different total consumed energy and
efficiency. A conjecture is that the real difference in charging
time could be less than the time resolution of the simulation
∆s = 1 s; the slightly different control trajectories lead to
different values on the accumulated energy consumption and
efficiency. Strategies A - E cannot find a feasible solution for
solving MPC instances over some duration when the ambient
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(a) Result by P and A with Tamb = 25 ◦C. (b) Result by P with Tamb = 70 ◦C. (c) Result by P with Tamb = −25 ◦C.

Figure 2. Battery core and surface temperature and active thermal power by some strategies in different ambient temperatures. In the upper portion of each
subfigure, the solid lines in blue and red represent Tcore and Tsurf by strategy P. In the lower portion of each subfigure, the solid lines in blue and red
represent the active cooling and heating power by P. In subfigure (a), the dash-dot lines in blue and red represent Tcore and Tsurf by strategy A; the dash-dot
line in black represents the zero active thermal power by A. Note that there is no constraint on Tsurf .

Table IV
BATTERY CHARGING RESULT IN HIGH AMBIENT TEMPERATURE

Strategy Tchg [s] Energy [kJ] Efficiency Tcomp [ms]

P 3004 44.43 72.91% 25.45± 4.85
P1 3004 44.45 72.87% 20.88± 4.99
A† N/A N/A N/A 49.76± 4.28
B‡ 3098 58.20 55.65% 21.52± 4.17
C∗ 3131 55.24 59.72% 21.70± 5.00

D∗∗ 3416 49.55 65.37% 23.74± 7.76
E† N/A N/A N/A 42.04± 2.96

† Infeasible until simulation timeouts
‡ Infeasible in the first 70 s
∗ Infeasible in the first 105 s
∗∗ Infeasible in the first 385 s

temperature is high, which reflects that these strategies are not
applicable at run-time in this scenario. A practical workaround
for these strategies is to solely adjust the battery temperature to
a mild range first, then charge the battery. This solution leads
to longer charging time because it cannot jointly determine the
battery’s electrical and thermal control. This case study verifies
the effectiveness of the proposed strategies P and P1 with
high ambient temperature. Fig. 2b illustrates the trajectories
of battery temperature and active thermal power for strategy
P, where the active cooling power is regulated to balance the
heat convention among the ambient, the battery surface, and
the battery core.

3) Low Ambient Temperature: The ambient temper-
ature Tamb = −25 ◦C. The initial state x0 =[
0.1 V 0.1 V −5 ◦C −25 ◦C

]⊤
. The simulation results

are shown in Table V. Considering the constraint satisfaction
and the MPC solution feasibility, strategy P outperforms
the others in charging time, total energy consumption, and
efficiency. Strategy P1 has the same charging time as P but
the energy consumption and efficiency are slightly different
than P1’s due to the same reason mentioned in Section
IV-A2. Strategies A - E cannot find a feasible solution for
solving MPC instances over some duration since the battery
temperature is close to the lower bound. Since the constraints
on Tcore, V , and ζ limit the charging speed and strategies B - E
violate some of them, their total charging time are less than P’s

Table V
BATTERY CHARGING RESULT IN LOW AMBIENT TEMPERATURE

Strategy Tchg [s] Energy [kJ] Efficiency Tcomp [ms]

P 3023 47.63 68.01% 24.67± 4.85
P1 3023 47.71 67.89% 21.91± 5.45
A† N/A N/A N/A 106.88± 63.50
B‡ 3022 57.60 56.24% 21.93± 9.20
C‡§ 3022 57.60 56.24% 21.96± 9.05
D‡§ 3023 47.63 68.01% 24.67± 4.85
E‡§ 3022 57.60 56.24% 21.98± 9.07

† Infeasible until simulation timeouts
‡ Infeasible in the first 25 s
§ Unable to reach Tcore,r due to power limits

and P1’s. Violating these constraints during fast charging could
jeopardize the battery health [28]. Thus, these strategies are not
applicable at run-time when the ambient temperature is low.
Fig. 2c illustrates the trajectories of battery temperature and
active thermal power for strategy P, where the active heating
power hits the upper bound to warm up the battery for fast
charging.

4) Summary on Basic Case Study: To summarize the three
basic case studies above, the proposed strategies P and P1
outperform the others in charging time given three differ-
ent ambient temperatures, which cover most of the battery
operational conditions. Strategies A - E are not applicable
at run-time when the ambient temperature is extreme since
they might not find a feasible solution. Strategy P and P1
outperform the others in energy consumption and efficiency
with both high and low ambient temperature even though
these factors are not explicitly considered in the objective
function. This is because, with the proposed thermal-NDC
model, P and P1 can jointly determine control such that the
battery temperature and SOC can be mutually beneficial to
each other. To further improve energy efficiency and reduce
energy consumption with mild ambient temperature, one could
restrict the power limit on Pact given a certain range of mild
ambient temperature.

The advantage of the proposed thermal-NDC model can be
also reflected by an observation from Fig. 2, where Pact drops
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toward cooling to reduce Tcore and Tsurf at the end of charging.
In fact, as Fig. 3 illustrated, the charging current also drops at
the same time. The dropping on both Pact and I is to reduce
Vs and V such that they will not violate the constraints as they
approach the upper bounds closely. Also, as SOC increases,
the upper bound on the Li-ion concentration gradient within
the electrode, i.e. β1SoC(t)+β2, decreases. This again requires
Vs to reduce such that Vs−Vb will not violate its upper bound.
The system behaviors with Tamb = −25 ◦C and Tamb = 25
◦C are similar to Fig. 3, thereby omitted.

Figure 3. A trajectory segment for I , Vb, Vs, V , and Vs(t) − Vb(t) vs
β1SoC(t)+β2 with Tamb = 70 ◦C. The red and blue curves in the second
subfigure indicate Vs and Vb, respectively. The black dashed lines in the
top three subfigures are the upper bounds. The black dashed line in the last
subfigure indicates β1SoC(t) + β2 as SoC(t) increases over time.

As for the computational time between P and P1, Tukey’s
HSD (honestly significant difference) Test [34, Chapter 14] is
performed for three cases and it reveals a statistically signif-
icant difference between the computational time of strategies
P and P1; the computational time of P is statistically greater
than P1’s with the p-value 0.00 < 0.05. This indicates that
the initial guess of P1’s MPC problem, i.e. regulating Tcore to
Tcore,r = 45 ◦C in all three ambient temperatures, is closer to
the optimum than P’s initial guess, which benefits the run-time
computation.

A similar conclusion can be drawn based on the observation
from Fig. 2, where the MPC strategy P seems to maintain
a high Tcore for fast charging. These two observations are
consistent with the conclusions made by [6], [7]. However,
compared with the results in mild and high ambient tempera-
tures, it is uncertain that raising the heating power bound could
further speed up the charging given low ambient temperature.
Also, comparing the computational time of P and P1 in the
low and high ambient temperatures, the initialization of P1,
i.e. regulating Tcore to Tcore,r = 45 ◦C, might be closer to
the optimal solution than strategy P’s initialization. Thus, the
next subsection investigates how battery core temperature and
active heating would affect the charging speed, and verify
whether an MPC strategy with a long enough horizon can
obtain an optimal solution that implicitly encourages warming
up the battery to an optimal temperature.

Table VI
STRATEGY DESCRIPTION FOR OTHER FACTORS

Name Description

P2 same as P†, objective function using J2 in (23), Tcore,r = 45◦C

P3 same as P2, N = 40, Tcore,r = 55 ◦C

P4 same as P, N = 80

P5 same as P, N = 120

† Note: for strategy P, N = 40

B. Other Factors

According to [6], the Lithium-ion battery temperature plays
a significant role during charging and discharging, especially
when the ambient temperature is below 0 ◦C. Heating Lithium-
ion batteries at the beginning of charging could improve the
charging speed and capacity retention even if the ambient
temperature is -30 ◦C [6], [7]. Therefore, with the proposed
thermal-NDC model, this subsection performs several numer-
ical experiments in low ambient temperatures to investigate
how the MPC horizon and battery temperature affect the
charging speed.

To investigate how Tcore affects the charging speed, a
revised objective function is given to explicitly warm up the
battery core to a desired temperature while charging, i.e.

J2 ≜w1

∑N
j=0(SoCk+j|k − SoCr)

2+

w2

∑N−2
j=0 (Ik+j+1|k − Ik+j|k)

2+

w3

∑N−2
j=0 (Pact,k+j+1|k − Pact,k+j|k)

2+

w4

∑N
j=0(Tcore,k+j|k − Tcore,r)

2,

(23)

where Tcore,r is a prescribed target battery core temperature,
w1, w2, w3, w4 > 0 are some weights. In this subsection,
parameters are the same as the ones in Section IV-A, except
for explicit annotations. w4 = 0.5 when applicable. The
power limits of Pact are relaxed as [−24 W, 24 W] such that
the system has enough power to regulate Tcore within the
range [-10 ◦C, 55 ◦C], in low ambient temperature. Table VI
summarizes the additional strategies to be compared. The
comparison results are summarized in Table VII.

Regarding the computational time of the proposed strategies
P and P1 - P5, a one-way analysis of variance (one-way
ANOVA) [34, Chapter 14] is performed, which reveals a statis-
tically significant difference in computational time between at
least two groups with a p-value of 0.00 < 0.05. Then Tukey’s
HSD Test reveals a relation with statistical significance among
these groups, i.e. P1 < P < P2 < P3 < P4 < P5.

As for the effect of Tcore on charging speed, P3 outperforms
the other strategies in terms of charging time. Meanwhile, the
other proposed strategies yield slightly longer charging times.
Nevertheless, P1 can achieve a good balance across all indices.
Fig. 4b illustrates the reason why P3 outperforms the others
on charging time, where P3 tracks Tcore,r = 55 ◦C to maintain
a high Tcore for a longer duration than P1 and P5. The reason
can be revealed by the proposed thermal-NDC model, where
a higher Tcore reduces the internal resistance Rb,T(t) as (5)
describes, and further affects the capacitor voltage dynamics
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(a) Result by P1 with Tamb = −25 ◦C. (b) Result by P3 with Tamb = −25 ◦C. (c) Result by P5 with Tamb = −25 ◦C.

Figure 4. Battery core and surface temperature and active thermal power by strategies P1, P3, and P5 with larger thermal power bounds in the low ambient
temperature. Note that there is no constraint on Tsurf .

Table VII
BATTERY CHARGING RESULT IN LOW AMBIENT TEMPERATURE WITH

HIGHER HEATING/COOLING POWER LIMITS

Strategy Tchg [s] Energy [kJ] Efficiency Tcomp [ms]

P 3005 59.68 54.28% 23.50± 4.39
P1 3005 59.71 54.24% 20.99± 4.86
P2 3007 69.40 46.67% 29.53± 29.00
P3 3002 74.62 43.41% 38.06± 27.85
P4 3004 61.51 52.66% 44.51± 9.46
P5 3004 62.85 51.54% 65.98± 13.04
A† N/A N/A N/A 106.73± 63.01
B‡ 3024 58.48 55.39% 21.47± 7.57
C‡ 3019 64.10 50.53% 21.47± 7.52
D§ 3388 74.04 43.75% 23.46± 9.14
E∗ 3846 82.82 39.11% 27.90± 14.21

† Infeasible until simulation timeouts
‡ Infeasible at 0 - 5 s
§ Infeasible at 0 - 5 s, 755 - 1125 s; violates T core
∗ Infeasible at 0 - 5 s, 600 - 1430 s; violates T core

(1a). Since SoC(t) is defined as a linear combination of the
capacitor voltages Vb(t) and Vs(t) in (3), the time derivative
of SOC is directly affected by the capacitor voltage dynamics
(1a). This explanation is consistent with the observation from
numerical experiments, as well as the conclusions from the
literature [6], [7]. However, heating the battery at the beginning
as P3 does is not energy-efficient. Fig. 4a and Fig. 4c indicate
that after the battery is charged for about 2200 s and 1700
s, P1 and P5 begin to heat the battery because they generate
more heat by (7) with a higher V .

Comparing the results from Table VII and Fig. 4, P1 only
increases the heating power after ∼2100 seconds, where the
SOC is ∼65%. From the comparison of the MPC horizon N
in this subsection, the horizon of P (or P1) is long enough
such that the MPC can obtain a solution that is at least close
to the optimal one. Thus, explicitly regulating Tcore as P2 and
P3 do is not necessary. From the perspective of balancing the
charging time and energy consumption, P1 performs better
than the other strategies.

V. EKF-BASED OUTPUT-FEEDBACK MODEL PREDICTIVE
CONTROL

The previous section studies the MPC of battery charging
based on the assumption that the states are fully measurable.
This assumption might not hold in real-world applications.
Hence, this section proposes an output-feedback MPC based
on Extended Kalman Filter (EKF) [35, Chapter 8.2]. The
EKF takes in system output measurements and generates state
estimates, which are given to a revised MPC controller to
design control. This section presents a way to rewrite the
proposed thermal-NDC model for the ease of EKF, proposes
an EKF-based output-feedback MPC, and demonstrates the
effectiveness of this algorithm under extreme ambient temper-
atures by numerical simulations.

A. System Reformulation & Proposed Algorithm

The output V is a function of both states and inputs, as
shown in (1b), thus EKF is not applicable for this output form.
This subsection first rewrites the original system dynamics
(10) similarly as [28] such that its output is a function of states.
To reformulate the system dynamics, new state, control, and
output for the continuous-time system dynamics are defined
as follows,

x(t) ≜ col{Vb, Vs, Tcore, Tsurf , I} ∈ R5,

u(t) ≜ col{u1, Pact} ∈ R2,

y(t) ≜ col{Tsurf , V, I} ∈ R3,

(24)

where u1 ∈ R is a new control input such that the charging
current has the following dynamics:

İ(t) = u1(t). (25)

Note that y(t) is measurable in practice.
Combining the previous dynamics (1) - (8) with the cur-

rent dynamics (25), one obtains the following dynamics in
continuous-time:

ẋ = f̂ c(x,u), (26a)
y = h(x), (26b)
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where f̂ c : R5 × R2 7→ R5 and h : R5 7→ R3 is the new
output mapping. Thus, the discrete-time system dynamics for
EKF are given by:

xi+1 = fd(xi,ui) +wi := xi +∆sf̂ c(xi,ui) +wi,

yi = h(xi) + vi,
(27)

where fd : R5 × R2 7→ R5; wi and vi are the process
disturbance and observation noise, respectively; wi and vi

are both assumed to be zero mean multivariate Gaussian
noises with covariance matrices Qi ∈ R5×5 and Ri ∈ R3×3,
respectively.

The EKF for the battery system (27) is summarized in
Algorithm 2. Denote F i ≜

∂fd(x,u)
∂x |x̂i−1|i−1,ui−1

and Hi ≜
∂h(x)
∂x |x̂i−1|i−1

. At each time instance ti, the system output yi

is observed. Then with the previous state estimate x̂i−1|i−1,
covariance estimate P i−1|i−1, and control input ui−1, the
EKF updates the present estimates x̂i|i and P i|i. Note that
the estimated SOC at time ti is given by its definition (3), i.e.
ˆSOC(ti) = (CbV̂b(ti) + CsV̂s(ti))/(Cb + Cs).

Algorithm 2: Extended Kalman Filter (EKF)
Input: system (27), Qi, Ri

1 def estimate(x̂i−1|i−1,P i−1|i−1,ui−1,yi):
2 x̂i|i−1 ← fd(x̂i−1|i−1,ui−1)

3 P i|i−1 = F iP i−1|i−1F
⊤
i +Qi

4 ỹi ← yi − h(x̂i|i−1)

5 Si ←HiP i|i−1H
⊤
k +Ri

6 Ki ← P i|i−1H
⊤
i S

−1
i

7 x̂i|i = x̂i|i−1 +Kiỹi

8 P i|i = (I5 −KiHi)P i|i−1

9 return x̂i|i,P i|i

Finally, at each time tk, the optimal control can be de-
termined by an EKF-based output-feedback MPC given the
present EKF estimate x̂k|k. The MPC formulation at tk is the
same as (19), except the initial state xk replaced by x̂k|k, and
the system dynamics within the MPC replaced by

xk+j+1|k = xk+j|k +∆pf̂ c(xk+j|k,uk+j|k). (28)

The entire EKF-based output-feedback MPC is summarized in
Algorithm 3. To compensate for the uncertainty and measure-
ment noise, the Li-ion concentration gradient constraint (14)
is revised conservatively as

Vs(t)− Vb(t) ≤ β1(SoC(t) + 5%) + β2, ∀t, (29)

for a safety margin of 5%. Section V-B discusses how this
constraint affects the output-feedback MPC and the charging
performance.

B. Numerical Simulations

This subsection presents numerical simulations on EKF-
based output-feedback MPC for battery charging under ex-
treme ambient temperatures. In this subsection, parameters
are the same as the strategy P1 in Section IV-A, except for

Algorithm 3: EKF-Based Output-Feedback MPC
Input: k = −1, i = 0, t0 = 0, ∆p, ∆s, I0 = 0

1 initialize x̂i−1|i−1 and P i−1|i−1

2 while ˆSoCi < SoCr do
3 observe yi and Tamb,i at time ti
4 x̂i|i,P i|i ←

estimate(x̂i−1|i−1,P i−1|i−1,ui−1,yi)
5 obtain ˆSoCi given x̂i|i
6 if ti % ∆p == 0 then
7 k ← k + 1
8 u∗

0:N−1|k ← solve (19) given x̂k|k at time tk
and Tamb,k+j|k ≡ Tamb,k, ∀j ∈ J0, NK

9 tk ← tk +∆p

10 else
11 perform ui by interpolating u∗

0:N−1|k with
present time ti and zero-order hold

12 ti ← ti +∆s, i← i+ 1

explicit annotations. The discrete-time system dynamics in the
simulation is updated in every time interval ∆s and given by

xi+1 = xi +∆sf̂ c(xi,ui). (30)

The covariance matrix Qi for the process noise is set based
on the relative modeling error or process uncertainty. For Vb

and Vs, the dominant source of error is the capacitor Cb, as
described in (1b). To account for a relative error of ± 7.5%
with a probability of 99.7%, the variance for Vb in discrete-
time should be (2.5%∆s

−1
CbRb

)2 = 1.73× 10−8. The variance
for Cs is also 1.73 × 10−8 for conservatism. For Tcore and
Tsurf , according to (6) and the measurability of Tsurf , the
dominant source of error is Tcore. To cover a relative error
of ± 7.5% with a probability of 99.7%, the variance for
Tcore should be (2.5%∆s

−1
RcoreCcore

)2 = 2.44 × 10−8. For
Tsurf , to cover a relative error of ± 0.3%, the variance should
be (0.1%∆s(

−1
RsurfCsurf

+ −1
RcoreCsurf

))2 = 1.54 × 10−9. Since
the current dynamics (25) is manually constructed to enable
EKF, there is no modeling error or uncertainty on I , thus the
variance for I is 0. Therefore, the process covariance matrix
is Qi = diag(1.73×10−8, 1.73×10−8, 2.44×10−8, 1.54×
10−9, 0).

The Gaussian noise covariance matrix Ri =
diag(10−3, 10−5, 10−12), where each component’s
corresponding standard deviation is 0.032 ◦C, 0.0032 V,
and 1 × 10−6 A, respectively. Thus, the error range with a
probability of 99.7% for each component is about ±0.1 ◦C,
±0.01 V, and ±3 × 10−6 A. Note that the covariance of I
is small because the charging current I is actually a control
input. This section reformulates the previous dynamics (10)
to enable an EKF. Eventually, a charging current will be
applied. Thus, the measurement noise on I is assumed to
be small. The measurement yi at each time instance ti is
given by the true output corresponding to xi with Gaussian
noise sampled with Ri. The initial covariance estimate
P i−1|i−1 = diag(0.5, 0.5, 0.5, 0.01, 0.01), where the small
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covariance elements are given because the corresponding
states are measurable.

The trajectory of measured and actual outputs with Tamb =
−25 ◦C is illustrated by Fig 5. The measurements with
different Tamb are similar to Fig 5, thereby omitted. The other
parameters are summarized below.

1) Mild Ambient Temperature: Tamb = 25 ◦C, x0 =[
0.1 V 0.1 V 25 ◦C 25 ◦C 0 A

]⊤
;

2) High Ambient Temperature: Tamb = 70 ◦C; x0 =[
0.1 V 0.1 V 50 ◦C 70 ◦C 0 A

]⊤
;

3) Low Ambient Temperature: Tamb = −25 ◦C; x0 =[
0.1 V 0.1 V −5 ◦C −25 ◦C 0 A

]⊤
.

Figure 5. Actual and measured system outputs with Tamb = −25 ◦C.

Figure 6. The trajectory segment of the estimation errors on unmeasurable
states Vb, Tcore and SOC with Tamb = 25 ◦C.

The initial estimates on the unmeasurable states Vb and
Tcore are randomly initialized within [Vb(0)− 0.1V, Vb(0) +
0.1V] and [Tcore(0) − 5 ◦C, Tcore(0) + 5 ◦C], respectively.
Note that the initial estimate error on Vb is relatively large
since Vb varies between [0V, 1V]. The initial estimates of the
measurable states are given by the initial measurements. For
each Tamb, the proposed EKF-based output-feedback MPC
runs 20 trials with random initial estimates to verify its
effectiveness.

The estimation errors for the unmeasurable states Vb, Tcore

and SOC with different Tamb are illustrated in Fig. 6 -

Figure 7. The trajectory segment of the estimation errors on unmeasurable
states Vb, Tcore and SOC with Tamb = 70 ◦C.

Figure 8. The trajectory segment of the estimation errors on unmeasurable
states Vb, Tcore and SOC with Tamb = −25 ◦C.

Fig. 8, where black dots indicate the initial state estimate; blue
buffers indicate the estimation error plus and minus 3 times
of standard deviation σ given the estimate covariance P i|i.
A small 3σ error bound indicates that a 99.7% confidence
interval of the state estimate is compact around the true state
value. According to Fig. 6 - Fig. 8, both the state estimates
and the 3σ error bound converge within about 80 s. Table VIII
summarizes the EKF estimation error for unmeasurable states,
which validates the EKF’s effectiveness.

The charging performance for all cases is summarized in
Table IX. Comparing with the performance of P1 in Table III
- Table V, both the computational time and the charging time
from Table IX are longer than those of the state-feedback
MPC. One contributing factor is the conservative revision
of the Li-ion concentration gradient constraint (29), which
includes a safety margin to account for estimation error and
measurement noise. To illustrate this, consider the trajectory
of Vs(t) − Vb(t) vs β1SoC(t) + β2 with Tamb = 70 ◦C, as
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Table VIII
EKF ESTIMATION ERROR

State† Tamb mean ± std quartiles‡

Vb 25 ◦C 0.0012± 0.0064 0.0003, 0.0007, 0.0011
Vs 25 ◦C 0.0008± 0.0018 0.0003, 0.0006, 0.0009

Tcore 25 ◦C 0.0172± 0.1051 0.0013, 0.0030, 0.0092
SoC 25 ◦C 0.11%± 0.59% 0.03%, 0.06%, 0.11%

Vb 70 ◦C 0.0012± 0.0065 0.0003, 0.0007, 0.0011
Vs 70 ◦C 0.0008± 0.0018 0.0003, 0.0006, 0.0009

Tcore 70 ◦C 0.0092± 0.1070 0.0011, 0.0023, 0.0047
SoC 70 ◦C 0.11%± 0.60% 0.03%, 0.06%, 0.11%

Vb -25 ◦C 0.0012± 0.0067 0.0003, 0.0006, 0.0011
Vs -25 ◦C 0.0008± 0.0018 0.0003, 0.0005, 0.0009

Tcore -25 ◦C 0.0174± 0.1087 0.0018, 0.0056, 0.0186
SoC -25 ◦C 0.11%± 0.62% 0.03%, 0.06%, 0.11%
† error unit for Vb, Vs, Tcore, and SoC are V, V, ◦C, and

%, respectively
‡ 25th, 50th, 75th percentile

shown in Fig. 9. In Fig. 3, the same trajectory of Vs(t)−Vb(t)
without any noise or uncertainty approaches the boundary of
β1SoC(t) + β2 as SoC exceeds about 70%. However, when
using output-feedback MPC with noise and uncertainty, the
actual Vs(t) − Vb(t) could exceed this boundary. Therefore,
the 5% safety margin in (29) prevents constraint violation, but
it also slows down the charging process due to the reduced
concentration gradient.

Figure 9. The trajectory of Vs(t)−Vb(t) vs β1SoC(t)+β2 with Tamb = 70
◦C.

On the other hand, the charging success rate is 100% for
all the trials. As for constraint violations, for three Tamb,
the average time duration percentage that violates constraints
is 0.0%±0.0%, 0.0%±0.0%, and 0.0033%±0.0144%, respec-
tively. The maximum constraint violation is less than 0.1% of
its upper bound, which might be caused by the measurement
or numerical noises. The numerical experiments above validate
the effectiveness of the proposed EKF-based output-feedback
MPC under extreme ambient temperatures.

In this subsection, the proposed output-feedback MPC di-
rectly cold-starts with a relatively large estimation error. One
practical approach is to initially run EKF independently for

Table IX
BATTERY CHARGING RESULT WITH EKF-BASED

OUTPUT-FEEDBACK MPC

Tchg [s] Energy [kJ] Efficiency [%] Tcomp [ms]

3019.55±21.75 39.64±0.27 81.81±0.08 30.41± 5.37

3017.30±20.90 44.43±0.31 72.98±0.03 27.94± 4.53

3041.30±20.31 48.30±0.32 67.18±0.06 33.09± 7.02

Tamb = 25 ◦C, 70 ◦C, −25 ◦C from top to bottom

a period, allowing it to reduce the initial estimation error.
Subsequently, the MPC algorithm can be initiated for charging.
Details are referred to in the literature related to the separation
principle [36]–[38].

VI. CONCLUSION AND FUTURE WORK

This paper explores integrated control strategies for fast
charging and active thermal management of LiBs under
extreme ambient temperatures. Firstly, a control-oriented
thermal-NDC model is introduced to describe the electrical
and thermal dynamics of LiBs, including the impact from both
an active thermal source and ambient temperature. Secondly,
a state-feedback MPC algorithm is developed to perform fast
charging and active thermal management concurrently.

Thirdly, numerical experiments are conducted to validate the
proposed state-feedback MPC algorithm under extreme ambi-
ent temperatures. These experiments demonstrate that heating
the battery can enhance fast charging, which is consistent
with the literature. By explicitly incorporating a higher desired
battery core temperature into the MPC’s objective function, the
algorithm achieves the fastest charging speed. However, with
a suitable prediction horizon, an objective function without
explicit heating can achieve a balanced performance across
various indices. Finally, the proposed thermal-NDC model is
rewritten properly to enable an EKF design for battery state
estimation. An EKF-based output-feedback MPC algorithm is
then proposed and validated through numerical experiments
under extreme ambient temperatures.

The proposed thermal-NDC model is built upon the battery
charging and discharging data, utilizing a maximum current
of 1.5 C. As noted by [8], [19], applications such as eVTOL
aircraft and EVs require high C-rate charging, which leads
to significant heat generation and poses potentially a bigger
concern on system safety. One avenue for future work is
to develop a battery model suitable for higher charging cur-
rents. Another future direction involves developing integrated
charging and thermal management strategies for high C-rate
scenarios. This may also require detailed modeling of actuators
in the heating and cooling system.
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