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Abstract

Accurately localizing 3D sound sources and estimating their semantic labels — where the
sources may not be visible, but are assumed to lie on the physical surface of objects in the
scene — have many real applications, including detecting gas leak and machinery malfunction.
The audio-visual weak- correlation in such setting poses new challenges in deriving innovative
methods to answer if or how we can use cross- modal information to solve the task. Towards
this end, we propose to use an acoustic-camera rig consisting of a pinhole RGB-D camera and a
coplanar four-channel microphone array (Mic-Array). By using this rig to record audio-visual
signals from multiviews, we can use the cross-modal cues to estimate the sound sources 3D
locations. Specifically, our framework SoundLoc3D treats the task as a set prediction problem,
each element in the set corresponds to a potential sound source. Given the audio-visual
weak-correlation, the set representation is initially learned from a single view mi- crophone
array signal, and then refined by actively incorporating physical surface cues revealed from
multiview RGB-D images. We demonstrate the efficiency and superiority of SoundLoc3D
on large-scale simulated dataset, and further show its robustness to RGB-D measurement
inaccuracy and ambient noise interference.
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Abstract

Accurately localizing 3D sound sources and estimating
their semantic labels — where the sources may not be visible,
but are assumed to lie on the physical surface of objects in
the scene — have many real applications, including detecting
gas leak and machinery malfunction. The audio-visual weak-
correlation in such setting poses new challenges in deriving
innovative methods to answer if or how we can use cross-
modal information to solve the task. Towards this end, we
propose to use an acoustic-camera rig consisting of a pinhole
RGB-D camera and a coplanar four-channel microphone
array (Mic-Array). By using this rig to record audio-visual
signals from multiviews, we can use the cross-modal cues to
estimate the sound sources 3D locations. Specifically, our
framework SoundLoc3D treats the task as a set prediction
problem, each element in the set corresponds to a potential
sound source. Given the audio-visual weak-correlation, the
set representation is initially learned from a single view mi-
crophone array signal, and then refined by actively incorpo-
rating physical surface cues revealed from multiview RGB-D
images. We demonstrate the efficiency and superiority of
SoundLoc3D on large-scale simulated dataset, and further
show its robustness to RGB-D measurement inaccuracy and
ambient noise interference.

1. Introduction

The task of 3D sound source localization and classifi-
cation, which aims at localizing the 3D spatial position of
each sound source (either physical position or the direction
of arrival (DoA)) and inferring its semantic label (e.g., a
telephone ring), has numerous applications in a variety of
real-world scenarios, including robotics [1,16], audio surveil-
lance [48,61], smart homes [6,58], and augmented/virtual
reality (AR/VR) [27,57]. Existing methods for 3D sound
source localization and classification can be divided into two
main types: 1) methods that are vision-agnostic [7,21,24,26]
and thus rely solely on acoustic signals, and 2) methods
that use the synergy between acoustic and visual modalities
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Figure 1. SoundLoc3D problem setup: Visually invisible sound
sources freely lie on physical object’s surface and are emitting
sound, A: We use an acoustic-camera to record Mic-Array signal
and RGB-D images from multiview. SoundLoc3D incorporates
multiview crossmodal RGB images, depth maps and Mic-Array
signal to jointly localize source position p and semantic label c.

by assuming that the sound source is visually discrimina-
tive [37,38,47,63,67]. For example, the sound is heard from
a musical instrument that is visually observable.

While these two settings have been well-explored by au-
dio/speech processing and audio-visual multimodal research
communities, respectively, there is a third important setting
that is currently under-explored, but reflects many real-world
scenarios: when the sound and vision are weakly correlated;
for example, when the source is either too small to be vi-
sually observed, blended with background in texture and
appearance, or has no associated visual form at all. Typical
examples include: gas leak from pipes, water dripping, elec-
trical zapping, abnormal sounds of cooling fans in computers,
etc., among others. In many cases, the task of accurately de-
tecting the source of such sounds and inferring their semantic
labels is important for damage pre-diagnosis.



Tackling the above task naturally poses three research
questions: 1) is cross-modal information useful in a sound-
vision weak-correlation setting? and if so 2) what sort of
visual cues can be used?, and 3) how to effectively use
cross-modal cues within the weak-correlation setting? In
the pioneering work of Sound3DVDet [25], the focus is pri-
marily in using cross-modal multiview RGB images towards
addressing Q1 and Q2. In this paper, we go further to ex-
plore — in addition to multiview RGB images — whether the
depth map of the scene can be used to further improve the
performance. The motivation for incorporating the depth
maps is two-fold. First, alongside the RGB images, the
depth maps can be easily collected (up to an accuracy rate)
using either direct depth sensors or stereo matching [66].
Second, the depth map provides more direct cue of the ob-
ject’s physical surface than RGB images. The integration of
RGB images and depth maps thus could benefit the task by
leveraging the well-explored vision-based multiview geome-
try methods (e.g., SfM [46] and feature matching [31, 50]).
Thus, the core questions we seek to answer are: 1) how to
incorporate multiview RGB-D images to solve the 3D sound
source localization problem within the audio-visual weak-
correlation setting? and 2) how fo design a framework that
is robust to RGB-D measurement inaccuracy and ambient
noise interference? Fig | shows the problem setup.

To solve this task, we propose SoundLoc3D — an effec-
tive, unified and scalable framework for visually invisible
3D sound source localization and classification. To en-
sure SoundLoc3D is scalable to handle arbitrary 3D sound
sources, we follow [25] to treat this task as a set predic-
tion problem [9, 60], each element in the set is a query and
associated with a potential sound source. Given the audio-
visual weak-correlation, SoundLoc3D learns an initial set
representation from each of the single-view Mic-Array sig-
nal and subsequently optimizes the set representation by
actively incorporating sound source cues revealed by multi-
view RGB-D images and crossview estimation consistency
revealed from multiview observations. Specifically, using
the cross-modal RGB-D images, we constrain the sound
source to lie on object’s physical surface by encouraging:
1) visual appearance consistency from multiview RGB
images in a feature space, and 2) spatial proximity of the
source informed by multiview depth maps. From the cross-
view observation perspective, we encourage 3) cross-view
estimation consistency of 3D sound source.

To evaluate SoundLoc3D, we provide experiments on
a large-scale simulated multiview RGB-D and Mic-Array
dataset following the setup described in Sound3DVDet [25].
Our experimental results show that: 1) incorporating depth
maps improves the performance significantly and 2) Sound-
Loc3D demonstrates robustness to ambient noise interfer-
ence and inaccurate RGB-D measurements, showing its po-
tential for real world applications.

2. Related Work

Sound Source Detection. There are several prior works
focusing on 3D sound source detection purely from micro-
phone array signals [1,7,8,22,24,26]. They either detect 3D
sound source direction of arrival (DoA) [1,7,24,26] or spa-
tial position [z, y, z] [22]. In their setting, they assume the
microphone receivers are stationary while the sound source
can freely move around. This is different from our setting
where we instead assume the microphones are movable and
the number of sound sources may vary. The recent work
Sound3DVDet [25] is the most similar work to ours, it in-
volves multiview RGB to assist the localization.

Multiview based Object Detection. Many existing
works on multiview based object detection share the core
concept proposed in DETR [9], where object proposals are
learned with Transformer in the 2D image space. Adher-
ing to Transformer architecture, DETR3D [60] expands the
domain to 3D with multiview input for learning sparse ob-
ject queries. They detect by either detecting in polar coordi-
nates [13] or integrating 2D features into 3D domain [33,34].

Audio-Visual Multimodal Learning. Audio-visual mul-
timodal learning has received lots of attention in recent
years [2, 18, 19,36, 39], audio-visual dereverberation [11],
localization and navigation [20,43,47,52], mono-to-binaural
audio generation. Similar to ours, crossmodal RGB image
and depth are incorporated for tasks such as dereverbera-
tion [1 1] and mono-to-binaural audio generation [41].

Image Feature Matching. Finding correspondence be-
tween images has been a fundamental topic in computer
vision. The research can be divided into detector-based and
detector-free methods. Detector-based methods make use of
detector to find key-points [3,4, 14,45,49, 54, 64]. Detector-
free-based methods find denser correspondences [30, 32,44,
50,53]. We utilize the image matching features to provide
sound source localization cue.

3. SoundLoc3D Framework Introduction
3.1. Problem Definition

We assume M sound sources S = { (P, ¢ ) A, arbi-
trarily lie on some physical objects’ surfaces in an enclosed
room environment, continuously emitting sound waveforms.
The physical objects are commonly seen indoor objects such
as chair, wall, and door. Each sound source is associated
with a 3D spatial position p,,, € R? and a semantic class la-
bel ¢, € C (C = {c1,¢2, - , ¢}, k is class number). The
sound sources are invisible and mutually independent, thus
may lie on the surface of any object in the scene, emitting
a sound waveform of any sound class. The task is to jointly
localize each sound source’s 3D spatial position and predict
its semantic label.

RGB-D Acoustic-Camera. We base our study on the RGB
acoustic camera rig proposed in [25], and further equip it
with a depth sensor, thereby advancing it to collect depth
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Figure 2. SoundLoc3D Pipeline. The RGB image is first pre-processed by a feature matching aware pre-trained model to get an
embedding (LoFTR), Mic-Array signal feature is extracted by stacking Log-Mel scale TF and GCC-Phat features. The query generator G is
applied to get the initial queries, which are further fed to query decoder D to aggregate crossview RGB image informed sound source cues.
The queries after aggregation is further optimized by Feature Mixer network /M. During training, these queries are matched with ground
truth through bipartite matching and the loss considers the discrepancy between prediction and ground truth, depth map informed closeness,
and multiview detection consistency. During inference, these optimized queries are simply decoded into sound sources.

maps alongside the RGB image. Specifically, this data acqui-
sition rig consists of a centered pinhole RGB-D camera and
four microphones arranged co-planarly at the four corners
with 10 cm spacing distance (see Fig. 1 A). The RGB-D
camera and the four microphones are pre-calibrated and syn-
chronized so that we are able to use the rig to record the
RGB-D image and Mic-Array signal simultaneously from
any viewpoint with known camera poses. In this work, we
assume that our method has a coarse estimation of the spatial
location of the sound sources (e.g., the gas pipes run along
the walls in a kitchen and the leak sound thus comes from
the kitchen wall). We use the RGB-D acoustic-camera to
record the acoustic scene ! from N nearby views, denoted
{(A;, I;, D;)|T;} Y., For the i-th view, Mic-Array signal
is denoted by A; = [a;1,a;,2,a; 3, a; 4], RGB image by I;,
depth map by D;, camera pose by 7;. Our goal is to design
a framework €2 to jointly localize and classitfy 3D sound
sources from multiview RGB-D and Mic-Array recordings,

S+ Q({(Ai, I, Dy)|T;HL). )]

To reflect the real scenario, the framework €2 must con-
sider several factors: c1, capable of addressing audio-visual
weak-correlation, which implies the presence of a 3D sound
source is independent on physical object’s category; ¢2, ac-
commodate arbitrary number of 3D sound sources locations.
and ¢3, robust to multiview RGB-D measurement inaccura-
cies and ambient noise interference. We show how Sound-
Loc3D is designed to be compliant with all these factors.

Following [25], we formulate SoundLoc3D as a set pre-
diction problem, where each element in the set corresponds
to a potential sound source with unique and stationary spatial
position and semantic label. It is worth noting that treating it

I An acoustic scene indicates a localized area containing the physical
object and associated sound sources to be localized.

as set prediction problem can be easily scaled up to handle
arbitrary 3D sound sources (c2). It also avoids us from per-
forming various time-consuming post-processing (e.g., non-
maximum suppression (NMS)). Following the terminology
in recent works [9, 60], we call each element in the set as a
sound source query. The initial queries in the set are learned
from each single view Mic-Array signal independently (c1),
which are subsequently optimized by actively incorporat-
ing cross-modal sound source cues informed by multiview
RGB-D images (see Fig. 3). We incorporate three cross-
modal sound source cues: 1) visual appearance consistency
on the location of the source from multiview RGB images,
2) proximity of the source to an object surface from the mul-
tiview depth maps, and 3) cross-view estimation consistency.
Specifically, SoundLoc3D consists of three main learnable
components Q = (G, M, D): query generator G that is
responsible for sound source query generation, a feature
mixer M that efficiently integrates multiview cross-modal
RGB-D informed sound source cues and a query decoder D
that decodes a query into its spatial position and semantic
label. The overall pipeline is shown in Fig. 2.

3.2. Initial Query Learning from each Single-view
Mic-Array Signal

The acoustic-camera records four-channel Mic-Array sig-
nal from each single view. The four-channel sound wave-
forms provide enough cues to estimate a sound source’s 3D
spatial position and semantic label. The time-frequency
representation obtained from short time Fourier trans-
form (STFT) reveals the semantic label and inter-channel
phase difference encodes its spatial position. Given one Mic-
Array signal A; = [a;1, 02,03, @ 4], we follow the prac-
ticein [1,7,21,22,59] to jointly encode the time-frequency
representation in log-mel scale for each single channel wave-
form, as well as the generalized cross-correlation phase trans-



form (GCC-Phat [5]) between each pair of channels. The
GCC-Phat feature is widely used to encode inter-channel
phase difference [1,7,8,55] as it is relatively insensitive to
the ambient noise interference [5]. Given two channel sound

. k,l .
waveforms a; ;, and a; ; in A;, the GCC-Phat fgécphat ; 18,

k.l = ifft < Fl(aig) - F*(aiz)

. o k#1 2
Jaccphat,i |F(aix)| - F*(flz‘,l)|> EEL @

where ifft(-) indicates inverse short time Fourier transform,
F(-) represents short-time Fourier transform (afterwards
transformed to Log-mel scale), and F™* indicates the complex
conjugate, for k,l € {1,2,3,4}. Given the four-channel
sound waveforms from a single view, we can extract 10 2D
feature maps by stacking 4 STFT representations in Log-
mel scale and 6 GCC-Phat feature maps ((3) = 6) together,
fmic,i € RIOXH1XWi (ip our case, H; = Wp = 256).

The source query generator G then takes as input the
10-channel feature map fu;. to learn the vision-agnostic
initial queries Qinit € R9*4 (in our case, q = 16, d = 256).
It is achieved by applying a sequence of 2D convolutions
to consecutively reduce the feature map spatial resolution
while increasing channel dimension size (2D convolution
with stride of 2 to halve the spatial size),

Qinit,i = G(fmic,i),Vi=1,---, N, 3)
where Qinit,; indicates the i-th view initial source queries,
each of which corresponds to a potential sound source with
specific spatial position expressed in its own camera coordi-
nate system (the ¢-th view camera’s coordinate system) and
semantic label. We use the query decoder D to decode each
query representation into its spatial position and class label,

(Pinit,i» Cinit,i) = D(Qiniti),Vi=1,--- ,N.  (4)

Rather than directly predicting sources from the initial
queries (Eqn. 4). We further optimize the queries by incor-
porating sound source cues from multiview RGB-D images.

3.3. Cross-View Source 3D Position Transform

To incorporate multiview cross-modal source cues, we
transform the decoded position in Eqn. 4 that is expressed in
its own camera coordinate system, to the coordinate system
of another camera (e.g., j-th view, ¢ £ j). This is achieved
by applying rigid transformation with known extrinsic pro-
jection matrix 75, ; € R**4 that translates and rotates from
the i-th view Py ; to j-th view coordinate system,

Pi?:it,gk—i =Tjei Piz:it,ia J#1, )
where Pﬁim € R*is a transposed P,;; ; in homogeneous
coordinates with weight 1. After cross-view 3D position
transformation, we can project the decoded sound source’s
3D position, expressed in the novel view, to its corresponding

RGB image and depth map plane to obtain its 2D projection
[z, uy]jq under the perspective projection,

T
[’U,x, uy]j(—i = KJ : Rnit,j(—i (6)
where K; € R3*4 is the intrinsic matrix for j-th view.
Please note that K; = K as i-th and j-th views are taken
from a single camera. With the obtained cross-view 2D
projection [uy, uy];j«;, we are able to extract cross-view

RGB-D images informed sound source cues.

3.4. Multiview RGB Informed Sound Source Cue

Due to the audio-visual weak-correlation, we cannot di-
rectly detect a 3D sound source from a single RGB image.
Multiview RGB images, however, can be exploited to implic-
itly provide sound source position constraints. Specifically,
based on multiview geometry [15, 33,34, 60], an “on-the-
surface” 3D point’s projections onto multiview RGB images
are matching points that are visually similar, while either
“above-the-surface” or “below-the-surface” 3D point’s pro-
jections are non-matching points and thus less visually simi-
lar (see Fig. 3 A) [54,62,68]. Depending on this constraint,
we can encourage the predicted sound source’s spatial posi-
tion to lie on an object’s physical surface and further update
the query accordingly. After training, the framework tends
to predict query producing the source with matching points
projects onto multiview RGB images.

We model crossview visual consistency in feature
space. We adopt the pre-trained image matching network
LoFTR [50] to directly provide feature embeddings for each
sound source projections onto the multiview RGB images.
The LoFTR model is specifically trained for image matching
in a coarse-to-fine manner. We use only its coarse-level rep-
resentation (of size R?%6%64x64) " Given a projection pixel
point [uz,u,], we use bilinear interpolation to obtain its
visual appearance embedding [y, ,u,],

Jiwe uy] = Phitinear (LOFTR(L) ) (u, 1,15 (7N

where LoFTR([) indicates extracting the LoFTR coarse-
level image matching feature representation from the RGB
image I. For those invalid projections that are off the image
plane, we fill its feature with zeros. Finally, for the initial
queries from any single view Mic-Array signal, we aggregate
its multiview RGB images-informed sound source cues as:

N
1 .
Qinit,i < Qinit,i+ﬁ Zf[u,,uy],-HWJ =1--,N,(®
§=0
where fl,, u,];., indicates the feature extracted in the j-th

view for the query in the i-th view. The updated queries are
further fed to M for further optimization.
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3.5. Feature Mixer for Query Optimization

The feature mixer M is a Transformer encoder net-
work [56]. The updated queries in Eqn. 8 are flattened into
tokens and passed through M for further optimization. The
motivation for designing M as a Transformer encoder is
two-fold: 1) The G learned queries are order-less and thus
naturally fits for Transformer-based network architecture as
all tokens are kept order-less during learning; 2) The updated
queries carrying multiview cross-modal sound source cues
can easily be further optimized by inter-query interaction
and per-query learning:

M(Qinit,i)a 1= 17 e 7N (9)

Given the updated queries Qpdate, WE can again apply the
query decoder D to decode each individual query into its
corresponding spatial position and semantic class label,

Qupdate,i =

(Pupdate,ia Cupdate,i) = D(Qinit,i)a 1=1 ,N (10)

For each decoded query in Eqn. 10, we apply bipartite
matching [28] to associate it with a ground truth sound
source. Since the number of predicted queries is usually
larger than the ground truth number, we explicitly append
non-source categories & to the ground truth so as to
match the query number. After bipartite matching, we com-
pute 1 loss for spatial position regression and cross-entropy

loss for semantic label classification.

Pgt,il + CE<Cpred,ia Cgt,i);
(11)

where || and CE(+) indicate the ¢; and the cross-entropy loss,
respectively. Py ; and Cy ; are the matched ground truth
sound source spatial position and class label, respectively.

1 N
cbm,i = N Z |Ppred,i -
=1

3.6. Multiview Depth Informed Sound Source Cue

Comparing with RGB images, depth map provides more
straightforward and direct sound source spatial position cues
as each depth map directly indicates the spatial locations of

the surface of physical objects. Our key insight is that the
query decoder D decoded sound source position’s proximity
to an object surface can be directly informed by multiview
depth maps: projecting the decoded sound source to one
view depth map plane to get the projection point, reversing
back along the projection ray of the corresponding depth
value distance from the projection point naturally gets that
depth map informed sound source position. When projecting
this query decoded sound source to multiview depth maps,
we can accordingly get multiple such depth map informed
sound source positions.

The closer the decoded source position of a query is to
the physical object’s surface, the more spatially aligned its
projection points will be on the multiview depth maps after
reprojecting them into 3D space. Conversely, if the source
position is farther away, the projection points will be more
spatially distant. We thus introduce depth map informed
spatial closeness loss to encourage the query-decoded sound
source to “march towards” physical object’s surface (see
Fig. 3 B). In this work, we measure the discrepancy between
query-decoded spatial position and the centroid of the multi-
view depth maps re-projected positions. A loss is incurred
if the discrepancy exceeds a pre-defined distance threshold
o (in our case 0 = 0.3 m),

Ldepth P = max{H pred,i Pcentroid,iHQ — 0, 0} (12)

where Peentroid,i 15 the centroid of multiview depth-
information sound source positions. prmd , indicates the
decoded queries matched with meaningful ground truth (not
the appended no-source). || - ||2 is the ¢5 distance. It is
worth noting that the loss is only incurred iff the discrepancy
exceeds the distance threshold o, which reconciles the depth
recording inaccuracies. The multiview depth maps thus up-
date the query to lie closer to the physical surface by directly
affecting the loss value.

3.7. Crossview Estimation Consistency

As shown in Eqn. 10, we predict the same sound sources
from each single view separately. During training stage, each
ground truth sound source is matched with one query from
each single view and compute the loss (Eqn. 11) between the



ground truth and each matched query separately. This loss
fails to take the detection consistency across multiviews into
account, it merely takes the difference between ground truth
and each single view detection separately. To enforce the
crossview estimation consistency, we explicitly incorporate
crossview estimation consistency 10ss L ossview t0 force the
the same sound source estimated from multiviews to be as
spatially close as possible (see Fig. 3 C),

1 N N
£crossview = 6 ZZ ||P;;ed,i*n<—j'P;ed7j||2; 17&]

i=1 j=i
(13)
where P;e i and P;;e 4. indicate the decoded sound source

spatial position in Eqn. 10 for the same ground truth sound
source from different views. C' indicates the view pair com-

bination number, C' = (g ).

3.8. Training and Inference

The overall pipeline of our proposed SoundLoc3D is
shown in Fig. 2. Given the collected RGB-D and Mic-Array
recordings from multiview, we first extract Log-mel scaled
STFT and GCC-Phat feature from four-channel Mic-Array
signal (Sec. 3.2) and LoFTR [50] pre-trained image match-
ing model processed RGB image feature embedding (see
Sec. 3.4). Afterwards, the learnable query generator G is
applied to learn initial queries representation from each sin-
gle view Mic-Array signal. Each individual query from one
view actively aggregates multiview RGB images informed
sound sound cues from all mutliviews by first decoding the
query into spatial position and further projecting it to the
RGB image plane to collect the corresponding feature. This
is achieved by first passing the query feature to the Query
Decoder D to get its decoded spatial position and then pro-
jecting the spatial position to the corresponding RGB image
plane with relevant camera poses. After merging RGB im-
ages informed sound source cues in feature space, the initial
queries are fed to feature mixer M for further optimization.
The optimized queries are again fed to Query Decoder D to
be decoded into corresponding spatial position and semantic
label. Finally, bipartite matching is applied to match with the
corresponding ground truth sound source with one decoded
sound source from each view. The overall loss consists of
the sum of all of the four aforementioned losses,

L= AL- »Cbm + A2 - ﬁdepth + )\3 ' ﬁcrossview» (14)

where A1, A2, A3 are the loss weight and they are all set as
1.0. During training, we adopt the deep supervision strat-
egy [23,29] to jointly supervise the initial queries in Eqn. 4
and updated queries in Eqn. 10 with the loss expressed in
Eqn. 14 (which means P,,..q is replaced by Pp;; and P, pdate
separately). During test, we get the query predictions from
each single frame and evaluate against ground truth sepa-
rately. Finally, we add the evaluation result from each single

Table 1. Inference time and param. size. Inference time is tested
on Intel Core 19-7920X CPU by averaging 100 independent tests.

Method

Inference Param.| Method Inference Param.

SoundDet [26] 125 13M EIN-v2 [7] 220s 26M
SoundDoA [24] 2.10s  27M | SALSA [40] 1.77s 11.6M
SALSA-Lite [51] 1.37s  79M | SELDNet[1] 1.40s 07M

Sound3DVDet [25] 2.77s 19.8 M| SoundLoc3D 1.50 s 3.8M

view together. We do not explicitly merge the predictions
from multiviews because predictions from different views
can be different (e.g., as it is set prediction, the predicted
sound source number from different views may vary).

4. Experiments

Dataset Creation: We follow Sound3DVDet [25] data
creation pipeline to create a large-scale synthetic dataset us-
ing the SoundSpaces 2.0 [12] and Matterport3D scenes [10].
Specifically, we employ five sound source classes: telephone-
ring, siren, alarm, fireplace and horn-beeps and six physical
objects: wall, chair, table, door, ceiling, and cabinet. For
any given room scene, we first randomly select a set of those
six physical objects. For each object, we independently place
n (1 < n < 10) sound sources on its surface (by ensuring
any two sources are at least 0.3 m apart), each of which
isotropically emits sound waveform. Such an object and the
placed multiple sound sources are called an acoustic scene.
The collected acoustic scenes show, 1) large visual variability
even for the same object like chair; 2) various sound source
number; 3) various sound source class. These variabilities
force all methods to enhance their generalization capability.

During multiview recording, we put the acoustic-camera
approximately 3m away from the acoustic scene and en-
sure all sound sources are not visually blocked in any view.
Mic-Array sampling frequency is 21k Hz. To test the visual
discriminativeness of the RGB images and their impact on
the performance, we divide the scenes into two main cate-
gories based on sound source projections’ onto the multiview
images: 1) texture-homogeneous acoustic scene in which
the sound source projections lie on homogeneous textured
areas (e.g., textureless wall, table), 2) texture-discriminative
acoustic scene where the projections localize on texture dis-
criminative area (e.g., corner, edge). We created 5,000/1250
acoustic scenes for training and test respectively, after fil-
tering views without any depth map. The acoustic scene
variabilities discussed above guarantee the training and test
sets exhibit enough visual and acoustic difference.
Evaluation Metrics: Following [25], we adopt three metrics:
mean average precision (mAP), mean average recall (mAR),
mean average localization error (mALE). Given the pre-
dicted sound source set and ground truth for a particular
class, we apply the bipartite matching algorithm [28] to as-
sign each detected sound source to one ground truth sound
source. After the assignment, a detected sound source is a
true positive if it is within a distance threshold (we adopt
three distance thresholds: [0.5 m, 0.8 m, 1.2 m]) with its



Table 2. Quantitative results across all six object categories and five sound classes (left), result on the
texture-homogeneous versus texture-discriminative (right). We do not report standard deviation due to

space limit (all < 0.010).

Table 3. Ablation study on view number.
Standard deviation < 0.005.

View Number

mAP (1)

mAR (1)

mALE (1)

1 view
2 views

0.412

0.870

0.520

Methods Overall Result Texture Homogeneous Texture Discriminative 4 views gﬁé gﬁﬁﬁ 8;;3
mAP mAR mALE mAP mAR mALE mAP mAR mALE 6 views 0.522 0.999 0.318
SELDNet [1] 0.103 0500 0923 | 0.107 0532 0910 | 0.100 0528 0934 8 views 0521 0999 0309
EIN-v2 [7] 0.113 0.607 0.878 0.112 0.620 0.882 0.116 0.600 0.862 . .
SoundDoA [24] 0212 0762 0800 | 0225 0773 0821 | 0224 0748 0819 Table 4. Ablation study on model architec-
SALSA [40] 0.147 0.722 0.793 0.146 0.722 0.791 0.147 0.723 0.794 ture variants. Standard deviation < 0.03.
SALSA-Lite [51] 0.130 0.712 0.810 0.131 0.710 0.811 0.130 0.713 0.811 Methods mAP (1) mAR () mALE (1)
SoundDet [26] 0.120 0.674 0.823 0.121 0.675 0.822 0.120 0.674 0.823 233’""’36?. gigﬁ 23‘]‘3 gz;g
Sound3DVDet [25] | 0309 0998 0586 | 0308 0997  0.584 | 0.296 0992  0.589 SL3DnoDepth | 0472 ot e
SoundLoc3D 0.518  0.999 0.320 0.517  0.997 0.312 0.519  0.997 0.301 SL3D_noRGBD 0.328 0.732 0.810
SoundLoc3D 0.518 0.999 0.320

assigned ground truth, otherwise it is treated as a false posi-
tive. Afterwards, we compute mAP, mAR and mALE (refer
to [25]). Higher mAP and mAR and lower mALE indicate
better performance.

Comparison Methods: We compare with 1) six most re-
cent Mic-Array signal based sound source localization and
detection baselines: SELDNet [1], EIN-v2 [7] and Sound-
DoA [24], SoundDet [26], SALSA [40], SALSA-Lite [51].
SELDNet has been used as baseline against various meth-
ods, it combines CNN and GRU [17] to infer sound sources;
EIN-v2 [7] and SoundDoA [24] are two more recent works;
they adopt Transformer [56] and permutation invariant train-
ing [65] to infer the location of sound sources. SALSA [40],
SALSA-Lite [51] propose to extract log-linear spectrograms
and normalized principal eigenvector to represent Mic-Array
data. 2) one multimodal method Sound3DVDet [25], which
is most relevant to our setting. The comparison on parameter
size and inference time is given in Table 1, where we can see
SoundLoc3D is lightweight and efficient.

Implementation Details: Our framework is implemented
in PyTorch [42] and the source code is provided with the
supplementary materials. For training the models, we use the
AdamW optimizer [35] with a learning rate of 0.0001. Each
model is trained for 100 epochs. We train the models three
times independently to report the mean and variance for each
metric separately. For the Mic-Array signal, the sampling
frequency is 21 kHz and we record 1 second data points.
The converted time frequency map is of size 256 x 256 with
n_fft = 511 and hop_len = 78.

4.1. Experiment Results

The quantitative results are given in Table 2, we can see
that SoundLoc3D outperforms all the seven comparing meth-
ods by a large margin. Comparing with the Mic-Array based
best-performing SoundDoA [24], SoundLoc3D shows a gain
of 0.30 in mAP, 0.23 in mAR and 0.48 in mALE with much
smaller network size. Given that most of these methods have
larger model sizes (Table 1), the efficacy of SoundLoc3D is
prominent (even without vision, SL3D_noRGBD in ablation
study). SoundLoc3D also outperforms Sound3DVDet [25]
significantly with much smaller model size.

Further, all methods achieve higher mAR than mAP, sug-

gesting that treating sound source localization and detection
as a set prediction is capable of estimating all potential sound
sources. The overall quantitative performance in terms of
texture difference is given in Table 2 right. We observe that
SoundLoc3D achieves state-of-the-art performance on both
texture homogeneous and discriminative scenes, while the
other six Mic-Array only methods show no difference be-
cause they do not explicitly leverage vision in their methods.
SoundLoc3D also outperforms Sound3DVDet [25] signif-
icantly, showing the potential of depth map in localizing
sources. The qualitative comparison is in Fig. 4.

4.2. Ablation Studies

1. Does RGB-D help? 1) We remove RGB based part in
our framework (Sec. 3.4 and only feed the initial queries to
feature mixer, SL3D_noRGB; 2) To test the impact of depth
maps, we remove the depth map informed loss (Eqn. 12)
and call this version SL3D_noDepth; 3) We remove both
RGB and depth maps to test cross-modal supervision. From
Table 4, we see that removing either RGB images or depth
maps results in reduced performance, removing depth maps
leads to larger performance drop than RGB images. In
SL3D_noRGBD, we observe the largest performance drop.
It thus shows, in audio-visual weak-correlation, multiview
cross-modal visual information can still be use to signifi-
cantly assist this task.

2. Does Crossview Estimation Consistency help?
We remove the crossview consistency loss introduced in
Sec. 3.7 (variant SL3D_noCVC in Table 4). The dropped per-
formance confirms the importance of crossview consistency.
3. Microphone Number Impact. To understand the im-
pact of microphone array number, we collect another three
datasets in which all sound sources lie on “wall” object sur-
face (each dataset includes 800 acoustic scenes for training,
and 200 for test). The three datasets are identical except
that number of microphones used to record the acoustic
scene (we vary the microphone number from 4, 6 to 8). It is
worth noting that a minimum of 4 microphones are needed
to localize a 3D sound source. In our implementation, all
microphones are arranged on a circular plane with a radius
9 cm to the camera center. The results in Table. 5 show that
more microphones can improve the performance, but the
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Figure 4. Localization Result Visualization: We visualize the sound source localization result in the 3D visual space by different methods
as well as its ground truth position. Zoom in for better visualization. We provide data and visualization code and in Supplementary material.

Table 5. Ablation study on microphone number. CNum indicates the GCC-Phat

feature channel number. Standard deviation < 0.02.

Table 6. mAP w.r.t. RGB (Sound3DVDet) and RGB-
D (SoundLoc3D) measurement inaccuracy.

Method Mic Num. = 4 (default) Mic Num. =6 Mic Num. =8 Method 5 =0 0.1 0.2 03
mAP mALE CNum| mAP mALE CNum| mAP mALE CNum Sound3DVDet 0.309 0.278 0.243 0.200
SoundLoc3D | 0520 0313 6 0527 0308 15 | 0530 0297 28 SoundLoc3D 0516 0507 0498 0.480
Num | Sound3DVDet  Ours I 4.3. Robustness of the Framework
5 0.267 0497 09 —& SoundLoc3D
7 0.255 0.490 ——  EIN-v2 ile it i -
0 0234 ox00  orl ] While it is prefera.ble to test our framework on a real
. world dataset, collecting such data is both technically and
o | 0R6 0507 0496 0.467 . . s
Table 7. mAP () wrt. mum- & 03[ 5 o —s——— 087 practically challenging. For example, it is difficult to place
ber of source classes. we run & 0.309

the experiment on 400-train, 100- 9.377 0.213

test dataset by increasing sound 02447 0.101 0.146]
class number to 7 and 9 (added A\.‘\ME{)\D.(‘)\Z]
bird/engine/turbine/fan sound). We ol 1
can conclude that increasing source
class number leads to negligible per-
formance reduction, showing Sound-
Loc3D is capable of handling multi-
ple sound source classes situation.

L L L L
NoNoise 20dB 10 dB 5dB

Gaussian ambient noise measured by SNR in dB.

performance gain comes with extra computations.

4. View Number Impact. Note that the above setup uses
four views. To assess the influence of the number of views
on performance, we further curated a new dataset where we
fixed the number of sound sources and classes but changed
the number of views in each acoustic scene. Specifically, we
involve three sound sources: telephone, siren and alarm. The
sources are placed on the “wall” and the number of views
for each acoustic scene varies from 1 to 8. In total, 1,000
acoustic scenes are generated, with 800/100 split for training
and test. Five Sound3DLoc models are trained on this dataset
using views in {1, 2,4, 6, 8}. The results are given in Table 3,
and it shows two key points: 1) a conspicuous enhancement
in performance as the views increase from 1 to 4, and 2)
nearly no performance gain as views continue to increase.
This indicates that incorporating multiview recordings is
beneficial for the task, but the extent of improvement soon
diminishes as more views are incorporated.

Figure 5. Ambient noise test: we add white

the sound source on objects’ physical surface and it is “visu-
ally invisible”. To this end, we study the robustness in two
settings to best imitate the real-world. First, by including
additive white Gaussian ambient acoustic noise to the “wall”
data subset, where the amount of acoustic noise is measured
by signal-to-noise ratio (SNR, the lower of it, more noise is
added). The mAP variations are shown in Fig. 5, where we
see both EIN-v2 [7] and Sound3DVDet [25] see a significant
drop but SoundLoc3D maintains its performance. Second,
we add camera pose noise to imitate real-world RGB-D or
RGB measurements. Specifically, we add a Gaussian noise
N(0, ) (mean 0, std §) to camera rotation parameter (pitch,
roll, yaw) to generate RGB-D or RGB measurement inaccu-
racy. The result in Table 6 shows the robustness of Sound-
Loc3D. Third, we add more sound classes: from 5 to 9. The
results in Table 7 show SoundLoc3D can handle detection
under more sound source classes. In summary, SoundLoc3D
is capable of localizing and classifying invisible 3D sound
sources from multiview RGB-D Mic-Array recordings. It
is efficient, scalable and robust to measurement noise and
ambient noise interference that are common in real world,
demonstrating its potential to be employed in real world.

Conclusions and Limitations We show multiview RGB-D
and Mic-Array recordings can be used to estimate invisible
sound sources’ spatial position and semantic class. Building
and experimenting with a real RGB-D acoustic-camera rig
is an important future direction.
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