
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Physics-Constrained Meta-Learning for Online Adaptation
and Estimation in Positioning Applications

Chakrabarty, Ankush; Deshpande, Vedang M.; Wichern, Gordon; Berntorp, Karl

TR2024-180 December 18, 2024

Abstract
Deep neural state-space models (NSSMs) using autoencoders are highly effective for system
identification. Recent advances in meta-learning allow these models to quickly adapt to spe-
cific dynamical systems within families of similar systems. Leveraging advanced automatic
differentiation tools, meta-learned NSSMs can serve as predictive models for online state esti-
mation, especially when dealing with systems that have uncertain parameters or unmodeled
dynamics. This is particularly relevant in magnetic-field positioning applications, where a
magnetometer’s motion dynamics may be uncertain, and measurements are taken within an
unknown magnetic vector field. In this paper, we present a meta-learning framework that
trains ‘physics-constrained’ NSSMs on a diverse dataset of motion dynamics and magnetic
vector fields. These models incorporate physics-informed constraints to learn a curl-free mag-
netic field. The meta-learned NSSM can rapidly adapt to a new motion model and magnetic
field in a few-shot manner (without explicitly estimating the underlying physical parameters)
and can be used as a predictive model for state estimation in positioning tasks.

IEEE Conference on Decision and Control (CDC) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Physics-Constrained Meta-Learning for Online Adaptation and
Estimation in Positioning Applications

Ankush Chakrabarty†, Vedang Deshpande, Gordon Wichern, Karl Berntorp

Abstract—Deep neural state-space models (NSSMs) using
autoencoders are highly effective for system identification.
Recent advances in meta-learning allow these models to quickly
adapt to specific dynamical systems within families of similar
systems. Leveraging advanced automatic differentiation tools,
meta-learned NSSMs can serve as predictive models for online
state estimation, especially when dealing with systems that have
uncertain parameters or unmodeled dynamics. This is particu-
larly relevant in magnetic-field positioning applications, where
a magnetometer’s motion dynamics may be uncertain, and
measurements are taken within an unknown magnetic vector
field. In this paper, we present a meta-learning framework
that trains ‘physics-constrained’ NSSMs on a diverse dataset
of motion dynamics and magnetic vector fields. These models
incorporate physics-informed constraints to learn a curl-free
magnetic field. The meta-learned NSSM can rapidly adapt
to a new motion model and magnetic field in a few-shot
manner (without explicitly estimating the underlying physical
parameters) and can be used as a predictive model for state
estimation in positioning tasks.

I. INTRODUCTION

Neural state-space models (NSSMs) have recently been
touted for nonlinear system identification. A key feature
of NSSMs is their ability to accurately predict the behav-
ior of black-box (or unmodeled) dynamical systems purely
from sequential data streams collected from them [1]–[5].
Explicitly incorporating physics-based information, such as
physical constraints, within the NSSM architecture can both
reduce the amount of data needed for training and yield state
estimates that are consistent with domain knowledge; c.f. [6],
[7] for a more thorough survey outside of the estimation
context. Physics-constrained NSSMs are often trained by
supervised learning: model parameters have been trained
offline with significant data. As a consequence, they are rarely
equipped to adapt to applications that have limited data that
is obtained after deployment.

Meta-learning, or (more generally) ‘in-context learning’,
has shown promising results in settings where a single target
system may provide small data, but actionable data is avail-
able from systems that are similar to the target system [8]–
[10]. Data for the family of similar systems may be obtained
via high-fidelity simulation models for a variety of internal
parameters, or via experiments on similar systems deployed
in the past. The gradient-based meta-learning methodology
comprises a bilevel training procedure [11]. First, a model is
meta-trained on a dataset consisting of data from a number of

Corresponding author. Phone: +1 (617) 758-6175. Email:
achakrabarty@ieee.org. All authors are affiliated with Mitsubishi
Electric Research Laboratories (MERL), Cambridge, MA, USA.

similar systems, where the goal is to learn common patterns
or common knowledge that can be applied to a new target
system. Second, an online meta-inference procedure rapidly
adapts the meta-trained model for a target system with limited
data and in significantly fewer online training iterations.
Though not for SSMs, meta-learning has been proposed for
optimization [10], [12], adaptive control [13], and receding
horizon control [14]–[16].

A motivating application for combining physics-informed
NSSMs, meta-learning, and state estimation is in magnetic-
field-based indoor positioning [17]. Magnetic materials
present in buildings cause anomalies in the ambient magnetic
field [18], [19], which can be leveraged for localization.
However, to get high-accuracy positioning some challenges
need to be overcome. Most critically, the function mapping
the magnetometer position to the magnetic field is unique
for each indoor environment, does not have specific structure,
and needs to enforce physics-informed constraints (i.e., it has
to be a curl-free vector field due to the absence of exciting
local currents). Consequently, there is a need to identify the
unknown magnetic field, generally using noisy measurements
obtained online. Herein, we demonstrate the usefulness of
physics-constrained meta-learning for learning the magnetic
field with subsequent state estimation for positioning.

II. PRELIMINARIES

A. Motivation and Problem Statement

We consider a family of parameterized discrete-time non-
linear systems given by

𝑥𝑘+1 = 𝑓𝜃(𝑥𝑘 , 𝑢𝑘), 𝑦𝑘 = ℎ𝜃(𝑥𝑘 , 𝑢𝑘), (1)

where 𝑥𝑘 ∈ R𝑛𝑥 denotes the state of the system at time
instant 𝑘 ∈ N with 𝑥0 as an initial state, 𝑦 ∈ R𝑛𝑦 denotes
the measured outputs, 𝑓𝜃 denotes the unmodeled dynamics,
ℎ𝜃 denotes an unmodeled output function, and 𝜃 ∈ Θ ⊂ R𝑛𝜃
denotes a vector of unknown model parameters. We assume
that Θ, the set of admissible parameters for the system, is
known from domain expertise; e.g., we know a vehicle has
a tire radius and an approximate range for it based on obser-
vations of similar vehicles. Motivated by our application, we
further assume that the state contains positional information,
i.e., some components of the state vector are known to be
[𝑝𝑋 , 𝑝𝑌] or [𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍], which denote spatial coordinates
in a 2- or 3-dimensional Cartesian coordinate system.

Of the family of systems described above, suppose the
actual target system exhibits dynamics (1) with unknown
𝜃★ ∈ Θ. We focus on the applications where 𝑓𝜃★ and



ℎ𝜃★ may not be explicitly accessed due to various reasons:
for example, a general structure of ℎ may be unknown in
magnetic positioning applications and needs to be learned
online via measurement data, as described in the introduction.
Another example is where 𝑓 and ℎ are represented in
a high-fidelity simulation software such as ‘digital twin’,
may contain black-box components that can not be directly
accessed. Such digital twins typically allow simulations of
trajectories from (1) for a range of specified parameters and
control inputs, and this simulation data can be used for neural
system identification.

In many practical settings, we need to estimate the state 𝑥
online from measurements 𝑦 without completely knowing 𝑓 ,
ℎ, or 𝜃. As shown previously in [7], [20], a viable approach
is to propose NSSMs for 𝑓 and ℎ, and subsequently use
these models for model-based state estimation. Motivated by
indoor positioning applications using the magnetic field, we
are faced with two further challenges that prevent straight-
forward application of the method in [7]. The first is that the
function ℎ in such applications is based on a magnetic field,
and therefore should satisfy physics-informed constraints:
specifically it needs to be curl-free [21]; i.e.,

⃗⃗ ⃗⃗
∇ ×ℎ = 0, where⃗⃗ ⃗⃗

∇ is the vector differential operator,
⃗⃗ ⃗⃗
∇ =

[
𝜕

𝜕𝑝𝑋
𝜕

𝜕𝑝𝑌
𝜕

𝜕𝑝𝑍

]⊤
for 3-dimensional coordinates and

⃗⃗ ⃗⃗
∇ =

[
𝜕

𝜕𝑝𝑋
𝜕

𝜕𝑝𝑌

]⊤
for

2-dimensions. Second, with the help of expensive offline
instrumentation, we can acquire very limited state-output data
from the actual system, denoted by

𝒟tgt = {(𝑥0:𝑇★ , 𝑢0:𝑇★ , 𝑦0:𝑇★)|𝜃★}

obtained over the time span {0, . . . , 𝑇★}. Due to this scarcity
of target system data, it is unrealistic to expect that an NSSM
trained solely on this data will exhibit satisfactory predictive
performance or be able to generalize. These challenges define
our problem: to identify a neural predictive model for the
target system with limited data, capable of enforcing physics-
informed constraints within the NSSM architecture, and to
subsequently employ this NSSM for online state estimation
despite sensor noise and process uncertainty.

B. Proposed Solution

To reduce the data required from the target 𝜃★-system,
we leverage simulation models to obtain data from 𝑁src ∈ N
dynamical systems that are similar to the target system. These
source systems adhere to the form (1) and are parameterized
by 𝜃ℓ ∈ Θ \ 𝜃★ for ℓ = 1, 2, . . . , 𝑁src. By collecting data
from each of the 𝑁src source systems, for instance during
field experiments or via digital-twin simulations, we have
access to a source dataset, which can be written as

𝒟src ≜
{
(𝑥0:𝑇ℓ , 𝑢0:𝑇ℓ , 𝑦0:𝑇ℓ )|𝜃ℓ

}𝑁src

ℓ=0 ,

obtained over a time-span from zero to 𝑇ℓ ∈ N for some
(not necessarily identical) initial state and control inputs
𝑢0:𝑇ℓ := {𝑢𝑘}𝑇ℓ𝑘=0. Note that in practice, the target system
data is collected with expensive instrumentation over a small
time span, so 𝑇★ ≪ infℓ 𝑇ℓ .

More formally, we propose meta-learning to leverage the
source data 𝒟src to learn NSSMs that can represent the
different parameters and also adapt rapidly (i.e., with few
online training updates) to the target system dynamics with
unknown parameters 𝜃★ despite limited target data. This
adaptive identification approach also has the added practical
benefit that no explicit parameter estimation is required. Our
hypothesis is that the rapid adaptation enabled by meta-
learning will result in an accurate prediction model of the
target system, which is expected to consequently improve
the predictions required for updating state estimates via,
for example, an extended Kalman filter, which exploits the
differentiability of the meta-learned NSSM.

Fig. 1: Neural state-space model with mixed encoder and
partial tuning at inference.

III. PHYSICS-CONSTRAINED META-LEARNING FOR
DEEP NEURAL STATE-SPACE MODELS

A. Physics-Constrained NSSMs

As the base learner for our approach, we employ an
autoencoder-like neural architecture, illustrated in Fig. 1. The
key operations in this physics-constrained NSSM are:

𝜓𝑘 = ℰ𝑥𝑢(𝑥𝑘 , 𝑢𝑘), 𝜓𝑘+1 = 𝒜𝜓(𝜓𝑘) (2a)

𝑥̄𝑘 = 𝒟𝑥(𝜓𝑘), 𝜑𝑘 = 𝒟𝑦(𝜓𝑘), 𝑦̄𝑘 =
⃗⃗ ⃗⃗
∇ 𝜑𝑘 , (2b)

where 𝜓𝑘 ∈ R𝑛𝜓 denotes the latent encoding obtained using
the encoder ℰ𝑥𝑢 : R𝑛𝑥+𝑛𝑢 ↦→ R𝑛𝜓 . The latent state update
𝜓𝑘+1 is determined by (2a) using the state transition operator
𝒜𝜓 : R𝑛𝜓 → R𝑛𝜓 . The latent encoding 𝜓𝑘 is mapped back
to the original state-space by the decoder 𝒟𝑥 : R𝑛𝜓 → R𝑛𝑥 .
A separate decoding operator 𝒟𝑦 : R𝑛𝜓 ↦→ R maps the latent
to a scalar 𝜑𝑘 , whose gradient

⃗⃗ ⃗⃗
∇ 𝜑𝑘 yields the reconstructed

output vector 𝑦̄𝑘 . Next, we discuss how the output path of
the autoencoder implicitly enforces the curl-free constraint
on the measurement function ℎ.

The addition of physics-informed vector-field constraints
into deep neural networks has been described more generally
in [22], and we follow their method to enforce specific
curl-free constraints into our NSSM, with some additional
modifications to improve training performance. Clearly, such
a constraint would have to be enforced on the neural network
mapping from components of the state 𝑥 to the output 𝑦. To
this end, we invoke the following result [23, pp. 444].

Theorem 1. Let ℎ be a vector field of class 𝒞1 whose domain
is a simply connected region ℛ ⊂ R3. Then ℎ =

⃗⃗ ⃗⃗
∇ 𝜑 for



some scalar-valued function 𝜑 of class 𝒞2 on ℛ if and only
if
⃗⃗ ⃗⃗
∇ ×ℎ = 0 at all points of ℛ.

This fact implies that if we want to model a vector-field
ℎ that is curl-free using a neural network, a reasonable
strategy is to learn a scalar function 𝜑(𝑥), whose gradi-
ent
⃗⃗ ⃗⃗
∇ 𝜑 will yield the desired curl-free vector field. Since

modern deep-learning toolkits are equipped with capable
automatic differentiation (AD) modules, computing 𝑦 from
𝜑 is straightforward as long as the components of the state 𝑥
corresponding to Cartesian coordinates [𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍] ⊂ 𝑥 are
known. If so, computing

⃗⃗ ⃗⃗
∇ 𝜑 merely involves executing an

automatic differentiation with respect to these components.
This motivates the design of the output path in our proposed
physics-constrained NSSM—see Fig. 1. To reiterate, the
estimate of the output function ℎ, guaranteed by Theorem 1
to be curl-free, is

ℎ̄(𝑥, 𝑢) =
⃗⃗ ⃗⃗
∇ 𝒟𝑦 ◦ ℰ𝑥𝑢(𝑥, 𝑢). (3)

Remark 1. In case the output is known to be solely a
function of 𝑥, that is, 𝑦 = ℎ𝜃(𝑥), one could use split encoders
ℰ𝑥(𝑥) and ℰ𝑢(𝑢) rather than a mixed encoder. With split
encoders, ℎ̄(𝑥) = ∇𝒟𝑦 ◦ ℰ𝑥(𝑥). Consequently, the smooth
activation functions will only be required for designing ℰ𝑥
and 𝒟𝑦 , allowing a more flexible choice of ℰ𝑢 .

In order to represent non-constant ℎ, one requires the out-
put of the neural network to exist, and be non-constant. This
motivates the use of activation functions that are smooth, with
non-constant derivatives. As we shall see in Section III-C, we
will use the Jacobian of the network for model-based state
estimation, motivating not only first-order derivatives to be
smooth, but second-order derivatives also. This is why we
use the swish activation function [24],

𝜍(𝑧) = 𝑧

1 + exp(−𝛽𝑧) , (4)

which is non-monotonic, smooth, unbounded above, and
bounded below; usually 𝛽 is a trainable parameter, but we
will proceed with 𝛽 = 1 for simplicity. Being unbounded
above avoids output saturation which minimizes near-zero
gradients for large values similar to the ReLU function, and
because of smoothness and non-monotonicity, the swish
activation exhibits a soft self-gating property that does not
impede the gradient flow, and therefore, stabilizes the training
procedure [24].

We now describe how to train the neural SSM (2), a
procedure that involves batch gradient-based optimization of
weights for ℰ𝑥𝑢 , 𝒜𝜓, 𝒟𝑥 , and 𝒟𝑦 . We use the differentiable
training loss

L̄NSSM = L̄recon + L̄pred,𝑥 + L̄pred,𝑦 , (5)

where L̄recon = MSE0:𝑁 (𝑥𝑘 ,𝒟𝑥 ◦ ℰ𝑥𝑢(𝑥𝑘 , 𝑢𝑘)) denotes the
reconstruction loss of the auto-encoder pair (ℰ𝑥𝑢 ,𝒟𝑥) over
the state space 𝑥. The term L̄pred,𝑥 in (5) denotes the one-step
prediction error loss in the state vector, i.e.,

L̄pred,𝑥 = MSE0:𝑁−1
(
𝑥𝑘+1 ,𝒟𝑥 ◦ 𝒜𝜓 ◦ ℰ𝑥𝑢(𝑥𝑘 , 𝑢𝑘)

)
,

and L̄pred,𝑦 denotes the prediction error loss in outputs,

L̄pred,𝑦 = MSE0:𝑁 (𝑦𝑘 ,
⃗⃗ ⃗⃗
∇ 𝒟𝑦 ◦ ℰ𝑥𝑢(𝑥𝑘 , 𝑢𝑘)). (6)

Individual terms in the loss functions often need to be
weighted by non-negative scalars to improve numerical con-
ditioning or assign relative importance.

Remark 2. ReLU or LeakyReLU functions cannot be used
as their second derivatives are zero.

B. Meta-Learning and Fine-Tuning in Online Adaptation

Owing to the inherent compute and hyperparameter tuning
costs required in training neural networks, it is often prefer-
able to avoid training models from scratch. However, because
of their dependence on training data, model performance is
extremely sensitive to small distribution shifts between the
training and testing data. This has led to the popularity of
so-called “fine-tuning” methods, where pre-trained models
are updated on-the-fly using a small labeled dataset that
better matches the test data distribution. However, updating
all parameters in the model can lead to catastrophic forgetting
and eliminate some of the benefits of initializing training
with a pre-trained model. For this reason, fine-tuning only
a subset of network parameters based on a-priori knowledge
of the cause of the distribution shift, an approach known as
“surgical fine-tuning” [25], can balance the competing objec-
tives of accounting for distribution shift while maintaining
properties of the pre-trained model. Herein, we fine-tune the
later encoder and decoder layers of our NSSM as shown in
Figure 1, as we expect distribution shifts between system
identification tasks to result from changes in the observed
data, that is, an output distribution shift in machine learning
parlance.

If we know in advance that our model will be fine-tuned
at inference time, we can also incorporate this knowledge
into the training process using a meta-learning algorithm.
In particular, we consider model-agnostic meta-learning [11]
(MAML), which uses a nested training scheme with an inner-
loop that fine-tunes a common set of initial model parameters
on a small set of adaptation data, and an outer loop that
updates the initial set of model parameters across multiple
system identification tasks. During inference, we then only
run the inner fine-tuning loop on a small target dataset. It
is also possible to fine-tune only a subset of all trainable
model parameters in the inner loop, a process referred to
as the almost- no-inner-loop meta-learning algorithm [26].
However, this algorithm only fine-tunes the final layer in
the inner loop, thus we use the more general “fine-tuning”
(MAML-FT) terminology in this work.

The MAML-FT meta-training algorithm, summarized in
Algorithm 1, operates as follows. For each source system
dataset 𝒟ℓ

src ∈ 𝒟src we partition the first 𝑇𝑐 samples in the
trajectory into a context set 𝒞ℓ = (𝑥ℓ0:𝑇𝑐−1 , 𝑢0:𝑇𝑐−1 , 𝑦

ℓ
0:𝑇𝑐−1),

and the remaining 𝑇ℓ − 𝑇𝑐 samples into a target set 𝒯 ℓ =

(𝑥ℓ
𝑇𝑐 :𝑇ℓ

, 𝑢𝑇𝑐 :𝑇ℓ , 𝑦
ℓ
𝑇𝑐 :𝑇ℓ
). We denote by 𝜔 the set of all learnable

model parameters from Figure 1, and 𝜔ft ⊆ 𝜔 the set
of model parameters that will be updated during inference



fine-tuning and inner loop meta-training (i.e., the parameters
corresponding to the pink blocks in Figure 1). We then define
the inner-loop updates for source task ℓ as

(𝜔ft)ℓ𝑚 = (𝜔ft)ℓ𝑚−1 − 𝛽in∇(𝜔ft)ℓ𝑚−1
L̄NSSM

(
𝒞ℓ ; (𝜔ft)ℓ𝑚−1

)
, (7)

where 𝛽in is the inner-loop learning rate, 𝑚 is the inner-loop
update index, and L̄NSSM

(
𝒞ℓ ; (𝜔ft)ℓ𝑚−1

)
is the loss function

from (5) evaluated on the context set 𝐶ℓ , i.e., the trajectory
range 0 : 𝑇𝑐 , using the weights computed after 𝑚 − 1 inner-
loop updates. From (7) we see that the inner-loop updates
are performed individually for each source task, while the
outer-loop update operates over a batch of tasks and for the
entire set of trainable parameters 𝜔, i.e.,

𝜔 = 𝜔 − 𝛽out∇𝜔
𝐵∑
𝑏=1

L̄NSSM
(
𝒯 𝑏 ; 𝜔𝑏

𝑚

)
(8)

where 𝐵 is the number of tasks (i.e., trajectories) in a
training mini-batch, 𝛽out is the outer-loop learning rate, and
L̄NSSM

(
𝒯 𝑏 ; 𝜔𝑏

𝑚

)
is the loss function using the weights after

completing 𝑚 inner-loop iterations, and computed on the
target set, i.e., the 𝑇ℓ − 𝑇𝑐 samples from each task that were
not seen in the inner loop. Because the outer-loop updates
parameters across 𝐵 tasks, it encourages the learning of a
parameter set 𝜔 that can be quickly adapted at inference
time. The MAML-FT inference-time procedure performs 𝑀
inner-loop updates (7) using the limited data from the target
system 𝒟tgt. Finally, model performance is evaluated using
𝜔★
𝑀

, the parameters fine-tuned in the inner loop.

Algorithm 1 OFFLINE META-TRAINING

Require: 𝜔 ⊲ initial weights of NSSM
Require: 𝒟source ⊲ source dataset
Require: 𝜔ft ⊆ 𝜔 ⊲ weights to be fine-tuned
Require: 𝛽in, 𝛽out, 𝑀 ⊲ learning rates and # iters

1: while not done do ⊲ outer-loop
2: Sample batch {𝒟𝑏

src}𝐵𝑏=1 from 𝒟src
3: for 𝑏 = 1 to 𝐵 do ⊲ inner-loop
4: Partition 𝒟𝑏

src into 𝒞𝑏 and 𝒯 𝑏
5: 𝜔𝑏0 ← 𝜔 ⊲ copy current weights
6: for 𝑚 = 1 to 𝑀 do ⊲ adaptation steps
7: for 𝜔𝑙 ∈ 𝜔ft do ⊲ loop over parameters
8: (𝜔𝑙)𝑏𝑚 ← update using (7)
9: end for

10: end for
11: end for
12: 𝜔← update using (8)
13: end while
14: Return 𝜔∞ ← final trained weights

C. METAL-EKF: Extended Kalman Filtering with Meta-
Learned NSSMs

After the NSSM (2) is adapted for the target system, we
use it for state estimation. We adopt an EKF framework
in this paper, but note that it can be readily extended to
other nonlinear filtering approaches. We rewrite (2) in a form

similar to (1) that is amenable to filtering,

𝑥𝑘+1 = 𝒟𝑥 ◦ 𝒜𝜓 ◦ ℰ𝑥𝑢(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 , (9a)

𝑦𝑘 =
⃗⃗ ⃗⃗
∇ 𝒟𝑦 ◦ ℰ𝑥𝑢(𝑥𝑘 , 𝑢𝑘) + 𝜂𝑘 , (9b)

where ◦ denotes function composition, and 𝑤𝑘 and 𝜂𝑘 denote
the zero mean Gaussian uncertainties with respective covari-
ance matrices 𝑄𝑤

𝑘
and 𝑄𝜂

𝑘
. For the EKF estimates, (𝑥−

𝑘
, 𝑃−

𝑘
)

and (𝑥+
𝑘
, 𝑃+

𝑘
) denote the prior (measurements assimilated up

to time step 𝑘 − 1) and posterior (measurements assimilated
up to time step 𝑘) mean-covariance pairs of the state vector
at time step 𝑘, respectively, i.e.,

𝑥𝑘 |𝑘−1 ∼ 𝒩(𝑥−𝑘 , 𝑃
−
𝑘 ) and 𝑥𝑘 |𝑘 ∼ 𝒩(𝑥+𝑘 , 𝑃

+
𝑘
), (10)

where 𝒩(·) denotes the multivariate normal distribution.
For a given (𝑥−0 , 𝑃

−
0 ) and neural predictive model (9), the

EKF equations are given by the measurement update:

𝐻𝑘 =
𝜕

𝜕𝑥

⃗⃗ ⃗⃗
∇ 𝒟𝑦 ◦ ℰ𝑥𝑢(𝑥−𝑘 , 𝑢𝑘), (11a)

𝐾𝑘 = (𝑃−𝑘 𝐻
⊤
𝑘 )(𝐻𝑘𝑃

−
𝑘 𝐻
⊤
𝑘 +𝑄

𝜂
𝑘
)−1 (11b)

𝑃+
𝑘
= (𝐼 − 𝐾𝑘𝐻𝑘)𝑃−𝑘 (11c)

𝑥+
𝑘
= 𝑥−𝑘 + 𝐾𝑘

(
𝑦𝑘 −

⃗⃗⃗⃗
∇𝒟𝑦 ◦ ℰ𝑥𝑢(𝑥−𝑘 , 𝑢𝑘)

)
(11d)

and the time update:

𝐹𝑘 =
𝜕

𝜕𝑥
𝒟𝑥 ◦ 𝒜𝜓 ◦ ℰ𝑥𝑢(𝑥+𝑘 , 𝑢𝑘), (12a)

𝑃−𝑘+1 = 𝐹𝑘𝑃
+
𝑘
𝐹⊤𝑘 +𝑄

𝑤
𝑘

(12b)
𝑥−𝑘+1 = 𝒟𝑥 ◦ 𝒜𝜓 ◦ ℰ𝑥𝑢(𝑥+𝑘 , 𝑢𝑘). (12c)

Note that computing the Jacobian matrices 𝐻𝑘 and 𝐹𝑘 in
(11a) and (12a) requires differentiation of the outputs of the
deep neural networks with respect to their inputs. To this end,
we utilize AD capabilities available in standard deep-learning
libraries, such as PyTorch.

IV. CASE STUDY: POSITIONING UNDER UNCERTAIN
MOTION MODELS AND UNKNOWN MAGNETIC FIELDS

In this section, we evaluate our proposed methodology to
magnetic-field localization using simulated data. First, we
go through the modeling aspects of the application. This is
followed by implementation aspects, and we conclude with
numerical results and accompanying discussion. The scenario
we consider is the example used in [21], tailored to the
recursive setting similar to [17]. Specifically, the magnetic-
field model is from [21], for which we have ground truth and
can accurately evaluate our proposed approach.

Consider a sphere centered at the origin with a ra-
dius of 𝑟0m having a uniform magnetization of ℳ =

[𝑚𝑋 , 𝑚𝑌 , 0]⊤A/m; see Fig. 2(A). Then, the magnetic-field
function ℎ𝜃 mapping the position 𝑝 := [𝑝𝑋 , 𝑝𝑌] to the
magnetic field 𝑦 is described by

ℎ𝜃 =

{
−ℳ/3 if 𝑟 < 𝑟0

𝑚0
4𝜋

(
ℳ/𝑟3 + 3/𝑟5(ℳ⊤𝑝)𝑝

)
if 𝑟 ≥ 𝑟0

(13)



(A) (B) (C)

Fig. 2: (A) Illustration of actual and NSSM-learned magnetic field function ℎ𝜃 . (B) Comparison of errors between swish and tanh NSSMs.
Note that only around a small neighborhood of the region of discontinuity at 𝑟0 = 3m do we observe significant discrepancy between the
two. (C) Comparison of state estimation error norm (median, interquartile range) for different meta-learned NSSM models. Gray shade
indicates time span used for adaptation.

where 𝑚0 = 4/3𝜋𝑟3
0 and 𝑟 = ∥𝑝∥. With zero-mean Gaussian

noise 𝜂𝑘 ∼ 𝒩(0, 𝑄𝜂
𝑘
) with covariance 𝑄𝜂

𝑘
on the measure-

ments, we write the measurement equation as

𝑦𝑘 = ℎ𝜃(𝑥𝑘) + 𝜂𝑘 . (14)

We consider a mobile wheeled robot with car-like kinematics
described by a kinematic single-track model moving in
the 𝑋𝑌-plane. The kinematic single-track model has three
states: the global (planar position) and the heading angle,
𝑥 = [𝑝𝑋 , 𝑝𝑌 ,𝜓]. The wheel-speed measurements directly
provide the velocity 𝑣𝑋 . The continuous-time model is

¤𝑥 =


𝑣𝑋 cos (𝜓 + 𝛽)/cos(𝛽)
𝑣𝑋 sin (𝜓 + 𝛽)/cos(𝛽)

𝑣𝑋 tan (𝛿)/𝐿

 , (15)

where 𝐿 = 𝑙 𝑓 +𝑙𝑟 are the distances from the origin to the front
and rear wheel axle, respectively, 𝛽 = arctan(𝑙𝑟 tan(𝛿)/𝐿) is
the kinematic body-slip angle where 𝛿 is the steering angle,
and the velocity is related to the wheel speeds by 𝑣𝑋 = (𝜔 𝑓 +
𝜔𝑟)𝑅𝑤/2; 𝑅𝑤 is the wheel radius. After time discretization,
we write (15) concisely as

𝑥𝑘+1 = 𝑓𝜃(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 , (16)

with Gaussian zero-mean process noise, 𝑤𝑘 ∼ 𝒩(0, 𝑄𝑤
𝑘
), to

account for model mismatch, 𝑢𝑘 = [𝛿, 𝜔 𝑓 , 𝜔𝑟] being control
action. The steering controller is a pure-pursuit controller
tracking a reference path 𝑝𝑟(𝑡). In the context of (1), the
unknown parameters 𝜃 comprise the wheelbase parameters
𝑙 𝑓 , 𝑙𝑟 , the maximum steering angle 𝛿: these affect the vehicle
dynamics; and the magnetization 𝑚𝑋 , 𝑚𝑌 , the magnetic-field
radius 𝑟0: these affect the magnetic vector field.

Data generation: In order to construct a meta-learning
dataset, we need to generate source and target systems. To
this end, we assume that the range of 𝑙 𝑓 , 𝑙𝑟 ∈ [0.02, 0.25]2,
𝑚𝑋 , 𝑚𝑌 ∈ [−1.5, 1.5]2, the maximum steering angle 𝛿 ∈
[10, 20], and 𝑟0 ∈ [1.5, 4.5]. Then we construct 80 source
and 20 target systems by randomly sampling parameters from
these ranges, and executing simulations that yield 𝑥, 𝑢, and
𝑦 data, for each source and target system. The simulations
last for 40s, with a sampling period of 0.1s and identical
references to be tracked by the vehicle. Despite the common

reference to be tracked, we have observed (we do not show
a plot due to limited space) significant variation within 𝒟src
and 𝒟tgt due to variation in 𝜃.
NSSM architecture: After a preliminary neural architecture
search, the dimension of the latent space was selected to
be 𝑛𝜓 = 128. Each of the components in Fig. 1 was
implemented with fully connected layers activated by swish
functions. The graph of the encoder and two decoders were
selected to be ℰ𝑥𝑢 : 6−256−128−128−64−32−32−128,
𝒟𝑥 : 128− 32− 64− 128− 256− 3 with 3 updated states as
outputs, and 𝒟𝑦 : 128− 64− 64− 128− 128− 256− 256− 1,
since the output of this is a scalar potential. The state
transition operator 𝒜𝜓 was implemented network with six
fully-connected layers of identical hidden dimension of 256.
For meta-inference, the last 2 layers of ℰ𝑥𝑢 and all the
layers of 𝒜𝜓, 𝒟𝑥 and 𝒟𝑦 were adapted with target system
data. The first few layers of ℰ𝑥𝑢 were fixed after meta-
training. We reiterate that

⃗⃗ ⃗⃗
∇ in Fig. 1 is not a trainable neural

network, it merely denotes the vector differential operator
that differentiates the output of 𝒟𝑦 with respect to 𝑝.
Results and Discussion: The meta-learned NSSM was trained
offline on the source dataset for 30000 epochs using the
Adam optimizer with fixed learning rates 𝛽out = 10−4,
𝛽in = 10−3, and 𝑀 = 10 adaptation iterations; an NVIDIA
3090X GPU was used for training, and the total training
time was at most 22 hours. The weights of the NSSM were
saved when the validation loss decreased. For meta-inference,
we use 20% of the target system data, which is the initial
𝑇𝑐 = 8s out of the total simulation time of 𝑇ℓ = 40s.
The performance of the NSSM was evaluated in terms of
prediction and estimation errors for the remaining 80% of
the target system’s trajectory never seen by the NSSM.

In Fig. 2(A) we illustrate the data obtained from the
actual magnetic field ℎ𝜃, obtained by evaluating ℎ𝜃 in (13)
parameterized with 𝑚𝑋 = 1, 𝑚𝑌 = 1, 𝑟0 = 3m using black
arrows. Most of this data is overlayed by the estimate of
ℎ𝜃 learned by the swish-activated NSSM, evaluated over a
regular 100 × 100 grid in a two-dimensional spatial domain;
that is, the learned NSSM closely approximates the magnetic
field throughout the domain, with noticeable differences only
around a small neighborhood of the region of discontinuity at



𝑟0 = 3m. This is corroborated by Fig. 2(B), which shows the
vector plot of errors in the magnetic field estimate, i.e. the
error between the actual, and swish- and tanh-activated
NSSMs. The tanh-activated NSSM (green) induces larger
approximation errors than the swish-activated NSSM (red).
This is established by computing the root-mean-squared error
(RMSE) of approximation on the 100 × 100 grid: for the
swish activated NSSM, the RMSE is 6.72×10−4 compared
to 8.03 × 10−4 for tanh-activation.

Fig. 2(C) compares of estimation accuracy of MetaL-EKF
implemented with different meta-learned NSSMs. Statistical
metrics of performance, i.e., median and interquartile range
of the state estimation error norm were calculated over 20 tar-
get systems. In particular, we consider four variants of meta-
learning, two of which are the most popular meta-learning
algorithms. The first (blue) is the proposed approach with
the proposed swish activation. As described in § III-B, this
is the MAML-FT approach that fine tunes a subnetwork; the
green line in the subplot corresponds to MAML, where the
entire network is fine-tuned, not a subnetwork. The orange
line shows the performance of MAML+FT with the tanh ac-
tivation. The final comparison is with first-order (FO) MAML
(red line), which is an efficient approximation of the MAML
algorithm that does not backpropagate through the inner-loop
in Algorithm 1 during meta-training, and has been shown to
sometimes perform as well as MAML [11], [27]. Different
runs of MetaL-EKFs using different NSSMs were subject
to identical reference trajectories, identical measurements,
and identical initialization for a fixed target system. The
parameters of NSSMs were adapted using the target system’s
trajectory data of initial 8s, and the adapted network was
used for state estimation as the predictive model in MetaL-
EKF. In Fig. 2(C), the first 8s of data has been used for
adaptation by all the networks: this is why the state estimation
error norm ∥𝑒𝑥

𝑘
∥ is small in this shaded area. After 8s, as

expected, we see signficantly different performance amongst
the different filters. The comparison of MAML+FT/Swish
and MAML+FT/Tanh indicates that the swish activation
may be more suitable for modeling magnetic fields in posi-
tioning applications as the MAML+FT/Tanh version exhib-
ited significantly larger estimation errors, especially in later
parts of the trajectories. This is potentially attributed to the
fact that the unboundedness of the swish function leads to
improved gradient flow in this non-trivially deep network,
which leads to improved meta-training. The importance of
fine tuning, i.e., adapting only a carefully selected subset
of network parameters, is highlighted by the significantly
smaller estimation error demonstrated by MAML+FT/Swish
compared to classical MAML. Furthermore, FO-MAML
is outperformed by all other MAML variants, potentially
because the non-constant second-derivatives in the swish
activation are beneficial when backpropagating through the
nested training scheme in Algorithm 1.

REFERENCES

[1] M. Forgione, M. Mejari, and D. Piga, “Learning neural state-
space models: do we need a state estimator?” arXiv preprint
arXiv:2206.12928, 2022.

[2] D. Masti and A. Bemporad, “Learning nonlinear state–space models
using autoencoders,” Automatica, vol. 129, p. 109666, 2021.

[3] G. Beintema, R. Toth, and M. Schoukens, “Nonlinear state-space
identification using deep encoder networks,” in Learning for Dynamics
and Control. PMLR, 2021, pp. 241–250.

[4] G. I. Beintema, M. Schoukens, and R. Tóth, “Deep subspace encoders
for nonlinear system identification,” Automatica, vol. 156, p. 111210,
2023.

[5] C. Legaard, T. Schranz, G. Schweiger et al., “Constructing neural
network based models for simulating dynamical systems,” ACM Com-
puting Surveys, vol. 55, no. 11, pp. 1–34, 2023.

[6] T. X. Nghiem, J. Drgoňa, C. Jones et al., “Physics-informed machine
learning for modeling and control of dynamical systems,” in 2023
American Control Conference (ACC). IEEE, 2023, pp. 3735–3750.

[7] V. M. Deshpande, A. Chakrabarty, A. P. Vinod et al., “Physics-
constrained deep autoencoded kalman filters for estimating vapor
compression system states,” IEEE Control Systems Letters, vol. 7, pp.
3483–3488, 2023.

[8] L. Xin, L. Ye, G. Chiu et al., “Identifying the dynamics of a system
by leveraging data from similar systems,” in 2022 American Control
Conference (ACC), 2022, pp. 818–824.

[9] M. Forgione, F. Pura, and D. Piga, “From system models to class
models: An in-context learning paradigm,” IEEE Control Systems
Letters, vol. 7, pp. 3513–3518, 2023.

[10] A. Chakrabarty, “Optimizing closed-loop performance with data from
similar systems: A bayesian meta-learning approach,” in 2022 IEEE
61st Conference on Decision and Control (CDC). IEEE, 2022, pp.
130–136.

[11] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[12] S. Zhan, G. Wichern, C. Laughman et al., “Calibrating building sim-
ulation models using multi-source datasets and meta-learned Bayesian
optimization,” Energy and Buildings, vol. 270, p. 112278, 2022.

[13] S. M. Richards, N. Azizan, J.-J. Slotine et al., “Adaptive-
control-oriented meta-learning for nonlinear systems,” arXiv preprint
arXiv:2103.04490, 2021.

[14] E. Arcari, A. Carron, and M. N. Zeilinger, “Meta learning MPC using
finite-dimensional Gaussian process approximations,” arXiv preprint
arXiv:2008.05984, 2020.

[15] D. Muthirayan and P. P. Khargonekar, “Meta-learning guaran-
tees for online receding horizon learning control,” arXiv preprint
arXiv:2010.11327, 2020.

[16] Y. Gu, S. Cheng, and N. Hovakimyan, “Proto-MPC: An encoder-
prototype-decoder approach for quadrotor control in challenging
winds,” arXiv preprint arXiv:2401.15508, 2024.

[17] K. Berntorp and M. Menner, “Constrained gaussian-process state-space
models for online magnetic-field estimation,” in Proc. 26th Int. Conf.
on Information Fusion (FUSION). IEEE, 2023, pp. 1–7.

[18] B. Li, T. Gallagher, A. G. Dempster et al., “How feasible is the use
of magnetic field alone for indoor positioning?” in Int. Conf. Indoor
Positioning and Indoor Navigation, 2012.

[19] M. Angermann, M. Frassl, M. Doniec et al., “Characterization of the
indoor magnetic field for applications in localization and mapping,” in
Int. Conf. Indoor Positioning and Indoor Navigation, 2012.

[20] A. Chakrabarty, A. P. Vinod, H. Mansour et al., “Moving hori-
zon estimation for digital twins using deep autoencoders,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 5500–5505, 2023.

[21] N. Wahlström, M. Kok, T. B. Schön et al., “Modeling magnetic fields
using Gaussian processes,” in Int. Conf. Acoustics, Speech, and Signal
Process., 2013.

[22] J. Hendriks, C. Jidling, A. Wills et al., “Linearly constrained neural
networks,” arXiv preprint arXiv:2002.01600, 2020.

[23] S. J. Colley, Vector Calculus, 4th ed. Upper Saddle River, NJ: Pearson,
Sep. 2011.

[24] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: A self-gated
activation function,” arXiv preprint arXiv:1710.05941, 2017.

[25] Y. Lee, A. S. Chen, F. Tajwar et al., “Surgical fine-tuning improves
adaptation to distribution shifts,” arXiv preprint arXiv:2210.11466,
2022.

[26] A. Raghu, M. Raghu, S. Bengio et al., “Rapid learning or feature
reuse? Towards understanding the effectiveness of MAML,” in Proc.
of the Int. Conf. on Learning Representations (ICLR), 2019.

[27] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2024-180.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


