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Inscribing and separating an ellipsoid and a constrained zonotope:
Applications in stochastic control and centering

Abraham P. Vinod∗, Avishai Weiss, and Stefano Di Cairano

Abstract— Constrained zonotopes are equivalent representa-
tions for convex polytopes that have recently enabled tractable
implementations of some set-based control methods. We con-
sider the problems of inscribing an ellipsoid within and separat-
ing an ellipsoid from a constrained zonotope. Such problems
arise in several applications, including in stochastic optimal
control problems when enforcing chance constraints involving
constrained zonotopes. Given a parameterized ellipsoid, we
propose a set of sufficient conditions that are convex in the
parameters and guarantee that the ellipsoid is inscribed within
a constrained zonotope. We use these conditions to solve a
two-stage, return-guaranteed spacecraft rendezvous problem
under uncertainty. We also apply these conditions to tractably
approximate the Chebyshev center and the maximum volume
inscribed ellipsoid of a constrained zonotope using linear and
second-order cone programming. We also propose a set of nec-
essary and sufficient conditions that separate an ellipsoid from
a constrained zonotope, which has applications in enforcing
probabilistic exclusion from a constrained zonotope.

I. INTRODUCTION

Constrained zonotopes describe convex polytopes exactly,
and provide an alternative to the traditional halfspace/vertex
representations [1]–[5]. They express a convex polytope as
an affine transformation of a high-dimensional unit cube
after intersecting the cube with a set of affine constraints.
The main advantage of a constrained zonotope representation
is that it admits closed-form expressions for several set
operations relevant to set-based control [1]–[5]. For example,
using the recent results on closed-form approximations of the
Pontryagin difference involving constrained zonotopes [5],
one can now efficiently compute robust controllable sets for
high-dimensional systems over long horizons without requir-
ing vertex-facet enumeration. On the other hand, there are
still several open questions regarding the use of constrained
zonotopes in optimal control, including efficient formulations
for imposing chance constraints involving constrained zono-
topes and computing the Chebyshev center of a constrained
zonotope. This paper builds upon the recent results in [5]
to investigate problems arising from the interactions of
constrained zonotopes and ellipsoids with applications in
stochastic optimal control and computational geometry.

We are motivated by the problem of designing two-staged,
return-guaranteed, spacecraft rendezvous trajectories. Here,
we seek rendezvous trajectories in the first stage that steer a
control-constrained spacecraft towards a rendezvous target,
while allowing for the possibility of diverting back to a
holding position in the event of a no-go decision in the
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beginning of the second stage. This allows the rendezvous
target to request the approaching spacecraft to abort ren-
dezvous, if needed, and safely steer away from the docking
area. The rendezvous trajectory in both stages must also
account for process and measurement uncertainties arising
from the actuation and sensing limitations [6]. We encode the
desirable property of the approaching spacecraft being able
to either return to a holding position or to continue towards
the target for docking in the second stage using robust
controllable sets, see, similar to [7], [8]. We use these sets
to constrain the terminal state of the rendezvous trajectory
in the first stage. Recall that polytope-based computation of
robust controllable sets for high-dimensional systems suffer
from numerical issues due to projection [9]–[11]. For non-
stochastic, symmetric, convex, and compact disturbances,
we can use constrained zonotopes to efficiently compute
the required high-dimensional robust controllable sets [5].
However, under stochastic models for the uncertainty in the
first stage, we need tractable approaches to enforce chance
constraints involving constrained zonotopes.

The first part of this paper focuses on the problem of
inscribing an ellipsoid within a constrained zonotope. We
propose a collection of convex constraints to guarantee that
an ellipsoid is inscribed in a constrained zonotope, which
has several applications. These constraints enable us to
conservatively enforce chance constraints using the well-
known ellipsoidal approximation [12], [13]. Given a random
vector x, decision variable z, a constrained zonotope C and
a threshold δ ∈ (0, 1), z + E(δ) ⊆ C ⇒ P{x + z ∈
C} ≥ δ for an appropriately defined ellipsoid E(δ) [12, Sec.
3.1]. In addition, we can use these constraints to compute
the Chebyshev center and the maximum volume inscribed
ellipsoid of a constrained zonotope. Chebyshev centering
problems have applications in optimization and model pre-
dictive control [11], [14]. The maximum volume inscribed
ellipsoid provides a succinct approximation of constrained
zonotopes that can be useful for analysis and visualization.

The second part of the paper focusses on separating a
parameterized ellipsoid from a constrained zonotope. Such
separation problems arise in collision-checking [13], [15] as
well as when enforcing chance constraints of the form P{x+
z ̸∈ C} ≥ δ. However, unlike the inscribed ellipsoid problem,
these constraints are non-convex on the ellipsoid parameters.

The main contributions of this paper are as follows: 1)
characterize necessary and sufficient conditions for an ellip-
soid to be inscribed within a constrained zonotope, 2) char-
acterize necessary and sufficient conditions for an ellipsoid
to be separated from a constrained zonotope, and 3) exploit



the structure in these conditions to enable tractable formula-
tions of chance constraints involving constrained zonotopes
as well as (approximately) compute the maximum volume
inscribed ellipsoid and the Chebyshev center of a constrained
zonotope. We also use the proposed constraint formulations
in combination with constrained zonotopic computation of
robust controllable sets [5] to design a rendezvous trajectory
for a two-stage spacecraft rendezvous problem.

II. PRELIMINARIES

0n×m and 1n×m are matrices of zeros and ones in Rn×m

respectively, Sn is the set of symmetric matrices in Rn×n,
Ln is the set of lower-triangular matrices in Rn×n, In is the
n-dimensional identity matrix, diag(d) is the n-dimensional
diagonal matrix with entries from d ∈ Rn, N[a:b] is the subset
of natural numbers between (and including) a, b ∈ N, a ≤
b, ei is the standard axis vectors of Rn, and ∥ · ∥p is the
ℓp-norm of a vector. Let M ∈ Rm×n, M1 ∈ Rm×n1 , and
M2 ∈ Rm1×n. Then, [M,M1] ∈ Rm×(n+n1) and [M ;M2] ∈
R(m+m1)×n are matrices obtained by concatenating M and
M1 horizontally, and M and M2 vertically respectively. For
M ∈ Rm×n with full row rank, M† = M⊤(MM⊤)−1

denotes its (right) pseudoinverse, and x = M†v solves the
system of linear equation Mx = v for any vector v ∈ Rm.

For any set S ⊆ Rn, AH(S) is an affine set such that S ⊆
A ⇒ AH(S) ⊆ A for any affine set A. The affine dimension
of a set S is the dimension of the subspace associated with
AH(S). A full-dimensional set in Rn is a non-empty set
with an affine dimension of n [14, Sec. 2.1].

From probability theory, for any events A and B,

P{A} ≥ P{A ∩ B} = P{A|B}P{B}, (1a)
B ⊆ A =⇒ P{A|B} = 1 and P{A} ≥ P{B}. (1b)

Here, B ⊆ A denotes that the occurrence of the event B
guarantees the occurrence of the event A almost surely.

A. Sets: Constrained zonotopes, polytopes, and ellipsoids

Let P and C be convex and compact sets in Rn. Then, P
is a (convex) polytope if (2a) holds and C is a constrained
zonotope if (2b) holds:

∃(HP , kP ) ∈ RNP×n × RNP : P = {x : HP x ≤ kP }, (2a)

∃(GC , cC , AC , bC) ∈ RC : C =

{
GCξ + cC

∣∣∣∣∣ ∥ξ∥∞ ≤ 1,

ACξ = bC

}
,

(2b)

where RC ≜ Rn×NC × Rn × RMC×NC × RMC . From [1,
Thm. 1], representations (2a) and (2b) are equivalent, with
a tractable approach to convert (2a) to (2b). However, con-
verting (2b) to (2a) is computationally expensive.

The main advantage of constrained zonotopes (2b) over
polytopic representation (2a) is the closed-form expressions
for several set operations. Specifically, for any sets C,S ⊆
Rn and W ⊆ Rm, and a matrix R ∈ Rm×n, the set
operations (affine map, Minkowski sum ⊕, intersection with

inverse affine map ∩R, and Pontryagin difference ⊖) are:

RC ≜ {Ru : u ∈ C}, (3a)

C ⊕ S ≜ {u+ v : u ∈ C, v ∈ S}, (3b)

C ∩R W ≜ {u ∈ C : Ru ∈ W}, (3c)

C ⊖ S ≜ {u : ∀v ∈ S, u+ v ∈ C}. (3d)

Since C ∩ S = C ∩In S, (3c) also includes the standard
intersection. For any x ∈ Rn, we use C + x and C − x
to denote C ⊕ {x} and C ⊕ {−x} respectively for brevity.
From [1, Prop. 1] and [2, Sec. 3.2],

RC = (RGC , RcC , AC , bC), (4a)

C ⊕ S = ([GC , GS ], cC + cS , [AC , 0; 0, AS ], [bC ; bS ]) , (4b)

C ∩R W = ([GC , 0], cC , [AC , 0; 0, AW ;RGC ,−GW ],

[bC ; bW ; cW −RcC ]) , (4c)

C ∩ H =
(
[GC , 0], cC , [AC , 0; p⊤GC , dm/2],

[bC ; (q + p⊤cC − ∥p⊤GC∥1)/2]
)
, (4d)

where H = {x : p⊤x ≤ q} ⊂ Rn is an halfspace, and (4d)
also enables an exact computation of the intersection of a
constrained zonotope and a polytope.

Recently, a least-squares-based approach was proposed to
inner-approximate the Pontryagin difference between a full-
dimensional constrained zonotope and a convex, compact,
and symmetric set [5]. For the purposes of this paper, we
recall the closed-form expression to inner-approximate C⊖E ,
where C is a constrained zonotope and E is an ellipsoid.

Lemma 1. [5, THM. 2, CORR. 1] For a full-dimensional
constrained zonotope C = (GC , cC , AC , bC) and an ellipsoid

E = (GE , cE) = {GEγ + cE : γ ∈ Rn, ∥γ∥2 ≤ 1} (5)

for some GE ∈ Rn×n and cE ∈ Rn, the constrained
zonotope M− satisfies

M− = (GCD, cC − cE , ACD, bC) ⊆ C ⊖ E , (6)

where D = diagi∈N[1:NC ]
(Dii) is a diagonal matrix with

Dii = 1−
∥∥e⊤i [GC ;AC ]

†[GE ; 0MC×n]
∥∥
2
≥ 0. (7)

Additionally, M− = C ⊖ E , when [GC ;AC ] is invertible.

Note that it is sufficient to consider symmetric GE ∈ Sn
in (5) [14, Ch. 8.4.2]. Additionally, for full-dimensional el-
lipsoids, it is sufficient to consider lower-triangular matrices
GE ∈ Ln, where all diagonal entries of GE are guaranteed
to be non-zero [14, Ex. 3.27].

Lemma 1 along with (4) enable tractable computation of
robust controllable sets of linear systems [5]. In Section V,
we use these closed-form expressions to compute the termi-
nal constraints on the rendezvous trajectory.

B. Problem statements

We now state the two problems of interest.

Problem 1. Given a full-dimensional constrained zonotope
C ⊂ Rn and an ellipsoid E parameterized by (GE , cE),



characterize a set of constraints that is sufficient to guarantee
that E ⊆ C and that is jointly convex in (GE , cE). Also,
identify the additional requirements on C that makes these
constraints necessary and sufficient.

Problem 1 provides a set of sufficient conditions for
tractable enforcement of chance constraints of the form
P{x + z ∈ C} ≥ δ. Additionally, Problem 1 also appears
in the computation of maximum volume inscribed ellipsoid
and Chebyshev centering for a constrained zonotope.

Problem 2. Given a full-dimensional constrained zonotope
C ⊂ Rn and an ellipsoid E , characterize a set of constraints
that is both necessary and sufficient for E ∩ C = ∅.

Problem 2 provides a reformulation of chance constraints
of the form P{x+ z ̸∈ C} ≥ δ. However, unlike Problem 1,
the set of constraints characterized for Problem 2 is bilinear
in the parameters of the ellipsoid (GE , cE). These constraints
may be enforced using solvers that can accommodate non-
convex quadratic constraints [16].

III. ELLIPSOID IN A CONSTRAINED ZONOTOPE

We now address Problem 1. We first characterize a set
of constraints that is sufficient to guarantee E ⊆ C, and
show that it is jointly convex in the parameters describing
the ellipsoid. Then, we leverage these conditions on various
applications in computational geometry and optimization
problems with chance constraints.

A. Convex necessary and sufficient conditions for E ⊆ C
We use the definition of Pontryagin difference (3d) and

Lemma 1 to address Problem 1.

Proposition 1. (CONVEX SUFFICIENT CONDITIONS)
For a full-dimensional constrained zonotope C =
(GC , cC , AC , bC) (2b) and an ellipsoid E = (GE , cE)
(5), E ⊆ C if there exists ξ ∈ RNC , c ∈ Rn, GE ∈ Sn:

GCξ + cC = cE (8a)
ACξ = bC (8b)

|e⊤i ξ|+
∥∥e⊤i [GC ;AC ]

†[In; 0MC×n]GE

∥∥
2
≤ 1, (8c)

for all i ∈ N[1:NC ]. The set of constraints (8) is jointly convex
in (ξ,GE , cE) for a given constrained zonotope C.

Proof. For any set C, E ⊆ Rn, E ⊆ C if and only if 0 ∈ C⊖E
by (3d). Consequently, a sufficient condition for E ⊆ C is that
0 ∈ M−, for M− defined in (6). Since Dii ≥ 0 (7) for all
i ∈ N[1:NC ],

M− =
{
GCξ + cC − cE

∣∣ACξ = bC , |e⊤i ξ| ≤ Dii

}
(9)

from [5, Eq. (21) and (28)]. We complete the proof by
observing that (8) follows from 0 ∈ M−.

Corollary 1. (CONVEX NECESSARY AND SUFFICIENT CON-
DITIONS FOR E ⊆ C) For an ellipsoid E and a full-
dimensional constrained zonotope C with an invertible matrix
[GC ;AC ], (8) is also necessary for E ⊆ C.

Corollary 1 follows from the observation that M− =
M = C ⊖ E when [GC ;AC ] is invertible (Lemma 1).
Consequently, (8), which holds if and only if 0 ∈ M−, is
now necessary and sufficient for E ⊆ C.

Equation (8) imposes (n + MC) linear and NC second
order-cone constraints in ξ ∈ RNC , GE ∈ Sn, and cE ∈ Rn.

B. Application in optimization with chance constraints:
Probabilistic inclusion in a given constrained zonotope

Consider a decision variable z ∈ Rn, a random vector
x ∼ P, and a constrained zonotope C ⊂ Rn. We seek to
identify a set of constraints that is sufficient for

P{x+ z ∈ C} ≥ δ, (10)

for some δ ∈ (0, 1). Chance constraints of the form (10)
appears in model predictive control and motion planning
problems under uncertainty [8], [12], [13], [17], where z may
be the nominal state at a particular time instant, x may be the
uncertainty and C may be the region of the state space that
meets some safety specifications. We will use Proposition 1
and the well-known ellipsoidal approximation [12], [13] for
chance constraints to arrive at a convex and deterministic
sufficient conditions for (10).

We first recall a result based on the properties of Gaussian
distribution and Chebyshev inequality [12], [13].

Lemma 2. (ELLIPSOIDS CONTAINING δ-PROBABILITY
MASS) Given a n-dimensional random vector x ∼ P
with mean µx ∈ Rn and a positive definite covariance
Σx ∈ Rn×n, and a probability threshold δ ∈ (0, 1). Then,
P{x ∈ E(δ)} ≥ δ for an ellipsoid,

E(δ) =
{
K(δ)Σ

1
2
xγ + µx

∣∣∣γ ∈ Rn, ∥γ∥2 ≤ 1
}
, (11a)

K(δ) =

{ √
Φ−1

χ2(n)(δ), x is Gaussian,√
n/(1− δ), otherwise,

(11b)

where Φ−1
χ2(n) is the inverse cumulative distribution function

of the chi-square distribution with n degrees-of-freedom.

Proposition 2. (ELLIPSOIDAL APPROXIMATION OF (10))
Consider (10) where the random vector x has mean µx

and covariance Σx, the constrained zonotope is C =
(GC , cC , AC , bC) and the threshold is δ ∈ (0, 1). Then, (10)
holds if there exists (z, ξ) ∈ Rn × RNC that satisfies,

GCξ + cC − (µx + z) = 0, (12a)

ACξ = bC , (12b)

|e⊤i ξ|+K(δ)

∥∥∥∥e⊤i [GC ;AC ]†[In; 0MC×n]Σ
1
2
x

∥∥∥∥
2

≤ 1. (12c)

Proof. By Proposition 1, (12) enforces {x + z ∈ E(δ)} ⊆
{x+z ∈ C} for any z ∈ Rn. Consequently, P{x+z ∈ C} ≥
P{x+ z ∈ E(δ)} ≥ δ by (1b) and Lemma 2.

Constraints (12) are linear in the decision variables z
and ξ. The choice of K in (12c) depends on whether x is
Gaussian or non-Gaussian (11b). We refer to Proposition 2
as the ellipsoidal approximation of (10) [12].



With Proposition 2, we obtain a tractable approximation
of stochastic programs of the form,

maximize
z∈Z

P{x+ z ∈ C}. (13)

for some convex set Z ⊆ Rn. Using the observation that K
is monotonic in δ [14, Ch. 4.2.4], consider the deterministic
approximation of (13),

max. k

s. t. z ∈ Z, k ≥ 0, ξ ∈ RNC ,

GCξ + cC = µ, ACξ = bC ,

i ∈ N[1:NC ], |e⊤i ξ|+ k
∥∥e⊤i [GC ;AC ]†[In; 0MC×n]Σx

∥∥
2
≤ 1,

(14)

with decision variables z, k, and ξ. Problem (14) is a convex
program, and is linear when Z is a polytope. By Proposi-
tion 2, the optimal solution of (14), denoted by (z†, k†, ξ†),
is a feasible (but possibly suboptimal) solution to (13).
Specifically, denoting the optimal solution of (13) by z∗,

P{x+ z∗ ∈ C} ≥ P{x+ z† ∈ C} ≥ K−1(k†).

C. Application in computational geometry: Maximum vol-
ume inscribed ellipsoid and Chebyshev centering

We apply Proposition 1 to two computational geometry
problems — approximating the maximum volume inscribed
ellipsoid and Chebyshev center of a constrained zonotope.

1) Maximum volume inscribed ellipsoid: Given a full-
dimensional constrained zonotope C, we seek the maximum
volume inscribed ellipsoid E = (GE , cE) ⊆ C.

Since the maximum volume inscribed ellipsoid of a full-
dimensional constrained zonotope is also full-dimensional,
we consider GE ∈ Ln. Additionally, the volume of such
an ellipsoid is proportional to (

∏n
i=1 GE,ii)

1
n , the geometric

mean of the diagonal entries of GE [14, Ex. 3.26].
Consider the following optimization program,

max.
(∏n

i=1 GE,ii

) 1
n

s. t. ξ ∈ RNC , GE ∈ Ln, cE ∈ Rn

GCξ + cC = cE , ACξ = bC ,

i ∈ N[1:NC ], |e⊤i ξ|+
∥∥e⊤i [GC ;AC ]†[In; 0MC×n]GE

∥∥
2
≤ 1.

(15)

Problem (15) is a second-order cone program, since the
objective may be imposed as a second-order cone con-
straint [14, Ex. 4.26], and the constraints are linear or second-
order cone constraints in ξ, GE , and cE .

2) Chebyshev centering: The Chebyshev centering may
be viewed as a special case of the maximum volume
inscribed ellipsoid, where we optimize for the maximum
volume inscribed sphere [14, Ch. 8.5.1]. Consequently, by
substituting GE = RIn in (15) for some R > 0, the
following linear optimization program,

max. R

s. t. ξ ∈ RNC , R > 0, cE ∈ Rn

GCξ + cC = cE , ACξ = bC ,

i ∈ N[1:NC ], |e⊤i ξ|+R
∥∥e⊤i [GC ;AC ]†[In; 0MC×n]

∥∥
2
≤ 1,

(16)

computes an approximate Chebyshev center c∗E of the con-
strained zonotope C.

Problems (15) and (16) may yield an inscribed ellipsoid
or a sphere that is suboptimal in volume due to their use

of sufficient conditions to enforce E ⊆ C (Proposition 1).
However, (15) and (16) recover the true maximum volume
inscribed ellipsoid and the Chebyshev center when [GC ;AC ]
is invertible (Corollary 1).

D. Discussion

The constraints in (8), (12), (14), (15) and (16) in their
current form require the computation of the pseudoinverse
[GC ;AC ]

†, which can be computationally expensive for large
NC and MC . On the other hand, Γ = [GC ;AC ]

†[In; 0MC×n]
may also be computed directly without an explicit compu-
tation of psuedoinverse via QR factorization or complete
orthogonal decomposition (see [5, Sec. 4.4] for more details).
We utilized lsqminnorm to compute Γ [5], [18].

IV. ELLIPSOID OUTSIDE A CONSTRAINED ZONOTOPE

We now turn our attention to Problem 2. Given an ellipsoid
E and a constrained zonotope C, we propose a set of
constraints that is both necessary and sufficient to guarantee
that E ∩ C = ∅, and use them to enforce P{x+ z ̸∈ C} ≥ δ.

A. Necessary and sufficient conditions for C ∩ E = ∅
We address Problem 2 using strong duality and separating

hyperplane theorem.

Proposition 3. (NECESSARY AND SUFFICIENT CONDI-
TIONS FOR E ∩ C = ∅) For a full-dimensional constrained
zonotope C = (GC , cC , AC , bC) (2b) and an ellipsoid E =
(GE , cE) (5) with GE ∈ Ln, C ∩ E = ∅ if and only if there
exists ℓ ∈ Rn, ν ∈ RMC such that

∥ℓ∥2 ≤ 1 (17a)

ℓ⊤(cE − cC) + ν⊤bC + ∥G⊤
Eℓ∥2 +

∥∥∥G⊤
Cℓ+A⊤

Cν
∥∥∥
1
< 0. (17b)

Proof. Recall that a necessary and sufficient condition for
E ∩ C = ∅ is that there exists ℓ ∈ Rn,

sup
x∈E

ℓ⊤x < inf
x∈C

ℓ⊤x. (18)

with ∥ℓ∥2 ≤ 1 [14, Sec. 8.2.3]. The LHS of (18) is
the support function of an ellipsoid, which is known in
closed form supx∈E ℓ

⊤x = ℓ⊤cE + ∥G⊤
Eℓ∥2. For a full-

dimensional constrained zonotope, we use strong duality [14,
Sec. 5.2.3] to express the RHS of (18), infx∈C ℓ

⊤x =
supν∈RMC

(
−ν⊤b+ ℓ⊤cC −

∥∥G⊤
Cℓ+A⊤

Cν
∥∥
1

)
. We obtain

(17) by combining these observations.

Constraints (17) are second-order cone constraints in ℓ and
ν, and hence convex. However, unlike Proposition 1, these
constraints are non-convex in the parameters (GE , cE).

B. Application in optimization with chance constraints:
Probabilistic exclusion from a given constrained zonotope

Consider a decision variable z ∈ Rn, a random vector
x ∼ P, and a constrained zonotope C ⊂ Rn. We seek a set
of constraints that is necessary and sufficient for

P{x+ z ̸∈ C} ≥ δ, (19)



for some δ ∈ (0, 1). Chance constraints of the form (19)
appears in model predictive control and motion planning
problems [13] under uncertainty, where C may be a region of
the state space that do not meet some safety specifications.
Using Proposition 3, we can characterize a set of determin-
istic constraints that is necessary and sufficient for (19).

Proposition 4. (ELLIPSOIDAL APPROXIMATION OF (19))
Consider a random vector x with mean µx and covariance
Σx, the constrained zonotope is C = (GC , cC , AC , bC) and
the threshold is δ ∈ (0, 1). Then, (19) holds if and only if
there exists (z, ℓ, ν) ∈ Rn × Rn × RMC that satisfy,

∥ℓ∥2 ≤ 1

ℓ⊤(z + cE − cC) + ν⊤bC +K(δ)∥Σ
1
2
x ℓ∥2 +

∥∥G⊤
Cℓ+A⊤

Cν
∥∥
1

< 0.

(20)

Proof. Proof. It is sufficient to show that P{x + z ∈ C} ≤
1 − δ. By Proposition 3, (20) enforces (z + E(δ)) ∩ C = ∅,
which implies that C ⊆ Rn \ (z + E(δ)). From (1b) and
Lemma 2, P{x+ z ∈ C} ≤ P{x+ z ∈ Rn \ (z + E(δ))} =
P{x ̸∈ E(δ)} ≤ 1− δ, as desired.

Unlike Proposition 2, Proposition 4 is non-convex in the
optimization variables z, ℓ, and ν, due to the bilinearity ℓ⊤z
in (20). One could either use solvers that accommodate non-
convex quadratic constraints [16] to tackle the bilinearity
exactly or enforce (20) conservatively by fixing ℓ.

V. RETURN-GUARANTEED SPACECRAFT RENDEZVOUS

We consider the problem of a two-staged spacecraft
rendezvous. For the first stage, we design a rendezvous
trajectory for an approaching spacecraft (deputy) navigate
towards another spacecraft (chief), while minimizing fuel
usage and maintaining it inside a line-of-sight cone [6],
[8]. The rendezvous trajectory must also be cognizant of
the process noise arising from the actuator limitations of
the spacecraft and the navigational uncertainty arising from
sensing limitations [6]. The rendezvous trajectory of the first
phase terminates with the deputy at a hold position near the
chief, and the deputy waiting for a go/no-go decision.

During the second stage, the deputy must meet two
mission requirements depending on the go/no-go decision
issued by the chief. If a go decision is issued, the deputy
proceeds to rendezvous with the chief. On the other hand,
if a no-go decision is issued, the deputy must return to a
pre-determined holding position further away from the chief.
Retaining the ability to return to the holding position can be
beneficial when the deputy terminates the first phase at an
unanticipated configuration possibly due to uncertainty.

While a rendezvous trajectory may be synthesized for
both stages of these missions simultaneously, such a design
process can be computationally expensive, and may become
difficult with increasing mission complexity/stages. Instead,
we simplify the rendezvous trajectory design by encoding the
mission requirements of the subsequent stages as terminal
constraints on the first stage using reachability, specifically

robust controllable sets similarly to [5], [7], [8]. Due to high-
dimensionality and long horizons, polytope-based computa-
tions of controllable sets face challenges, while we found
constrained zonotopes to be significantly more stable with
minor conservativeness [5].

Dynamics: The relative dynamics between the spacecraft
are described by the Hill-Clohessy-Wiltshire (HCW) equa-
tions [6] with additive stochastic noise,

p̈x − 3ωpx − 2ωṗy = m−1
d Fx, p̈y + 2ωṗx = m−1

d Fy.
(21)

The chief is located at the origin, the position of the deputy
is px, py ∈ R, ω =

√
µ/R3

0 is the orbital frequency, µ is
the gravitational constant, and R0 is the orbital radius of the
spacecraft. See [8] for further details and numerical values.

We define the state as x = [px, py, vx, vy] ∈ R4 (relative
position and velocity) and the input as u = [Fx, Fy] ∈ U ⊆
R2. We discretize (21) using a zero-order hold at sampling
time of 30 seconds to obtain,

xt+1 = Axt +B(ut +wt), yt+1 = xt+1 + ηt+1 (22)

with state measurement yk ∈ R4, input space U = [−5, 5]2

N, and Gaussian disturbances wk ∈ R2 and ηk ∈ R4 with
zero means and covariance matrices Σw = 0.0003I2 and
Ση = 0.0003×diag([1, 1, 0, 0]) respectively. Due to Gaussian
disturbances w and η, x and y are also Gaussian.

Second-phase mission requirements: We define the follow-
ing sets (positions and velocities measured in m and m/s),

T =
{
x ∈ R4 : |px| ≤ 200, |py | ≤ 200, |vx| ≤ 0.1, |vy | ≤ 0.1

}
,

H0 =
{
x ∈ R4 : |px| ≤ 10, |py | ≤ 50, |vx| ≤ 0.05, |vy | ≤ 0.05

}
,

S =
{
x ∈ R4 : |px| ≤ −py ≤ 2000, |vx| ≤ 0.5, |vy | ≤ 0.5

}
,

where T is the target set that the deputy must reach in the
event of go, H ≜ [0;−1600; 0; 0]+H0 is the pre-determined
holding position that the deputy must return to in the event
of no-go, and S is the line-of-sight cone.

We assume the planning horizons for the first and second
stages are T1, T2 ∈ N respectively. We chose T1 = 0.75
hours and T2 = 0.5 hours (90 and 60 time steps respectively).
We also define two sequences of sets Sgo and Sno-go to
encode the different mission objectives in the second-stage:

Sgo = {S, . . . ,S︸ ︷︷ ︸
T2−1

, T } ⊆ (Rn)
T2 , (23a)

Sno-go = {S, . . . ,S︸ ︷︷ ︸
T2−1

,H} ⊆ (Rn)
T2 . (23b)

Denoting the terminal state measurement at the end of
first-phase by yT1

, we encode the second-phase mission
requirements as follows,

P
{
yT1

∈ Lmeas (αno-go,Sno-go)
}
≥ δno-go, (24a)

P
{
yT1

∈ Lmeas (αgo,Sgo)
}
≥ δgo, (24b)

where, Lmeas (α,S ) is the α-stochastic reachable set,

Lmeas (α,S ) =

{
y0

∣∣∣∣∣ ∃π ∈ U ,

Pπ,y0
x {∀t ∈ N[1:T ], xt ∈ St} ≥ α

}
. (25)



Here, U is the set measurement-feedback policies π = {πt}t
with πt : Rn → U as a measurement-feedback controller that
maps the current state measurement y ∈ Rn to a feasible
input π(y) ∈ U . Additionally in (25), Pπ,y0

x denotes the
probability measure of the stochastic process {x}Tt=0, based
on the dynamics (22) and the probability measures Pη,Pw.
Moving back to (24), αgo, αno-go, δgo, δno-go ∈ (0, 1) with αgo
and αno-go as the desired likelihoods of successful rendezvous
with T or return to H in the second phase respectively,
and δgo and δno-go as the desired likelihoods of the first
phase terminating with a state measurement yT1

that allows
for completing the second phase’s go and no-go mission
objectives respectively. Unless specified otherwise, we chose
δgo = δno-go = αgo = αno-go = 0.9.

The constraint (24) eliminates the need to design the
second phase’s trajectory during the first phase. However, an
exact computation of Lmeas is hard and may require dynamic
programming [17]. Therefore, we use robust controllable sets
to inner-approximate Lmeas, similarly to [8, Thm. 1].

Proposition 5. Given a threshold α ∈ (0, 1), choose
αη, αw ∈ (0, 1) with α

(T+1)
η α

(T )
w ≥ α. Define Eη ⊂ Rn

and Ew ⊂ Rp such that

Pη{η ∈ Eη} ≥ αη, and Pw{w ∈ Ew} ≥ αw. (26)

Define Eϕ ≜ (FEw) ⊕ (−AEη) ⊕ (−Eη). Then,
Kmeas(α,S ) ≜ K0 ⊆ Lmeas (α,S ), where K0 is given
by the following set recursion (with KT ≜ ST ),

Kt = Pre(Kt+1 ⊖ (−Eη)) ∩ St, ∀t ∈ N[0:T−1], (27a)

Pre(Kt+1) ≜ {x : Atx ∈ (Kt+1 ⊖ Eϕ)⊕ (−BtU)}. (27b)

We tractably enforce (24) using Propositions 5 and 2 and
constrained zonotopes Kmeas(α,S ) [5].

First-phase mission requirements: We consider two types
of stochastic optimal control problems for the rendezvous
trajectory design in the first phase.

Guidance problem 1: Minimum final distance

minimize
u0,...,uT1−1,

ξgo,ξno-go

∥e⊤2 E[xT1
]∥2

2
+ λ

T1−1∑
t=0

∥ut∥2 (28a)

subject to e⊤2 E[xT1
] ≤ D,E[xj,T1

] = 0, ∀j ∈ {1, 3, 4}, (28b)

t ∈ N[0:T1−1], ut ∈ U , P{xt+1 ∈ S} ≥ δLoS, , (28c)

Dynamics (22) from initial measurement y0 (28d)

(24) using (12) with ξgo, ξno-go. (28e)

Guidance problem 2: Maximize second-phase success

maximize
u0,...,uT1−1,

kgo,kno-go,ξgo,ξno-go

kgo (29a)

subject to (28b)–(28d),∑T1−1

t=0
∥ut∥2 ≤ ∆vmax (29b)

(24) using (14) with kgo, kno-go, ξgo, ξno-go. (29c)

kgo ≥ K(δgo), kno-go ≥ K(δno-go) (29d)

Recall that [px, vx, vy] = [0, 0, 0] is an equilibrium point
for the HCW dynamics (21) irrespective of py [6]. In the first
guidance problem (28), constraint (28b) allows the deputy
to wait for the go/no-go decision at the end of the first
phase at a relative distance from the chief not larger than
D > 0. Thus, objective (28a) together with (28b) requires
the deputy to terminate the first phase close to the target
set T in expectation, while minimizing the net fuel cost
incurred during the maneuver. The net energy consumed by
the manuever as it appears in (28a) is also denoted by ∆v,

∆v =
∑T1−1

t=0
∥ut∥2. (30)

The weight λ > 0 prescribes the relative importance of the
two objectives of the first-phase. Constraint (28c) encodes the
control constraints and the chance constraints associated with
the line-of-sight cone. Constraint (28d) imposes the physical
constraints on the spacecraft arising the dynamics (22), and
constraint (28e) enforces the terminal chance constraints
(24). We chose D = 500 m, and λ = 10.

In the second guidance problem (29), we impose almost
all of the constraints of (28), but now seek to maximize
P
{
yT1

∈ Lmeas (αgo,Sgo)
}

using the formulation in (14).
We additionally impose an upper-bound on the incurred net
energy

∑T1−1
t=0 ∥ut∥2 by ∆vmax. We chose ∆vmax = 10 m/s.

We performed the presented computations in a standard
computer with Intel CPU i9-12900KF processor (3.2 GHz,
16 cores) and 64 GB RAM, running MATLAB 2022b. We
used SReachTools [19], YALMIP [20], MPT3 [21], and
MOSEK [22] to formulate and solve the stochastic optimal
problems. After solving (28) and 29, we generated 105

samples of {xt}Tt=1 and yT1
to check satisfaction of (24).

We also took 100 samples of yT1
and simulated the suc-

cess probability of the second phase after computing their
corresponding πrobust. Since a naive Monte-Carlo simulation
is challenging due to the high-branching factor, we used
an “adversarial” realization of the disturbances at each time
step, where we selected the sample that pushes the trajectory
furthest away from the intended target the most.

Table I summarizes various metrics associated with each
problem. The computation of terminal state constraints
Kmeas ⊆ Lmeas as constrained zonotopes for both objectives
of the second phase took about 1 minute, despite a relatively
long horizon T2 = 60 steps. In contrast, we were unable to
compute Kmeas for either of the objectives using polyhedral
computations (MPT3) due to numerical issues from vertex-
facet enumeration [21]. The solve times for (28) and (29)
were comparable.

Table I also shows that the safety and the performance
of the rendezvous maneuver generated (28) and (29) are
different due to the different formulations. Problem (28)
computes a rendezvous manuever for the deputy that meets
all the mission requirements of the first and second stages.
On the other hand, Problem (29) computes a rendezvous
manuever for the deputy with higher docking probability
(0.99 vs 0.94), while resulting in a relatively further terminal
position (922.85 m vs 786.80 m) and higher ∆v (6.57



TABLE I
VARIOUS METRICS OF PERFORMANCE AND SAFETY FOR THE TWO-STAGED SPACECRAFT RENDEZVOUS PROBLEM.

Problem Compute time (in seconds) ∆v dist(E[xT ], T ) P{xt ∈ S} No-go mission (return) prob. (24a) Go mission (dock) prob. (24b)
Kmeas

no-go Kmeas
go Solve time (in m/s) (in m.) δLoS Monte-Carlo est. (δno-go, αno-go) Monte-Carlo est. (δgo, αgo) Monte-Carlo est.

Min. distance (28) 0.56 0.49 0.33 5.61 786.80 0.90 1.00 (0.90, 0.90) (1.00, 1.00) (0.90, 0.90) (0.94, 0.97)
Max. success (29) 0.27 6.57 922.85 0.90 1.00 (0.95∗, 0.90) (1.00, 1.00) (0.91∗, 0.90) (0.99, 1.00)

Fig. 1. Rendezvous trajectories using the different guidance problems (28)
(top) and (29) (bottom), along with the projection of the four-dimensional
terminal constraint sets Kmeas on to the x-y plane. The sets Kmeas are
computed using Proposition 5 and constrained zonotopes.

m/s vs 5.61 m/s). The conservativeness introduced by the
Proposition 2 is evident with the Monte-Carlo simulations
reporting much higher degree of safety than the required δ.

Figure 1 shows the rendezvous trajectory computed using
(28) and (29) as well as constrained zonotope sets Kmeas

that inner-approximate Lmeas in (24). As seen from Table I
as well, the rendezvous trajectory from (28) brings the deputy
closer to the chief as compared to the rendezvous trajectory
from (29). The ellipsoids in Figure 1 are the minimum
volume ellipsoids that contain the spread of the Monte-Carlo
simulation trajectories around the mean trajectory (see [14,
Sec. 8.4.1] for the computation of the ellipsoids).

VI. CONCLUSION

We considered the problems of inscribing an ellipsoid
within and separating an ellipsoid from a constrained zono-
tope. We proposed a set of sufficient conditions that are
convex in the parameters and guarantee that an ellipsoid
is inscribed within a constrained zonotope, and a set of
necessary and sufficient conditions that are non-convex in

the parameters to separate an ellipsoid from a constrained
zonotope. We applied these constraints to tractably solve a
two-stage return-guaranteed spacecraft rendezvous problem,
and also tractably approximate the Chebyshev center and
the maximum volume inscribed ellipsoid of a constrained
zonotope using linear and second-order cone programming.

REFERENCES

[1] J. Scott, D. Raimondo, G. Marseglia, and R. Braatz, “Constrained
zonotopes: A new tool for set-based estimation and fault detection,”
Automatica, vol. 69, pp. 126–136, 2016.

[2] V. Raghuraman and J. Koeln, “Set operations and order reductions for
constrained zonotopes,” Automatica, vol. 139, 2022.

[3] L. Yang, H. Zhang, J. Jeannin, and N. Ozay, “Efficient backward
reachability using the Minkowski difference of constrained zonotopes,”
IEEE Trans. Comp.-Aided Design Integ. Circ. Syst., vol. 41, no. 11,
pp. 3969–3980, 2022.

[4] M. Althoff, “An introduction to CORA,” in Proc. App. Verif. Cont.
Hybrid Syst., December 2015, pp. 120–151.

[5] A. Vinod, A. Weiss, and S. D. Cairano, “Projection-free computa-
tion of robust controllable sets with constrained zonotopes,” 2024,
https://arxiv.org/abs/2403.13730 (Available online).

[6] W. Fehse, Automated rendezvous and docking of spacecraft. Cam-
bridge Univ. Press, 2003, vol. 16.

[7] D. Marsillach, S. Di Cairano, and A. Weiss, “Abort-safe spacecraft
rendezvous on elliptic orbits,” IEEE. Trans. Ctrl. Syst. Tech., vol. 31,
pp. 1133 – 1148, 2022.

[8] A. Vinod, A. Weiss, and S. Di Cairano, “Abort-safe spacecraft
rendezvous under stochastic actuation and navigation uncertainty,” in
Proc. Conf. Dec. & Ctrl., 2021, pp. 6620–6625.

[9] F. Blanchini and S. Miani, Set-theoretic analysis of dynamic systems.
Springer International Publishing, 2015.

[10] C. Jones, E. Kerrigan, and J. Maciejowski, “On polyhedral projection
and parametric programming,” J. Opt. Theory App., vol. 138, pp. 207–
220, 2008.

[11] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge Univ. Press, 2017.

[12] D. Van Hessem and O. Bosgra, “Stochastic closed-loop model predic-
tive control of continuous nonlinear chemical processes,” Journal of
Process Control, vol. 16, no. 3, pp. 225–241, 2006.

[13] T. Lew, R. Bonalli, and M. Pavone, “Chance-constrained sequential
convex programming for robust trajectory optimization,” in Proc. Euro.
Ctrl. Conf., 2020, pp. 1871–1878.

[14] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ.
Press, 2004.

[15] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE. Trans. Ctrl. Syst. Tech., vol. 29, pp. 972–983, 2020.

[16] Gurobi Opt., LLC, “Gurobi Optimizer Reference Manual,”
https://www.gurobi.com (Last accessed: 2023).

[17] J. Gleason, A. Vinod, and M. Oishi, “Lagrangian approximations for
stochastic reachability of a target tube,” Automatica, vol. 125, 2021.

[18] MathWorks, “lsqminnorm: Minimum norm
least-squares solution to linear equation,”
https://mathworks.com/help/matlab/ref/lsqminnorm.html.

[19] A. Vinod, J. Gleason, and M. Oishi, “SReachTools: a MATLAB
stochastic reachability toolbox,” in Proc. Hybrid Syst.: Comp. & Ctrl.,
2019, pp. 33–38.

[20] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in IEEE Intn’l Conf. Rob. Autom., 2004, pp. 284–289.

[21] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. Euro. Ctrl. Conf., 2013, pp. 502–510.

[22] MOSEK, The MOSEK optimization toolbox for MAT-
LAB manual. Version 10.0., 2022. [Online]. Available:
http://docs.mosek.com/10.0/toolbox/index.html


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2024-173.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


