
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

AUTONOMOUS HORIZON-BASED OPTICAL
NAVIGATION ON NEAR-PLANAR CISLUNAR

LIBRATION POINT ORBITS
Shimane, Yuri; Ho, Koki; Weiss, Avishai

TR2024-139 October 08, 2024

Abstract
We study the use of horizon-based optical navigation on near-planar libration point orbits
in cis- lunar space. Particularities that arise from the space- craft’s motion being nearly in-
plane with the Sun’s motion around the Moon are highlighted. The performance is studied
through extensive Monte-Carlo simulation using a synthetic image generation pipeline, feeding
measurements at various user-defined time intervals to an ex- tended Kalman filter.

4th Space Imaging Workshop 2024

c© 2024 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





AUTONOMOUS HORIZON-BASED OPTICAL NAVIGATION ON
NEAR-PLANAR CISLUNAR LIBRATION POINT ORBITS
Yuri Shimane1, Koki Ho1, and Avishai Weiss2*; 1School of Aerospace Engineering (Georgia Institute of Technology,

Atlanta, GA 30332), 2Mitsubishi Electric Research Laboratories (Cambridge, MA 02139). *[weiss@merl.com]

Abstract. We study the use of horizon-based optical

navigation on near-planar libration point orbits in cis-

lunar space. Particularities that arise from the space-

craft’s motion being nearly in-plane with the Sun’s mo-

tion around the Moon are highlighted. The performance

is studied through extensive Monte-Carlo simulation us-

ing a synthetic image generation pipeline, feeding mea-

surements at various user-defined time intervals to an ex-

tended Kalman filter.

Introduction. With increasing activity in cislunar

space, a variety of proposed mission concepts utilize li-

bration point orbits (LPO). Many of these applications

rely on autonomous and high-precision navigation to be

conducted onboard the spacecraft. As lunar navigational

satellite systems (LNSS) do not yet exist, optical navi-

gation (OpNav) enables spacecraft to autonomously col-

lect and process position measurements without reliance

on ground-based radiometric updates. OpNav techniques

include triangulation,1,2 horizon-based,3–5 and terrain-

relative methods,6–8 where the suitability of technique is

dependent on the distance from the observation target(s).

Horizon-based OpNav makes use of a set of limb points,

corresponding to points along the lit limb of a celestial ob-

ject, modeled as an ellipsoid. Within the context of this

work, we focus on the scenario where the attitude of the

camera is assumed to be known from other sources such as

star trackers and inertial measurement units (IMU), and

the OpNav algorithm discerns the position vector of the

spacecraft with respect to the imaged body. Due to the

spherical shape of the Moon and the typical distance from

the lunar surface, a sufficient number of limb points can

be identified from an image taken by a spacecraft on an

LPO provided that the illumination angle is appropriate;

thus, horizon-based OpNav is applicable along LPOs.

To date, literature on horizon-based OpNav in cislu-

nar space9–13 has been centered around concepts such as

the Lunar Gateway, which utilizes LPOs with significant

out-of-plane components with respect to the Moon’s or-

bital plane around the Earth; from a horizon-based Op-

Nav perspective, the spatial nature of the orbit facilitates

the measurement collection, as the Moon has an approx-

imately 90◦ phase angle while the spacecraft looks at the

Moon while flying above the lunar north or south pole.

The aforementioned works on OpNav have been moti-

vated by past, present, and future LPO missions, includ-

ing, e.g., the EQUilibriUm Lunar-Earth point 6U Space-

craft (EQUULEUS)14 developed by JAXA and the Uni-

versity of Tokyo, the Quenqiao relay satellite developed by

CNSA,15 the Lunar Gateway as part of NASA’s Artemis

program,10 and the Lunar Meteoroid Impacts Observer

(LUMIO)9,11 developed by Politecnico di Milano.

In contrast, images taken along a near-planar LPOs

are impacted by the phase angle throughout their orbit,

and thus present a different type of imaging environment.

While to date, no mission has flown a near-planar LPO,

orbits such as distant retrograde orbits (DRO) or L1 and

L2 Lyapunov orbits have been attracting attention due to

their usability as space-based sensor locations for space

situational awareness (SSA) and space domain aware-

ness (SDA) applications.16–19 Previously, Qi and Oguri12

provided simulation-based results for autonomous naviga-

tion on several LPOs including a DRO, leveraging both

horizon-based OpNav and GNSS signals, within the circu-

lar restricted three-body problem (CR3BP). The authors

opted for an approximate model to mimic the behavior of

processing an image to obtain limb points, assuming suf-

ficiently many are always available whenever an optical

measurement is to be acquired.

In this work, we study the autonomous horizon-based

optical navigation problem on near-planar LPOs, specifi-

cally looking at a 4:1 resonant DRO and a 1:1 resonant L1

Lyapunov orbit as examples of planar LPOs. Leveraging

a synthetic imaging and processing pipeline previously de-

veloped by the authors,13 we make use of a high-fidelity

simulation environment, where the performance of an ex-

tended Kalman filter (EKF) with full-ephemeris dynamics

is investigated. With the incorporation of the synthetic

image pipeline and full-ephemeris dynamics, we aim to

validate the usability of autonomous horizon-based Op-

Nav that was previously reported in simpler setups.12

The remainder of this paper is organized as follows. We

first introduce the measurement generation procedure, in-

volving synthetic image generation, image processing, and

the Christian-Robinson algorithm3 to generate a position

measurement from the limb points. Next, we discuss near-

planar LPOs, focusing on the unique characteristics and

challenges associated with conducting OpNav on an LPO

that is nearly in-plane with the Sun’s motion around the

Moon. We then introduce the EKF, the measurement

model, and the imaging strategy for autonomous navi-

gation. Insights on horizon-based OpNav performance

on the 4:1 resonant DRO and the 1:1 resonant L1 Lya-

punov are drawn from Monte-Carlo experiments of syn-

thetic image generation, the Christian-Robinson horizon-

based OpNav algorithm, and EKF-based navigation filter.

The final section provides concluding remarks.

Horizon-Based Optical Measurements. In this

section we introduce the building block for optical nav-

igation: the image generation, processing, and measure-

ment generation algorithm. We begin by providing def-

initions of the apparent diameter and phase angle that
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will be used in subsequent sections for analyzing the Op-

Nav problem. We then present the image generation and

processing setup that results in pixel coordinates of limb

points within the image. Finally, for completeness, we

briefly introduce the Christian-Robinson algorithm.

Apparent Diameter and Phase Angle. To evaluate the

performance of horizon-based OpNav, we must account

for the apparent diameter and the phase angle of the

Moon. The apparent diameter, denoted as δ, is given

by

δ = 2arctan

 RMoon√
r2 −R2

Moon

, (1)

where RMoon is the radius of the Moon and r is the range

from the center of the Moon to the spacecraft.

The phase angle ϕ is given by

ϕ = arccos

(
r · rSun

∥r∥∥rSun∥

)
, (2)

where r is the position of the spacecraft with respect to

the Moon, and rSun is the position of the Sun with respect

to the Moon. The phase angle also impacts the number

of limb points that can be detected based on the relative

direction from which the light hits the Moon.

Synthetic Image Generation and Processing. The im-

age is generated using a Blender-based pipeline developed

previously by the authors.13 An example image is shown

in Figure 1. Once an image is generated, the pixel co-

ordinates corresponding to the lit limb of the Moon are

obtained in three steps:4 we begin by scanning the image

along the illumination direction of the Sun projected onto

the image, and create a mask around the pixels where a

large jump in intensity is detected. Then, a Canny edge

detector is used on the masked image to generate pixel-

level accurate lit limb points. Finally, these are refined

using the subpixel horizon localization technique using

the local Zernike moments of each pixel-level limb point.

The illumination scan-based mask is particularly crucial

when ϕ is very small, as applying the edge detector di-

rectly on the image may result in falsely detecting the

terminator as part of the lit limb of the Moon.

Christian-Robinson Algorithm. In this work, we use

the Christian-Robinson algorithm3 to generate a position

vector measurement from an image that can then be fed

to a dynamic filter. Specifically, we opt for the Singular

Value Decomposition (SVD)-variant of the non-iterative

algorithm by Christian and Robinson.3,4 The algorithm

generates a position vector measurement and also pro-

vides an expression for the analytical covariance.

Consider m detected points on the lit limb of the Moon

in pixel coordinates, denoted as {ui, vi}mi=1. Note that m

is dictated by both the apparent diameter and phase angle

of the Moon. These are transformed to the image plane

vector si ∈ R3 via

si = κ−1

uivi
1

 , (3)

Figure 1. Sample synthetic image of the Moon gen-

erated with Blender pipeline

where κ is the camera calibration matrix.20 Then, the

vector n ∈ R3 pointed from the spacecraft camera to the

center of the Moon is obtained by solving the least-squares

problem

Hn = 1m×1, H =

 s̄T1 /∥s̄T1 ∥
...

s̄Tm/∥s̄Tm∥

 , (4)

where ∥ · ∥ denotes the Euclidean norm, and s̄i is given

by

s̄i = QTC
Psi, (5)

where Q = diag(1/a, 1/b, 1/c) with a, b, and c corre-

sponding to the Moon’s principal axes, and TC
P ∈ R3×3 is

the transformation matrix from the camera frame to the

Moon’s principal axes frame. The position vector in the

inertial frame, r, is obtained from n by

r = − 1√
nTn− 1

TP
I Q

−1n, (6)

where TP
I ∈ R3×3 is the transformation matrix from the

principal axes frame to the inertial frame, in which the

spacecraft dynamics is typically expressed.

The measurement covariance R corresponding to the

measurement (6) follows from Christian and Robinson,3

with appropriate modification due to the use of the SVD,

as suggested in Christian,4 instead of the Cholesky fac-

torization in the original version of the algorithm,3 and

an additional term to model attitude uncertainty. The

expression for R is

R = TC
I

(
FRnF

T +GRϕG
T
)
T I

C, (7)

where TC
I ∈ R3×3 and T I

C ∈ R3×3 are, respectively, the

transformation matrix from the camera frame to the in-

ertial frame and vice versa. The first term within the

brackets in (7) corresponds to variation of the solution
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to the least-squares problem (9), while the second term

corresponds to variation in ϕ. First, F is given by

F = −
(
nTn− 1

)−1/2
TP

CQ
−1

(
I3×3 − nnT

nTn− 1

)
,

(8)

and Rn is the covariance of the least-squares problem (4),

given by

Rn =
[
HT diag(1/σy1 , . . . , 1/σym)H

]−1
,

σyi = J iQTC
PRsT

P
CJ

T
i ,

J i =
1

∥s̄i∥
nT

(
I3×3 − s̄′is̄

′T
i

)
,

Rs ≈
(σpix

dx

)2

1 0 0

0 1 0

0 0 0

 ,

(9)

where σpix is the standard deviation of observed horizon

points on the image, and dx is the pixel pitch in terms

of pixels per radian. In (9), Rs is the covariance of the

horizon measurements, for which the approximation from

Christian and Robinson3 has been used. Second, G and

Rϕ are given by

G = TC
P [rC×],

Rϕ = σ2
ϕI3,

(10)

where [·×] denotes the skew-symmetric following the con-

vention [a×]b = a× b, and σϕ is the standard deviation

the attitude.

Near-Planar Libration Point Orbits. To date,

various libration point orbits (LPOs) in cislunar space

have been studied for a variety of applications. In prac-

tice, LPOs exhibiting an M :N resonance, signifying the

spacecraft M revolutions within N system period, are

typically employed in mission design due to their superior

convergence characteristics when constructing the quasi-

periodic baseline motion in full-ephemeris dynamics, as

well as operation-driven characteristics such as illumina-

tion conditions. The system period may be defined with

respect to the synodic or sidereal month; in this work, due

to the direct implication of the Sun’s location on the illu-

mination condition of the Moon, and thereby the perfor-

mance of OpNav, we employ the synodic period to define

resonant LPOs.

Perhaps most well-known and studied today is the 9:2

resonant L2 Near-Rectilinear Halo Orbit (NRHO), which

is the planned location for the Lunar Gateway. The EQU-

ULEUS mission made use of an approximately 4:1 reso-

nant L2 Halo as its science orbit,14 while the Queqiao re-

lay satellite was placed in an approximately 2:1 resonant

L2 Halo orbit.15 In the context of OpNav, the Artemis 1

mission was placed on a DRO, where tests on its onboard

OpNav capabilities were conducted. Also noteworthy is

the Lunar Meteoroid Impacts Observer (LUMIO) mis-

sion, which plans to use horizon-based OpNav on a 2:1

resonant L2 Halo orbit for autonomous navigation.9,11

Figure 2. Resonant LPOs studied in the context

of horizon-based OpNav in the Circular Restricted

Three-Body Problem, shown in the Moon-centered

Earth-Moon rotating frame

While there are a number of studies that consider the

use of near-planar LPOs such as DROs or Lyapunov or-

bits, there is little information on the extent to which

optical-based autonomous navigation may be performed.

In LPOs with significant out-of-plane components, such

as the 2:1, 4:1, or 9:2 resonant L2 Halos, the phase angle

of the Moon ϕ exhibits a nearly periodic structure about

each revolution, where the phase angle near apolune is

always approximately 90◦, thus providing reliable mea-

surement opportunities for OpNav. Meanwhile, in near-

planar LPOs, the variation of the phase angle is impacted

by the fact that the spacecraft’s motion is roughly in plane

with the Sun’s motion with respect to the Moon. In this

work, we focus on two planar LPOs: the 4:1 resonant

DRO, and the 1:1 resonant L1 Lyapunov orbit. Figure 2

shows the 9:2, 4:1, and 2:1 resonant L2 halo orbits in

the CR3BP, along with the two planar LPOs used in this

work. The DRO and L1 Lyapunov orbits in the CR3BP

in this Figure are used as initial guesses to construct the

full-ephemeris quasi-periodic orbits, shown in Figure 3,

using a standard multiple shooting approach.21

Distant Retrograde Orbit with 4:1 Resonance. The 4:1

resonant DRO constructed in the full-ephemeris dynamics

is shown in Figure 3a in the Earth-Moon rotating frame.

Figure 4a shows the time history of the apparent diameter

and the phase angle across 4 revolutions. The red vertical

lines indicate the beginning and end of each revolution,

starting at an arbitrary epoch.

We first note that this orbit maintains a roughly con-

stant range from the Moon; thus, the variation in the

apparent diameter of the Moon is small as well; this char-

acteristic is favorable for OpNav, as it facilitates the se-

lection of the camera’s field of view (FOV). Also note-

worthy is the phase angle variation; in the Earth-Moon

rotating frame, while the DRO completes 4 revolutions

around the Moon clockwise when viewed from the top of

the xz-plane, the Sun also completes a single clockwise

revolution. As a result, the phase angle experiences 3 full

periodic variations over each synodic month.
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L1 Lyapunov Orbit with 1:1 Resonance. The 1:1 res-

onant L1 Lyapyunov orbit constructed in the full-

ephemeris dynamics is shown in Figure 3b in the Earth-

Moon rotating frame. Figure 4b shows the time history of

the apparent diameter and the phase angle across 2 rev-

olutions, with the red vertical lines indicating again the

beginning and end of the two revolutions. The LPO is

constructed with an initial phasing along the orbit that

achieves near-0◦ phase angle of the Moon, in line with

typical “favorable” observer spacecraft location in SSA

and SDA applications.16–18

In contrast to the DRO, the L1 Lyapunov has a wide

variation in range, which also results in a large variation

of the apparent diameter. At perilune, the Moon has a

significantly large apparent diameter; however, it is im-

practical to choose an even larger FOV, as the Moon will

appear much smaller during the majority of time. Mean-

while, imaging at perilune is also impractical due to the

rapid change in attitude required to successfully align the

camera to the Moon; furthermore, while beyond the scope

of this work, when the spacecraft flies close to the sur-

face of the Moon, one may opt instead for terrain relative

techniques, such as crater-based navigation6,8 or velocity

odometry.22–24 Thus, omitting to image the entire Moon

around the perilune, an FOV of around 5◦ may be em-

ployed for the majority of the portion along the LPO. Due

to the 1:1 resonance, the phase angle also remains roughly

the same except during the perilune pass, leading to fa-

vorable imaging conditions for horizon-based OpNav.

Autonomous Navigation. In this Section, we first

introduce the translational high-fidelity dynamics model

of the spacecraft, followed by a brief overview of the EKF.

This is followed by the measurement model used by the

EKF, along with the policy used for acquiring an image

and producing a measurement for the filter.

Full-Ephemeris Dynamics. The full-ephemeris dynam-

ics considered in this work is the restricted two-body

problem centered at the Moon with J2 perturbation of

the Moon, solar radiation pressure (SRP), and third-body

perturbations from the Earth and the Sun. Let x ∈ R6

denote the spacecraft state, composed of the inertial po-

sition r ∈ R3 and the inertial velocity v ≜ ṙ ∈ R3. The

dynamics are given by

ẋ =

[
ṙ

v̇

]
=

[
v

− µ

r3
r + aJ2 + aSRP +

∑
i aNi

]
, (11)

where µ is the gravitational parameter of the Moon, and

the last three terms correspond to the aforementioned

perturbation terms. Ephemerides and physical param-

eters are taken from the SPICE toolkit.25,26

Extended Kalman Filter. We consider the use of an

extended Kalman filter (EKF) for onboard autonomous

navigation by processing the optical measurements. Let

x̂ denote the state estimate, and P denote the filter co-

variance; (·)k|k−1 denote prior quantities at time k, and

(·)k|k denote the posterior quantities at time k. First,

the prediction step consists of integrating the nonlinear

dynamics,

x̂k|k−1 =

∫ tk

tk−1

f(t, x̂k−1|k−1)dt, (12a)

P k|k−1 = Φ(tk, tk−1)P k−1|k−1Φ(tk, tk−1)
T +Qk|k−1,

(12b)

where Qk|k−1 is the process noise, modeled as a random

process given by

Qk|k−1 = σ2
p

∆t3

3
I3

∆t2

2
I3

∆t2

2
I3 ∆tI3

 , (13)

with ∆t = tk − tk−1 and σp a tuning parameter. When

a measurement is available, we perform the EKF update

of the form

Kk = P k|k−1H
T
k

(
HkP k|k−1H

T
k +Rk

)−1
, (14a)

x̂k|k = x̂k|k−1 +Kk

[
yk − hk(x̂k|k−1)

]
, (14b)

P k|k = (I6 −KkHk)P k|k−1(I6 −KkHk)
T

+KkRkK
T
k .

(14c)

Measurement Model with Horizon-Based Optical Navi-

gation. The Christian-Robinson algorithm yields position

vector measurements,

y = r + ν, ν ∼ N (0,R). (15)

The measurement model is thus hk(x̂k|k−1) = rk|k−1,

with partials Hk given by

Hk =
[
I3 03×3

]
. (16)

Measurement Collection Strategy. In this work, we as-

sume the boresight of the camera, zC, is pointed toward

the Moon based on the filter’s state estimate, with an

additional perturbation in its direction to simulate the

uncertainty of the attitude. Combining the two effects,

zC is given by

zC = −T (δϕ)
r̂

∥r̂∥ , δϕ ∼ N (0, σϕ), (17)

where r̂ is the position vector estimate with respect to

the Moon, and T (δϕ) is the rotation matrix given by the

Rodrigues’ rotation formula

T (δϕ) = cos(δϕ)I3 + sin(δϕ)i× + [1− cos(δϕ)]iiT . (18)

Once the direction of the boresight is decided, the xC
axis is arbitrarily defined as the cross-product between the

position and velocity vectors, and the yC axis completes

the triad.

We consider measurement opportunities to occur at a

fixed time interval, which we vary between 12, 24, and 48

hours. At a given measurement opportunity, an image is

acquired only if (i) the FOV of the OpNav camera exceeds

the apparent diameter of the Moon by at least 50%, and

(ii) the Sun is outside the FOV.
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(a) Distant Retrograde Orbit (4:1) (b) L1 Lyapunov Orbit (1:1)

Figure 3. Planar Libration Point Orbits, computed in the full-ephemeris dynamics, shown in instanta-

neous Earth-Moon rotating frame centered at the Moon

(a) Distant Retrograde Orbit (4:1) (b) L1 Lyapunov Orbit (1:1)

Figure 4. Moon’s apparent diameter and phase angle history

Results. Navigation with horizon-based optical mea-

surements alone is tested on the 4:1 resonant DRO and

the 1:1 resonant L1 Lyapunov orbits. Filter parameters

adopted in this work are summarized in Table 1. The

camera is assumed to have a square sensor, with the field

of views chosen specifically for each LPO based on the

phase angle history in Figure 4.

The filter is initialized with a diagonal covariance, given

by

P 0|0 = diag
(
σ2
r0, σ

2
r0, σ

2
r0, σ

2
v0, σ

2
v0, σ

2
v0

)
, (19)

where σr0 = 10 km is the initial position standard devi-

ation and σv0 = 10 cm/s is the initial velocity standard

deviation. The initial state estimate x̂0|0 is sampled from

a multivariate normal distribution of P 0|0.
Uncertainty levels assumed within the simulation are

summarized in Table 2. Uncertainty on the dynamics is

realized by randomly varying the illuminated area and

reflection coefficient pertaining to the SRP term. Each

experiment consists of 30 Monte-Carlo runs.

Navigation Performance on Distant Retrograde Orbit.

Figure 5 shows EKF results with measurements collected

Table 1. Filter and simulation parameters

Parameter Value

Canonical length scale LU, km 3000

Canonical time scale TU, sec 2.34671197× 103

Process noise parameter σp 1.8356× 10−7

Measurement frequency, hour 12, 24, 48

Pixel standard deviation σpix, px 0.5

Image size, px×px 1024× 1024

Field of view, deg
11.42◦ (DRO)

5.72◦ (Lyapunov)

Table 2. Uncertainty parameters

Source Value

Initial position 3σr0, km 30

Initial position 3σv0, cm/sec 30

SRP A/m uncertainty 3σA/m, % 30

SRP Cr uncertainty 3σCr
, % 15

Attitude uncertainty 3σϕ, arcsec 45
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(a) Measurement interval of 12 hours
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(b) Measurement interval of 24 hours
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(c) Measurement interval of 48 hours

Figure 5. Monte-Carlo result of EKF on 4:1 resonant Distant Retrograde Orbit, expressed in Moon-

centered J2000 frame
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(a) Measurement interval of 12 hours
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(b) Measurement interval of 24 hours
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(c) Measurement interval of 48 hours

Figure 6. Monte-Carlo result of EKF on 1:1 resonant L1 Lyapunov orbit, expressed in Moon-centered

J2000 frame
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at 12, 24, and 48-hour intervals, each taking 195, 98, and

49 images over the course of 12 revolutions, respectively.

Each state component is in the J2000 inertial frame, in

which the equations of motion (11) are resolved. As ex-

pected, the filter results in a smaller covariance when the

frequency of measurement is higher.

Across all measurement frequencies, we also note the

z-component estimation of both position and velocity is

better than the estimation of x and y-components posi-

tion and velocity, respectively. This difference in estima-

tion performance can be attributed to the fundamental

degradation in observability along the camera’s boresight

compared to the xC and yC directions. Since the DRO is

near-planar, the position vector is primarily composed of

x and y components even in the J2000 frame; in contrast,

the z component in the J2000 frame is observed through

the xC and yC directions in the camera frame, which have

better observability than zC.

Navigation Performance on L1 Lyapunov Orbit. Fig-

ure 6 shows EKF results with measurements collected at

12, 24, and 48-hour intervals, each taking 107, 54, and

27 images over the course of two revolutions, respectively.

Again, increasing the measurement frequency naturally

leads to smaller covariance. The perilune pass where no

measurement cannot be acquired is found to be under 48

hours; thus, no measurement interruption is seen when

the measurement frequency is 48 hours, while the mea-

surement update is briefly interrupted for the 12 and 24-

hour cases.

In all cases, a spike in velocity estimation error and

covariance, corresponding to perilunes, can be seen. The

spike is attributed not only to the large velocity mag-

nitudes during perilune but also to the rapid direction

change of the spacecraft; the latter is particularly im-

pacting, as even a slight along-track estimation error can

lead to large velocity estimation errors. Similarly to the

DRO navigation case, we also observed better filter per-

formance in the L1 Lyapunov orbit in z and vz compo-

nents over x and y or vx and vy components, respectively;

the improved performance is again attributed to the dif-

ference in observability along the camera boresight, cou-

pled with the near-planar nature of the LPO.

Conclusions. In this work, we explored the perfor-

mance of horizon-based optical navigation on near-planar

LPOs. The investigation makes use of a synthetic imag-

ing and image processing pipeline, which is then fed to the

Christian-Robinson algorithm to generate position vector

measurements. The measurements are fed to an EKF,

which estimates the translational state of the spacecraft in

full-ephemeris dynamics. Monte-Carlo experiments along

the 4:1 resonant DRO and 1:1 resonant L1 Lyapunov or-

bit were conducted for different measurement acquisition

frequencies. One noteworthy characteristic of OpNav on

near-planar LPO is the impact of the weaker observability

along the camera boresight on the navigation filter per-

formance. Overall, this work provides insights into the

achievable performance through an autonomous optical

navigation scheme in planar LPOs, complementing previ-

ous studies conducted on non-planar LPOs.
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