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Abstract
State estimators such as Kalman filters compute an estimate of the instantaneous state of
a dynamical system from sparse sensor measurements. For spatio-temporal systems, whose
dynamics are governed by partial differential equations (PDEs), state estimators are typically
designed based on a reduced-order model (ROM) that projects the original high-dimensional
PDE onto a computationally tractable low-dimensional space. However, ROMs are prone to
large errors, which negatively affects the performance of the estimator. Here, we introduce
the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in
which the correction term that takes in the measurements is given by a nonlinear policy
trained through reinforcement learning. The nonlinearity of the policy enables the RL-ROE
to compensate efficiently for errors of the ROM, while still taking advantage of the imperfect
knowledge of the dynamics. Using examples involving the Burgers and Navier-Stokes equa-
tions with parametric uncertainties, we show that in the limit of very few sensors, the trained
RL-ROE outperforms a Kalman filter designed using the same ROM and yields accurate in-
stantaneous estimates of high-dimensional states corresponding to unknown initial conditions
and physical parameter values. The RL-ROE opens the door to lightweight real-time sensing
of systems governed by parametric PDEs.
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ABSTRACT

State estimators such as Kalman filters compute an estimate of the instantaneous state of a dynamical system from sparse
sensor measurements. For spatio-temporal systems, whose dynamics are governed by partial differential equations (PDEs),
state estimators are typically designed based on a reduced-order model (ROM) that projects the original high-dimensional
PDE onto a computationally tractable low-dimensional space. However, ROMs are prone to large errors, which negatively
affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE),
a ROM-based estimator in which the correction term that takes in the measurements is given by a nonlinear policy trained
through reinforcement learning. The nonlinearity of the policy enables the RL-ROE to compensate efficiently for errors of the
ROM, while still taking advantage of the imperfect knowledge of the dynamics. Using examples involving the Burgers and
Navier-Stokes equations with parametric uncertainties, we show that in the limit of very few sensors, the trained RL-ROE
outperforms a Kalman filter designed using the same ROM and yields accurate instantaneous estimates of high-dimensional
states corresponding to unknown initial conditions and physical parameter values. The RL-ROE opens the door to lightweight
real-time sensing of systems governed by parametric PDEs.

Introduction

Active control of turbulent flows has the potential to cut down emissions across a range of industries through drag reduction in
aircrafts and ships or improved efficiency of heating and air-conditioning systems, among many other examples1. But real-time
feedback control requires inferring the instantaneous state of the system from sparse measurements using a state estimation
algorithm, which typically relies on a model of the underlying dynamics2, 3. Among state estimators, the Kalman filter and its
nonlinear variants such as the extended or unscented Kalman filters have seen widespread use in numerous applications4, 5.
For continuous spatio-temporal systems such as fluid flows, however, the governing partial differential equations (PDEs)
yield high-dimensional discretized models that are too expensive to integrate with common model-based state estimation
techniques, especially in the context of embedded systems. Thus, a common practice is to design state estimators using a
reduced-order model (ROM) of the system, in which the underlying dynamics are projected to a low-dimensional subspace that
is computationally tractable6–8. For example, several recent studies have demonstrated the potential of constructing a Kalman
filter based on a data-driven ROM to estimate unsteady fluid flows using sparse measurements9–11.

A big challenge is that ROMs provide a simplified and imperfect description of the dynamics, which negatively affects
the performance of the state estimator. One potential solution is to improve the accuracy of the ROM through the inclusion
of additional closure terms12 or nonlinear subspaces13. In this paper, we leave the ROM untouched and instead propose a
new design paradigm for the estimator itself, which we call a reinforcement-learning reduced-order estimator (RL-ROE). The
RL-ROE is based on the ROM in an analogous way to a Kalman filter, with the crucial difference that the linear filter gain
function, which takes in the current measurement data, is replaced by a nonlinear policy trained through reinforcement learning
(RL) using a supervised dataset. The flexibility of the nonlinear policy, parameterized by a neural network, enables the RL-ROE
to compensate for errors of the ROM while still taking advantage of the imperfect knowledge of the dynamics. Indeed, we
show that in the limit of sparse measurements, the trained RL-ROE outperforms a Kalman filter designed using the same ROM
and displays robust estimation performance across different dynamical regimes. To our knowledge, the RL-ROE is the first
hybrid model-based and data-driven state estimator for high-dimensional parametric PDEs.



General methodology
Problem formulation
Consider the parametric discrete-time nonlinear system given by

zzzk = fff (zzzk−1; µ), (1a)
yyyk =CCCzzzk +nnnk, (1b)

where zzzk ∈ Rn and yyyk ∈ Rp are respectively the state and measurement at time k, fff : Rn→ Rn is a time-invariant nonlinear
map from previous to current state, nnnk ∈ Rp is observation noise (assumed zero unless stated otherwise), µ ∈ R is a physical
parameter, and CCC ∈ Rp×n is a linear map from state to measurement. We assume that the dynamics given in (1) are obtained
from a high-fidelity numerical discretization of a nonlinear partial differential equation (PDE), which yields a high-dimensional
state zzzk with n� 1. Furthermore, the measurements are typically acquired by a small number of sensors, hence they are sparse
in the sense that p� n.

The purpose of the present work is to construct a state estimator that solves the following problem: given at every time k the
history of measurements {yyy1, . . . ,yyyk} from a trajectory of (1), compute an online (real-time) estimate ẑzzk of the hidden state zzzk,
without knowing the parameter value µ or the initial state zzz0. We emphasize that this setting is different from the forecasting
problem solved by operator learning methods, where µ and zzz0 are both known14, 15. In general, such a state estimator takes the
form

ẑzzk = E (yyy1, . . . ,yyyk), (2)

where E is the map from measurements to state estimate that we seek.
In this paper, the estimator E is formulated and trained in an initial offline phase using a training dataset ZZZtrain = {ZZZµ ,YYY µ}µ∈S

of trajectories of (1) for various µ belonging to a finite set S ⊂ [µ1,µ2]. Specifically, for each µ ∈ S, ZZZµ = {zzzµ

0 , . . . ,zzz
µ

K} is a
trajectory of (1a) and YYY µ = {yyyµ

0 , . . . ,yyy
µ

K} contains the corresponding measurements given by (1b). It is typical in data-driven
state estimation to assume that such data is available16, either through offline simulations of the high-dimensional system (1) or
by advanced visualization techniques such as particle image velocimetry in fluid mechanics17. Once trained, the estimator E
can be deployed online to produce state estimates ẑzzk in real time, using sensor measurements {yyy1, . . . ,yyyk} from trajectories of
(1) corresponding to unknown and previously unobserved initial states zzz0 and parameter values µ .

Overview of the methodology
The proposed methodology to design E offline, using the dataset ZZZtrain, consists of two steps illustrated in Figure 1. In a first
step, we construct a data-driven reduced-order model (ROM) of the high-dimensional dynamics (1). The construction of the
ROM, which follows standard practices, is described in the “Reduced-order model” section. In a second step, we formulate E
as a reduced-order estimator (ROE) based on the ROM constructed in the first step, which we then train with RL using the
trajectories contained in ZZZtrain. The formulation of E based on the ROM and its training using RL, which constitute the main
novelty of the paper, are described in the “Reinforcement learning-based reduced-order estimator” section. Note that besides
the availability of the training dataset ZZZtrain, the formulation and training of E do not require knowledge of the system (1).

Reduced-order model
A popular approach to construct a ROM is first to choose a suitable set of orthonormal modes {uuu1, . . . ,uuur}, where uuui ∈ Rn,
defining an r-dimensional subspace of Rn within which most of the states zzzk are assumed to belong. Stacking these modes as
columns of a matrix UUU ∈Rn×r, one can then define a reduced-order state xxxk =UUUTzzzk ∈Rr representing the subspace coordinates
of zzzk, which can itself be reconstructed as zzzk 'UUUxxxk. Finally, one identifies a model for the dynamics of xxxk, which is vastly
cheaper to evolve than (1) when r� n.

There exist various ways to find an appropriate set of modes UUU and dynamics model for xxxk
18. In this work, we employ the

Dynamic Mode Decomposition (DMD), a purely data-driven algorithm that has found numerous applications in fields ranging
from fluid dynamics to neuroscience19, 20. Importantly, we seek a single ROM to describe dynamics corresponding to various
parameter values µ ∈ [µ1,µ2] by applying the DMD to all state trajectories {ZZZµ}µ∈S contained in the training dataset ZZZtrain.
The DMD seeks a best-fit linear model of the dynamics in the form of a matrix AAA ∈ Rn×n such that zzzµ

k+1 ' AAAzzzµ

k for all k and
µ , and computes the modes UUU as the r leading principal component analysis (PCA) modes of {ZZZµ}µ∈S. The transformation
zzzk =UUUxxxk and the orthogonality of UUU then yield the linear discrete-time ROM

xxxk = AAArxxxk−1 +wwwk−1, (3a)
yyyk =CCCrxxxk + vvvk, (3b)
zzzk =UUUxxxk, (3c)
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Training dataset

zk = f(zk−1; μ)
yk = Czk + nk

Zμ = {zμ
0, …, zμ

K} Yμ = {yμ
0, …, yμ

K}
State snapshots Sensor measurements

Ztrain = {Zμ, Yμ}μ∈S

Step 1: Offline construction of 
approximate reduced-order model (ROM)

ROM dynamics

Step 2: Offline reinforcement learning 
of reduced-order estimator (RL-ROE)

θ* = arg min
θ

K

∑
k=1

∥zk − ̂zk∥2 + λ∥ak∥2

ROE dynamics

RL problem

Exact full-
order model

Online full state estimation 
using trained RL-ROE

Noisy sensor measurements 
from unseen parameters

Estimated full state 
at current timeTrained RL-ROE dynamics

xk = Arxk−1 + wk−1
yk = Crxk + vk

zk = Uxk

x̂k = Arx̂k−1 + ak

̂zk = Ux̂k

ak ∼ πθ( ⋅ |yk, x̂k−1)with

x̂k = Arx̂k−1 + ak

̂zk = Ux̂k

ak ∼ πθ*( ⋅ |yk, x̂k−1)with

Figure 1. Overview of the proposed RL-ROE methodology.

where AAAr =UUUTAAAUUU ∈ Rr×r and CCCr =CCCUUU ∈ Rp×r are the reduced-order state-transition and observation models, respectively.
The (unknown) non-Gaussian process noise wwwk and observation noise vvvk account for the neglected PCA modes of ZZZtrain in UUU ,
as well as the error incurred by the linear approximation and effective averaging of the dynamics over a range of µ . Additional
details regarding the calculation of AAAr and UUU are provided in the “Dynamic Mode Decomposition” section of the Methods.

Reinforcement learning-based reduced-order estimator
Using the ROM (3), we can now formulate the state estimator E defined in the “Problem formulation” section. The reduced-order
estimator (ROE) that we propose takes the recursive form

x̂xxk = AAAr x̂xxk−1 +aaak, (4a)
aaak ∼ πππθθθ ( · |yyyk, x̂xxk−1), (4b)
ẑzzk =UUUx̂xxk, (4c)

where x̂xxk is an estimate of the reduced-order state xxxk and aaak ∈ Rr is an action sampled from a nonlinear and stochastic policy
πππθθθ , which takes as input the current measurement yyyk and the previous state estimate x̂xxk−1. The subscript θθθ denotes the
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set of parameters that define the policy, whose goal is to use the sparse measurements yyyk to correct the dynamics of x̂xxk in
(4a) so that the high-dimensional state estimate ẑzzk converges (online) towards the hidden true state zzzk, starting from any
initial estimate x̂xx0. Note that designing state estimators, also called state observers, by correcting the dynamics model with a
measurement-dependent term is a standard approach in estimation and control2, 21, 22. We will consider two different versions of
the ROE; one in which the policy πππθθθ is parameterized by a multi-layer perceptron (MLP) feedforward network, and one in
which it is parameterized by a long-short term memory (LSTM) recurrent network. The difference between the two lies in the
internal memory of the LSTM, which allows the policy πππθθθ to depend implicitly on the entire history of past measurements
{yyy1, . . . ,yyyk−1} in addition to the current measurement yyyk.

A Kalman filter is a special case of such an estimator, for which the action in (4b) is given by

aaak = KKKk(yyyk−CCCrAAAr x̂xxk−1), (5)

with KKKk ∈ Rr×p the optimal Kalman gain. Although the Kalman filter is the optimal linear filter2, 23, its performance suffers in
the presence of unmodeled dynamics and parameter uncertainty, both of which are present in our case. Thus, this motivates the
adoption of the more general form (4b), which retains the dependence of aaak on yyyk and x̂xxk−1 but is more flexible thanks to the
nonlinearity of the policy πππθθθ . We note that unlike the Kalman filter, the ROE dynamics (4) does not output the covariance
of the state estimate. However, one can still evaluate the accuracy of the state estimate by computing the magnitude of the
measurement residual (also called the innovation) yyyk−CCCr x̂xxk, which quantifies the difference between the observed and the
predicted measurements. Finally, previous studies24–26 have also proposed hybrid state estimators that combine model-based
and data-driven components, but these studies were focused on low-dimensional systems.

In an initial offline phase, we use deep RL to train the policy πππθθθ by solving the optimization problem

θθθ
∗ = argmin

θθθ

E

[
lim

K→∞

1
K

K

∑
k=1
‖ẑzzk− zzzk‖2

]
subject to (1) and (4), (6)

which minimizes the mean square error between the high-dimensional estimate ẑzzk and the true state zzzk. The expectation is taken
over initial estimates x̂xx0, initial true states zzz0, parameters µ , trajectories of state estimates {ẑzz1, ẑzz2, . . .} induced by πππθθθ through
(4), and trajectories of true states {zzz1,zzz2, . . .} and corresponding measurements {yyy1,yyy2, . . .} induced by (1). In practice, the
optimization problem is solved using the trajectories contained in the training dataset ZZZtrain, which span several parameter values
µ and initial conditions zzz0. By considering different values of µ during training, a strategy called domain randomization27, we
ensure robustness of the policy with respect to µ during online deployment of the estimator. The stochasticity of πππθθθ lets the RL
algorithm explore different actions during the training process, but is turned off during online deployment. The “Offline training
methodology” section in Methods describes the RL training procedure for πππθθθ , which involves a non-trivial reformulation of
the problem into a stationary Markov decision process. We call the estimator constructed and trained through this process an
RL-trained ROE, or RL-ROE for short.

The RL-ROE can be interpreted through a Bayesian lens by noting that the optimization problem (6) seeks to minimize the
mean square error (MSE) of the estimate zzzk. Such minimum mean square error (MMSE) estimate is equal to the mean of the
posterior distribution p(zzzk|yyy1:k) of the hidden true state zzzk conditioned on past measurements yyy1:k = {yyy1, . . . ,yyyk}3, 28. However,
instead of directly solving for the full posterior distribution p(zzzk|yyy1:k), the RL-ROE is trained during the offline phase to directly
minimize the MSE within the class of recursive estimators parameterized by (4). Finally, note that the RL-ROE does not require
knowledge of the distribution of the process noise wwwk and observation noise vvvk; rather, it implicitly learns their distributions
during the offline training phase from the trajectories of states and measurements contained in the training dataset ZZZtrain.

Results
We evaluate the state estimation performance of the RL-ROE for systems governed by the Burgers equation and Navier-Stokes
equations. For each system, we first compute various solution trajectories corresponding to different physical parameter
values, which we use to construct the ROM and train the RL-ROE. The trained RL-ROE is finally deployed online to estimate
trajectories corresponding to unseen initial conditions and parameter values. The state estimates are compared against a
time-dependent Kalman filter constructed from the same ROM, referred to as KF-ROE. The KF-ROE is given by equations (4a,
5, 4c), with the calculation of the time-varying Kalman gain detailed in the “Kalman filter” section of Methods. The noise
covariances in the KF-ROE were tuned using line search to obtain the best possible results16.

It is worth mentioning that the ensemble Kalman filter and 4D-Var are two estimation techniques for high-dimensional
systems such as those governed by PDEs29. Although they are commonly employed for data assimilation in numerical weather
prediction, they require large computational resources since they involve repeated solutions of the high-dimensional dynamics
(1). Thus, they are not applicable in the context of embedded control systems, whose limited resources require estimators
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designed based on an inexpensive model such as the ROM (3). Since the ROM that we consider has linear dynamics, extensions
of the Kalman filter for nonlinear dynamics such as the extended or unscented Kalman filters23, 30 are not relevant, and the
vanilla Kalman filter remains the best choice of baseline.

Burgers’ equation
The forced Burgers’ equation is a prototypical nonlinear hyperbolic PDE that takes the form

∂u
∂ t

+u
∂u
∂x
−ν

∂ 2u
∂x2 = f (x, t), (7)

where u(x, t) is the velocity at position x ∈ [0,L] and time t, f (x, t) is a distributed time-dependent forcing, and the scalar ν acts
like a viscosity. Here, we choose a forcing of the form

f (x, t) = 2sin(ωt− kx)+2sin(3ωt− kx)+2sin(5ωt− kx), (8)

where k = 2π/L, and we let ν and ω be related through a scalar parameter µ ∈ [0,1] as follows:

ν = ν1 +(ν2−ν1)µ, ω = ω1 +(ω2−ω1)µ. (9a)

Thus, µ can be regarded as a physical parameter that affects the dynamics of the forced Burgers equation through both ν and ω .
We consider periodic boundary conditions and choose L = 1, ν1 = 0.01, ν2 = 0.1, ω1 = 0.2π , ω1 = 0.4π . Finally, we define a
small number p of equally-spaced sensors along [0,L] that measure the value of u at the corresponding locations.

We solve the forced Burgers’ equation using a spectral method with n = 256 Fourier modes and a fifth-order Runge-Kutta
time integration scheme. We define the discrete-time state vector zzzk ∈ Rn that contains the values of u at n equally-spaced
collocation points and at discrete time steps t = k∆t, where ∆t = 0.05. To generate the training dataset ZZZtrain = {ZZZµ ,YYY µ}µ∈S
used for constructing the ROM and training the RL-ROE, we compute solutions of the Burgers equation corresponding to
µ ∈ S = {0,0.1,0.2, . . . ,1}. For each µ , we discard the transient portion of the dynamics and save 401 snapshots ZZZµ =
{zzzµ

0 , . . . ,zzz
µ

400} in the post-transient regime, as well as corresponding measurements YYY µ = {yyyµ

0 , . . . ,yyy
µ

400} obtained from the p
sensors (the construction of the corresponding observation matrix CCC is detailed in the section “Observation matrix” of Methods).
We retain r = 10 modes when constructing the ROM, corresponding to an-order-of-magnitude reduction in the dimensionality
of the system. We train the RL-ROE using Kstart = 200 and episodes of length Ktrain = 200 steps to make full use of the
trajectories stored in ZZZtrain, and we end the training process when the return no longer increases on average. The RL algorithm
and hyperparameters are reported in the “RL algorithm and hyperparameters” section of Methods.

The trained RL-ROE and the KF-ROE are now compared based on their ability to track trajectories of zzzk corresponding
to various testing values of µ not present in the training dataset ZZZtrain, using sparse measurements from the p equally-spaced
sensors. For each µ , the evaluation is carried out using 5 ground-truth trajectories corresponding to randomly-sampled initial
conditions zzz0 in the post-transient regime, and the reduced estimate is always initialized as x̂xx0 = 0. Beginning with p = 4 sensors,
Figure 2a reports the mean (lines) and standard deviation (shaded areas) of the normalized L2 error for 3 testing values of µ .
The normalized L2 error is defined as ‖ẑzzk− zzzk‖/‖zzzk‖, where zzzk is the (hidden) true state and ẑzzk is the corresponding estimate
given by the RL-ROE or KF-ROE. The error of the RL-ROE, using either the MLP or LSTM policy, rapidly decreases to values
close to the lower bound, which is the error incurred by projecting the true state zzzk to the modes UUU , that is, ‖UUUUUUTzzzk− zzzk‖/‖zzzk‖.
Spatio-temporal contours of the ground-truth state trajectories for the same 3 values of µ and the corresponding RL-ROE
and KF-ROE estimates are shown in Figure 2b. The RL-ROE using either policy vastly outperforms the KF-ROE, which
demonstrates the superiority of a nonlinear correction to the estimator dynamics (4a).

Figure 2c (left) reports the time average of the normalized L2 error as a function of µ for p = 4. The RL-ROE exhibits
robust performance across the entire parameter range µ ∈ [0,1], including when estimating trajectories corresponding to
previously unseen parameter values. Finally, Figure 2c (right) displays the average over time and over µ of the normalized L2
error for varying numbers of sensors p, where each value of p corresponds to a separately trained RL-ROE. As the number of
sensors increases, the KF-ROE performs better and better until its accuracy overtakes that of the RL-ROE. We hypothesize that
the accuracy of the RL-ROE is limited by the inability of the RL training process to find an optimal policy, due to both the
non-convexity of the optimization landscape as well as shortcomings inherent to current deep RL algorithms. This might also
explain the slightly lower performance of the RL-ROE using the LSTM policy, which is more complex to train than the MLP
policy. Even so, the strength of the nonlinear policy of the RL-ROE becomes very clear in the very sparse sensing regime;
its performance remains remarkably robust as the number of sensors reduces to 2. Indeed, spatio-temporal contours of the
ground-truth state and corresponding estimates for p = 2 and 12 in Figure A1 of the Supplementary Materials show that the
slight advantage held by the KF-ROE for p = 12 is reversed into clear superiority of the RL-ROE for p = 2.

Figure A2 of the Supplementay Materials present additional results analyzing the performance of the RL-ROE verus
KF-ROE in the absence of parametric uncertainties. When considering a single value of µ , both the RL-ROE and KF-ROE
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a

b

c

Figure 2. Burgers’ equation. a, Normalized L2 error of the RL-ROE and KF-ROE state estimates for values of µ not seen
during training, using p = 4 sensors. b, Trajectories of the ground-truth state for values of µ not seen during training and
corresponding RL-ROE and KF-ROE estimates using p = 4 sensors. The dashed lines on the ground-truth trajectory plots
indicate the sensor data seen by the RL-ROE and KF-ROE. c, Left: Normalized L2 error, averaged over time, versus µ when
using p = 4 sensors. Values of µ belonging to the training set S are shown by large circles while the testing values are
displayed by small circles. Right: Normalized L2 error, averaged over time and over the testing values of µ , versus number of
sensors p. In a and c, the error metrics are averaged over 5 trajectories with randomly-sampled initial true states zzz0, and the
shaded areas denote the standard deviation.
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yield more accurate estimates than when µ varies and is unknown. However, the nonlinearity of the correction term in the
RL-ROE and the data-driven nature of the RL training process lets the RL-ROE compensate for modeling errors in the ROM,
ultimately resulting in better estimation performance than the KF-ROE. Finally, Figure A3 of the Supplementay Materials
present additional results analyzing the performance obtained when the RL-ROE dynamics (4a) is formulated without the ROM
dynamics term AAAr x̂xxk−1. Not only are the estimates generated by the RL-ROE without ROM dynamics less accurate, the training
process also takes on the order of 10 times longer to converge. This illustrates the benefits of informing the RL-ROE estimator
dynamics with prior knowledge on the system dynamics through the ROM.

Navier-Stokes equations: flow past a cylinder
The Navier-Stokes equations are a set of nonlinear PDEs that describe the motion of fluids flows. For incompressible fluids, the
Navier-Stokes equations take the form

∂uuu
∂ t

+(uuu ·∇)uuu =−∇p+
1

Re
∆uuu, (10a)

∇ ·uuu = 0, (10b)

where uuu(xxx, t) and p(xxx, t) are the velocity vector and pressure at position xxx and time t, and the scalar Re is the Reynolds number.
In this example, we consider the classical problem of a flow past a cylinder in a 2D domain, which is well known to exhibit
a Hopf bifurcation from a steady wake to periodic vortex shedding at a critical Reynolds number Rec ∼ 4031. For our study,
we focus on the range Re ∈ [10,110], which makes the estimation problem very challenging since this range includes the
bifurcation and therefore comprises solution trajectories with very different dynamics – steady for Re < Rec, periodic limit
cycle for Re > Rec. Furthermore, the shedding frequency and spacing between consecutive vortices in the limit cycle regime
both vary with Re. For the estimation problem, we define a sparse sensor array measuring the two components of uuu at p
randomly-distributed locations in a box of size 10×5 cylinder diameters, situated downstream of the cylinder at a distance of 5
cylinder diameters.

We solve the Navier-Stokes equations with the open source finite volume code OpenFOAM using a mesh consisting of
18840 nodes and a second-order implicit scheme with time step 0.05. The discrete-time state vector zzzk ∈ R37680 contains the
two velocity components of uuu at discrete time steps t = k∆t, where we choose ∆t = 0.25. To generate the training dataset
ZZZtrain = {ZZZRe,YYY Re}Re∈S for constructing the ROM and training the RL-ROE, we run simulations of the Navier-Stokes equations
for Re ∈ S = {10,20,30, . . . ,110}. We discard the transient portion of the dynamics (for the cases Re > Rec) and save 201
snapshots ZZZRe = {zzzRe

0 , . . . ,zzzRe
200} in the post-transient regime, as well as corresponding measurements YYY Re = {yyyRe

0 , . . . ,yyyRe
200}

obtained from the p sensors (the construction of the corresponding observation matrix CCC is detailed in the section “Observation
matrix” of Methods). We retain r = 20 modes when constructing the ROM, corresponding to a three-orders-of-magnitude
reduction in the dimensionality of the system. These modes are shown in Figure A2 of the Supplementary Materials. We train
the RL-ROE using Kstart = 200 and episodes of length K = 200 steps to make full use of the trajectories stored in ZZZtrain. We
end the training process when the return no longer increases on average. The RL algorithm and hyperparameters are reported in
the “RL algorithm and hyperparameters” section of Methods.

The trained RL-ROE and the KF-ROE are now compared based on their ability to track trajectories of zzzk corresponding to
various unknown values of Re not present in the training dataset ZZZtrain, using sparse measurements from the p sensors randomly
distributed in the wake of the cylinder. For each Re, the evaluation is carried out using 5 ground-truth trajectories corresponding
to randomly-sampled initial conditions zzz0 in the post-transient regime, and the reduced estimate is always initialized as x̂xx0 = 0.
Beginning with p = 3 sensors, Figure 3a reports the mean (lines) and standard deviation (shaded areas) of the normalized
L2 error for 3 testing values of Re. The error of the RL-ROE, using either the MLP or LSTM policy, rapidly reaches a value
close to the lower bound, while that of the KF-ROE remains large. The ground-truth velocity magnitude at t = 50 for the same
3 values of Re and the corresponding RL-ROE and KF-ROE estimates are shown in Figure 3b. Remarkably, the RL-ROE
with either policy manages to estimate very precisely the entire flow field across different dynamical regimes, with the steady
wake at Re = 35 being reproduced equally well as the wake of vortices at Re = 65 and 105. The KF-ROE, on the other hand,
struggles to estimate the flow fields for all 3 Reynolds numbers, and instead predicts a velocity field that is almost everywhere
zero except in the wake. Again, the superiority of the RL-ROE is granted by the nonlinearity of its policy – in fact, bifurcations
such as the one exhibited by this flow are inherently nonlinear phenomena. Figures A4 and A5 of the Supplementary Materials
shows corresponding results in the presence of non-zero observation noise.

Figure 3c (left) reports the time average of the normalized L2 error as a function of Re for p = 3. The RL-ROE exhibits
robust performance across the entire range of Reynolds numbers, including in the vicinity of the bifurcation at Rec ∼ 40 and
for values of Re not seen during training. Figure 3c (right) displays the average over time and over Re of the normalized L2
error for varying number p of sensors. Although the KF-ROE eventually becomes very accurate in the presence of a large
number p of sensors, the accuracy of the RL-ROE remains remarkably stable as p decreases, allowing it to vastly outperforms
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a

b

Figure 3. Flow past a cylinder. a, Normalized L2 error of the RL-ROE and KF-ROE state estimates for values of Re not seen
during training, using p = 3 sensors. b, Ground-truth velocity magnitude at t = 50 for values of Re not seen during training and
corresponding RL-ROE and KF-ROE estimates using p = 3 sensors. The black crosses in the contours of the reference
solutions indicate the sensor locations. c, Left: Normalized L2 error, averaged over time, versus µ when using p = 3 sensors.
Values of µ belonging to the training set S are shown by large circles while the testing values are displayed by small circles.
Right: Normalized L2 error, averaged over time and over the testing values of Re, versus number of sensors p. In a and c, the
error metrics are averaged over 5 trajectories with randomly-sampled initial true states zzz0, and the shaded areas denote the
standard deviation.
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the KF-ROE as soon as p < 12. This again showcases the benefits of using a nonlinear policy to correct the estimator dynamics.
Finally, note that similar to the Burgers example, the LSTM policy does not yield better estimates for the RL-ROE compared to
the MLP policy, suggesting that an internal memory is not needed to achieve optimality in this example.

Navier-Stokes equations: chaotic vorticity flow
An equivalent formulation of the Navier-Stokes equations for 2D problems is given by the vorticity form

∂ω

∂ t
+uuu ·∇ω =

1
Re

∆ω, (11a)

∇ ·uuu = 0, (11b)

where uuu(xxx, t) and ω(xxx, t) = ∇×uuu are the velocity vector and vorticity at position xxx = (x,y) and time t, and the scalar Re is
the Reynolds number. In this example, we borrow the setup considered in32 where the vorticity field in a periodic domain
Ω = [0,1]× [0,1] is forced by a term f (xxx) = 0.1sin(2π(x+ y))+ 0.1cos(2π(x+ y)) on the right-hand side of equation 11a
with Re = 1000, giving rise to chaotic dynamics. Here, instead of different parameter values, we consider various trajectories
arising from different vorticity initial conditions sampled from a Gaussian random field; see details in32. For the estimation
problem, we define a sparse sensor array measuring the vorticity ω at p randomly-distributed locations in Ω.

We utilize the publicly-available dataset from32, which contains 1000 solution trajectories of the vorticity discretized on a
256×256 grid and saved at 50 time steps with sampling time ∆t = 1. For our training dataset ZZZtrain = {ZZZi,YYY i}50

i=1, we keep
50 solution trajectories and downsample the vorticity to a 64×64 grid, yielding a state vector zzzk ∈ R4086. For each trajectory,
we discard the first 9 snapshots and retain 41 consecutive snapshots ZZZi = {zzzi

0, . . . ,zzz
i
40} and we calculate the corresponding

measurements YYY i = {yyyi
0, . . . ,yyy

i
40} obtained from the p sensors (Appendix describes the corresponding CCC). We retain r = 20

modes when constructing the ROM. These modes are shown in Figure A3 of the Supplementary Materials. We train the
RL-ROE using Kstart = 10 and episodes of length K = 30 steps to make full use of the trajectories stored in ZZZtrain. We end the
training process when the return no longer increases on average. The RL algorithm and hyperparameters are reported in the
“RL algorithm and hyperparameters” section of Methods.

The trained RL-ROE and the KF-ROE are now compared based on their ability to track various trajectories of zzzk not present
in the training dataset, using sparse measurements from the p randomly distributed sensors. The evaluation is carried out
starting from 5 randomly-sampled initial conditions zzz0 along each trajectory, and the reduced estimate is always initialized
as x̂xx0 = 0. Beginning with p = 3 sensors, Figure 4a reports the mean (lines) and standard deviation (shaded areas) of the
normalized L2 error for 3 testing trajectories. The error of the RL-ROE, using either the MLP or LSTM policy, rapidly decreases
close to the lower bound, while the error of the KF-ROE decreases much more slowly. The ground-truth vorticity at t = 15 for
the same 3 trajectories and the corresponding RL-ROE and KF-ROE estimates are shown in Figure 4b. As observed in the
previous two examples, the RL-ROE with either policy once again produce much more accurate estimates than the KF-ROE.
Here, however, the LSTM policy leads to lower error than the MLP policy, indicating that the internal memory of the LSTM is
helpful in this chaotic case.

Figure 4c (left) reports the time average of the normalized L2 error for each trajectory for p = 3. Figure 4c (right) displays
the average over time and over all testing trajectories of the normalized L2 error for different numbers p of sensors. We again
observe the superiority of the RL-ROE over the KF-ROE, and in this example the LSTM policy consistently produces slightly
more accurate estimates than the MLP policy. This confirms that, for this chaotic system, the optimal policy πππθθθ needs to
depend on the entire history of observations, rather than just the current observation and the previous estimate.

Conclusions
In this paper, we have introduced the reinforcement learning reduced-order estimator (RL-ROE), a new state estimation
methodology for parametric PDEs. Our approach relies on the construction of a computationally inexpensive reduced-order
model (ROM) to approximate the dynamics of the system. The novelty of our contribution lies in the design, based on this
ROM, of a reduced-order estimator (ROE) in which the filter correction term is given by a nonlinear stochastic policy trained
offline through reinforcement learning. We introduce a trick to translate the time-dependent trajectory tracking problem in
the offline training phase to an equivalent stationary MDP, enabling the use of off-the-shelf RL algorithms. We demonstrate
using simulations of the Burgers and Navier-Stokes equations that in the limit of very few sensors, the trained RL-ROE vastly
outperforms a Kalman filter designed using the same ROM, which is attributable to the nonlinearity of its policy (see Figure
A6 in the Supplementary Materials for a quantification of this nonlinearity). The RL-ROE yields accurate high-dimensional
state estimates for parameter values and initial conditions that are unseen during offline training and unknown during online
estimation.
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Figure 4. Chaotic vorticity flow. a, Normalized L2 error of the RL-ROE and KF-ROE state estimates for trajectories not seen
during training, using p = 3 sensors. b, Ground-truth velocity magnitude at t = 15 for trajectories not seen during training and
corresponding RL-ROE and KF-ROE estimates using p = 3 sensors. The black crosses in the contours of the ground truth plots
indicate the sensor locations. c, Left: Normalized L2 error, averaged over time, versus trajectory number when using p = 3
sensors. Trajectories belonging to the training set S are shown by large circles while the testing trajectories are displayed by
small circles. Right: Normalized L2 error, averaged over time and over testing trajectories, versus number of sensors p. In a
and c, the error metrics are averaged over 5 randomly-sampled initial true states zzz0 along each trajectory, and the shaded areas
denote the standard deviation.

10/15



Methods

Dynamic Mode Decomposition
The DMD algorithm19, 33 is a popular data-driven method to extract spatial modes and low-dimensional dynamics from a dataset
of high-dimensional snapshots. Here, we use the DMD to construct a ROM of the form (3) given an observation model CCC and a
concatenated collection of snapshots {ZZZµ}µ∈S, where each ZZZµ = {zzzµ

0 , . . . ,zzz
µ
m} contains snapshots from a trajectory of (1a) for a

specific value µ .
Fundamentally, the DMD seeks a best-fit linear model of the dynamics in the form of a matrix AAA ∈ Rn×n such that

zzzk+1 ' AAAzzzk. First, arrange the snapshots into two time-shifted matrices

XXX = {zzzµ1
0 , . . . ,zzzµ1

m−1, . . . ,zzz
µq
0 , . . . ,zzzµq

m−1}, (12a)

YYY = {zzzµ1
1 , . . . ,zzzµ1

m , . . . ,zzzµq
1 , . . . ,zzzµq

m }, (12b)

where q denotes the number of elements in S. The best-fit linear model is then given by AAA =YYY XXX†, where XXX† is the pseudoinverse
of XXX . The ROM is then obtained by projecting the matrices AAA and CCC onto a basis UUU consisting of the r leading left singular
vectors of XXX , which approximate the r leading PCA modes of ZZZ. Using the truncated singular value decomposition

XXX =UUUΣΣΣVVVT (13)

where UUU ,VVV ∈ Rn×r and ΣΣΣ ∈ Rr×r, the resulting reduced-order state-transition and observation models are given by

AAAr =UUUTAAAUUU =UUUTYYYVVV ΣΣΣ
−1, (14a)

CCCr =CCCUUU . (14b)

Conveniently, the ROM matrix AAAr can be calculated directly from the truncated SVD of XXX , which avoids forming the large
n×n matrix AAA.

Offline training methodology
In order to train πππθθθ with reinforcement learning, we need to formulate the optimization problem (6) as a stationary Markov
decision process (MDP). However, this is no trivial task given that the aim of the policy is to minimize the error between
the state estimate ẑzzk and a time-dependent ground-truth state zzzk. At first sight, such trajectory tracking problem requires a
time-dependent reward function and, therefore, a non-stationary MDP 34, 35. To be able to use off-the-shelf RL algorithms, we
introduce a trick to translate this non-stationary MDP to an equivalent stationary MDP based on an extended state. Specifically,
we show hereafter that the problem can be framed as a stationary MDP whose state has been enhanced with zzzk and µ , removing
the time dependence from the reward function.

Letting sssk = (x̂xxk−1,zzzk,µ) ∈ Rr+n+1 denote an augmented state at time k, we can define an MDP consisting of the tuple
(S ,A ,P,R), where S = Rr+n+1 is the augmented state space, A ⊂ Rr is the action space, P(·|sssk,aaak) is a transition
probability, and R(sssk,aaak,sssk+1) is a reward function. At each time step k, the agent selects an action aaak ∈A according to the
policy πππθθθ defined in (4b), which can be expressed as

aaak ∼ πππθθθ ( · |oook), (15)

where oook = (yyyk, x̂xxk−1) is a partial observation of the current state sssk, since yyyk =CCCzzzk. The state sssk+1 = (x̂xxk,zzzk+1,µ) at the next
time step is then obtained from equations (1a) and (4a) as

sssk+1 = (AAAr x̂xxk−1 +aaak, fff (zzzk; µ),µ), (16)

which defines the transition model sssk+1 ∼P(·|sssk,aaak). Finally, the agent receives the reward

rk = R(sssk,aaak,sssk+1) =−‖zzzk−UUUx̂xxk‖2, (17)

which is minus the term to be minimized at each step in (6). Thanks to the incorporation of zzzk into sssk, the reward function (17)
has no explicit time dependence and the MDP is therefore stationary.

The RL training process then finds the optimal policy parameters

θθθ
∗ = argmax

θθθ

E
τ∼πππθθθ

[R(τ)], (18)
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where the expectation is over trajectories τ = (sss1,aaa1,sss2,aaa2, . . .), and R(τ) = ∑
Ktrain
k=1 rk is the finite-horizon undiscounted return,

with Ktrain the length of each trajectory. Thus, the optimization problem (18) solved by RL is equivalent to that stated in (6).
Formally, at the beginning of every episode, the environment is reset according to the distributions

x̂xx0 ∼ px̂xx0(·), zzz0 ∼ pzzz0(·), µ ∼ pµ(·), (19)

leading to the augmented state sss1 = (x̂xx0,zzz1,µ) = (x̂xx0, fff (zzz0; µ),µ), which constitutes the start of the agent-environment
interactions. The distribution px̂xx0(·) bestows robustness of the learned policy with respect to the initial state estimate x̂xx0,
while the distributions pzzz0(·) and pµ(·) enable the same policy πππθθθ to learn from multiple ground-truth trajectories of (1)
corresponding to various parameters µ and initial true states zzz0. In practice, when advancing the MDP state from sssk to sssk+1
during training rollouts, we do not use the high-dimensional dynamics (1) to compute zzzk+1 as indicated in (16), since that would
be prohibitively expensive. Instead, we utilize the ground-truth trajectories ZZZµ = {zzzµ

0 , . . . ,zzz
µ

K} contained in the training dataset
ZZZtrain. Thus, at the beginning of every episode, we reset the environment by drawing a random µ from S and we initialize zzz0 by
randomly choosing a state among {zzzµ

0 , . . . ,zzz
µ

Kstart
}, where Kstart is a user-defined hyperparameter that satisfies Kstart +Ktrain ≤ K.

In this way, we can simply take zzzk+1 from ZZZµ when advancing the MDP state from sssk to sssk+1 during training rollouts. Finally,
we set the initial estimate x̂xx0 to 0, which we will also do during online deployment of the trained RL-ROE.

Since the policy (15) is conditioned on a partial observation oook of the state sssk, the stationary MDP that we have defined is, in
fact, a partially observable MDP (POMDP). In this case, it is known that the globally optimal policy depends on a summary of
the history of past observations and actions, hhhk = {ooo1,aaa1, . . . ,oook}, rather than just the current observation oook

36, 37. Nonetheless,
policies formulated based on an incomplete summary of hhhk are also common in practice and still achieve good results38. We
pursue both approaches in the present paper through two alternative parameterizations of the policy πππθθθ , using either an MLP or
LSTM. In the MLP case, the policy simply depends on the current observation oook = (yyyk, x̂xxk−1), while in the LSTM case, the
policy depends on oook along with an internal state vector that summarizes the entire history hhhk.

RL algorithm and hyperparameters

To learn the optimal policy parameters θθθ
∗, we employ the Proximal Policy Optimization (PPO) algorithm39, which belongs to

the class of policy gradient methods40. These methods do not require the Markov property of the state (that is, conditional
independence of future states on past states given the present state) and can therefore be readily applied to our POMDP setting.
For our problem, this guarantees that the PPO algorithm will converge to a locally optimum policy.

PPO alternates between sampling data by computing a set of trajectories {τ1,τ2,τ3, . . .} using the most recent version of
the policy, and updating the policy parameters θθθ in a way that increases the probability of actions that led to higher rewards
during the sampling phase. The policy πππθθθ encodes a diagonal Gaussian distribution described by an MLP or LSTM network
that maps from observation to mean action, µµµ

θθθ
′(oook), together with a vector of standard deviations σσσ , so that θθθ = {θθθ ′,σσσ}. We

utilize the Stable Baselines3 (SB3) implementation of PPO41 and define our MDP as a custom environment in OpenAI Gym42.
For all examples, the stochastic policy πππθθθ is trained with PPO using the default hyperparameters from Stable Baselines3,

except for the discount factor γ set to 0.9 and the clipping parameter set to 0.05. The mean output of the stochastic policy and
the value function are approximated by two separate neural networks. In the MLP case, each network contains two hidden
feedforward layers with 64 neurons and tanh activation functions. In the LSTM case, each network contains one LSTM layer
with 256 hidden units. The input to the policy is normalized using a running average and standard deviation during the training
process, which alternates between sampling data for 10 trajectories (of length 200 timesteps each) and updating the policy.
Each policy update consists of multiple gradients steps through the most recent data using 10 epochs, a minibatch size of
64 and a learning rate of 0.0003. The policy is trained for a total of two to three million timesteps, which depending on the
dimensionality of the ROM takes between 15 min and an hour on a Core i7-12700K CPU. During training, the policy is tested
(with stochasticity switched off) after each update using 20 separate test trajectories, and is saved if it outperforms the previous
best policy. Finally, the RL-ROE is assigned the latest saved policy upon ending of the training process, and the stochasticity of
the policy is switched off during subsequent evaluation of the RL-ROE.

Kalman filter
The time-dependent Kalman filter that we use as a benchmark in this paper, KF-ROE, is based on the same ROM (3) as the
RL-ROE, with identical matrices AAAr, CCCr and UUU . Similarly to the RL-ROE, the reduced-order estimate x̂xxk is given by equation
(4a), from which the high-dimensional estimate is reconstructed as ẑzzk =UUUx̂xxk. However, the KF-ROE differs from the RL-ROE
in its definition of the action aaak in (4a), which is instead given by the linear feedback term (5). The calculation of the optimal
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Kalman gain KKKk in (5) requires the following operations at each time step:

PPP−k = AAArPPPk−1AAAT
r +QQQk, (20)

SSSk =CCCrPPP−k CCCT
r +RRRk, (21)

KKKk = PPP−k CCCT
r SSS−1

k , (22)

PPPk = (III−KKKkCCCr)PPP−k , (23)

where PPP−k and PPPk are respectively the a priori and a posteriori estimate covariance matrices, SSSk is the innovation covariance,
and QQQk and RRRk are respectively the covariance matrices of the process noise wwwk and observation noise vvvk in the ROM (3).
Following a standard procedure, we tune these noise covariance matrices to yield the best possible results 2. We assume that
QQQk = βQIII and RRRk = βRIII and perform a line search to find the values of βQ and βR that yield the best performance. This resulted
in βQ = 103 and βR = 1 for the Burgers example, and βQ = 109 and βR = 1 for the Navier-Stokes example. At time step k = 0,
the a posteriori estimate covariance is initialized as PPP0 = cov(UUUTzzz0− x̂xx0), which can be calculated from the distributions (19).

Construction of the observation matrix
We describe how we construct the observation matrix CCC in the Burgers and Navier-Stokes examples, once the number, type and
locations of the sensors have been chosen.

In the Burgers example, the state vector zzzk ∈ Rn contains the values of u at n collocation points, and the measurements
yyyk ∈Rp consist of the values of u at p equally-spaced sensors, as described in Section . Let us introduce the indices { j1, . . . , jp}
of the entries in zzzk corresponding to the measurements yyyk. Then, yyyk and zzzk can be related by yyyk = CCCzzzk, where the matrix
CCC ∈ Rp×n contains ones at the entries indexed {(1, j1), . . . ,(p, jp)}, and zeros everywhere else.

In the flow past a cylinder Navier-Stokes example, the state vector zzzk ∈R2n contains the horizontal and vertical components
of velocity uuu at n collocation points, and the measurements yyyk ∈ R2p consist of the components of uuu at p randomly distributed
sensors in a box in the cylinder wake, as described in Section . Let us introduce the indices { j1, . . . , j2p} of the entries in zzzk
corresponding to the measurements yyyk. Then, yyyk and zzzk can be related by yyyk =CCCzzzk, where the matrix CCC ∈ R2p×n contains ones
at the entries indexed {(1, j1), . . . ,(2p, j2p)}, and zeros everywhere else.

In the chaotic vorticity Navier-Stokes example, the state vector zzzk ∈ Rn contains the values of ω at n collocation points,
and the measurements yyyk ∈ Rp consist of the values of ω at p randomly distributed sensors in the domain, as described in
Section . Let us introduce the indices { j1, . . . , jp} of the entries in zzzk corresponding to the measurements yyyk. Then, yyyk and zzzk
can be related by yyyk =CCCzzzk, where the matrix CCC ∈ Rp×n contains ones at the entries indexed {(1, j1), . . . ,(p, jp)}, and zeros
everywhere else.

Code and data availability
The code and data used to generate the results in this study are available from S.M. upon reasonable request.
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