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Abstract
The accurate imaging of underground scenes using wave-based sensor technologies, such as
ground penetrating radar, presents challenges due to ill-posedness, formulation com- plexi-
ties, and computational demands. In this paper, we propose a machine learning-based ap-
proach that leverages a learned forward model to simulate wave-object interactions inspired by
physics principles as well as the calibration to realistic antenna configurations. Our approach
combines a learned wave propagation model, referred to as Born FNO, with a deep calibration
network that maps a point-receiver scattered wavefields to the response of a desired receiving
antenna architecture. We evaluate our method on a simulated dataset that includes multiple
ground layers and complex target structures. We demonstrate that our proposed calibration
network enables the reconstruction of permittivity distributions and outperforms a linear
calibration operator trained on the same dataset by over 4.5 dB in peak signal-to-noise ratio.
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Abstract—The accurate imaging of underground scenes using
wave-based sensor technologies, such as ground penetrating
radar, presents challenges due to ill-posedness, formulation com-
plexities, and computational demands. In this paper, we propose
a machine learning-based approach that leverages a learned
forward model to simulate wave-object interactions inspired by
physics principles as well as the calibration to realistic antenna
configurations. Our approach combines a learned wave propa-
gation model, referred to as Born FNO, with a deep calibration
network that maps a point-receiver scattered wavefields to the
response of a desired receiving antenna architecture. We evaluate
our method on a simulated dataset that includes multiple ground
layers and complex target structures. We demonstrate that
our proposed calibration network enables the reconstruction of
permittivity distributions and outperforms a linear calibration
operator trained on the same dataset by over 4.5 dB in peak
signal-to-noise ratio.

Index Terms—Underground Imaging, Diffraction Tomography,
Full Waveform Inversion

I. INTRODUCTION

Ground Penetrating Radar (GPR) offers a non-destructive
approach to mapping underground utilities. The process of ac-
quiring radar data includes sending electromagnetic waves be-
low the surface using transmission antennas positioned above
the ground. Subsequently, the scattered waves are recorded by
receiver antennas, also placed above the ground. Utilizing the
received scattered waves, data processing is employed to yield
insights into the physical characteristics of the subsurface.

Conventional GPR data processing primarily relies on mi-
gration methods, which have roots in seismic imaging tech-
niques [1]-[3]]. While these methods are efficient and can be
implemented in real-time, the images they generate only offer
information about the locations and rough shapes of subsurface
objects, lacking quantitative details about the dielectric permit-
tivity contrast that could provide insights into the materials
present. More advanced data processing approaches, based on
inverse scattering [3} 4[], aim to estimate the spatial distribution
of dielectric permittivity contrast in the subsurface, resulting
in more informative images compared to migration methods.

Assuming time harmonic waves, the nonlinear relationship
governing the interaction between waves and objects due to
multiple scattering can be fully described by an integral equa-
tion, with the 2D scalar field setup coinciding with the well-
known Lippmann-Schwinger equation [5]]. Inverse scattering
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based on this integral equation necessitates knowledge of the
background medium and efficient methods to compute the
corresponding Green’s function. Existing research [6| [7] often
considers a homogeneous background, where computing the
Green’s function is straightforward. Other studies for the GPR
setup have explored layered backgrounds and proposed meth-
ods for computing the corresponding Green’s function [3} 8.
While the integral equation formulation is exact, solving it
can be computationally expensive, especially when accurate
optimization schemes are employed to address the inverse
problem [|6, 9} |10]]. A commonly utilized approximation to the
integral equation is based on the Born series expansion, known
as the iterative Born approximation (IBA) [4, [11]]. Retaining
higher-order terms in this series preserves some level of system
nonlinearity, resulting in a more accurate approximation.

With the emergence of machine learning-based techniques,
recent studies employed architectures like Graph Neural Net-
works or Fourier Neural Operator (FNO) to characterize the
time-domain wave propagation [12| |13]. However, a primary
obstacle with these learned solutions is the challenge of
accumulating errors during the temporal unrolling process. In
our previous work [14], we introduced a network structure,
called Born FNO (BFNOﬂ that is inspired by the iterative
Born approximation and adapts the FNO to directly acquire
knowledge of the wave-matter interaction in the frequency
domain, eliminating the need for prior information about the
background medium.

The main bottleneck to applying the above techniques to
real GPR settings is the mismatch in the estimation of the
forward model describing the GPR antenna system. While
analytical (e.g. Lippmann Schwinger) and learned (e.g. FNO,
BFNO) techniques are highly effective for dipole antenna sys-
tems, real GPR systems exhibit multiple reflections between
the antenna and the ground surface as well as frequency
dependent electrical properties due to the antenna shape [/15].
Moreover, experimental radar systems measure the electric
field in 3D whereas the desired computational domain is 2D.
The conversion from 3D wavefield measurement to 2D compu-
tational domain is a common computation reduction technique
in the field of seismic full waveform inversion [16[-[19].
However, these techniques continue to suffer from inaccuracies
due to inexact knowledge of the antenna architectures.
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In this paper, we extend our previous operator learning
framework, BFNO [14], to the case of realistic GPR acqui-
sition and inversion. To this end, we consider the bistatic
measurement setup that is commonly used in GPR surveys. We
then present a modular framework that combines the BFNO
module for wavefield propagation with a learned calibration
network module that transforms wavefield measurements from
a point-receiver configuration of the BFNO to measurements
corresponding to a realistic GSSI-400 MHz receiver [20]
located at the same position. The calibration network module
can be adapted to other antenna architectures for which data
is available. We demonstrate using extensive simulations on a
synthetic dataset that our proposed framework can successfully
recover the permittivity distribution of subsurface structures
while remaining robust to measurement noise.

II. PROPOSED METHOD
A. Background

Considering the 2D scalar wave scenario with a homo-
geneous background, the Lippmann-Schwinger [5] integral
equation fully characterizes the wave-object relationship:
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where u(x) represents the total field, ui,(x) is the incident
field, €, is the background permittivity, ky=,/€w/c is the
background wavenumber, c is the speed of light in vacuum,
w is the angular frequency, and g is the Green’s function for
the background. Let () denote the permittivity of the object.
We assume that the permittivity contrast f(z)=e(x)/e;—1=0
for x¢ D, hence the integration domain can be confined to a
bounded computational domain DCR?. Additionally, we as-
sume that € and ¢, are real-valued and frequency-independent,
where € is used without the argument x to refer to the
permittivity distribution over all D. Denoting by I'CR? is the
set of receiver locations; the measurements then consist of the
total field u(x), where €T

A K'h-order IBA can be employed to estimate the total
field using the following approximation:
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where ug(x)=0 and i=1,...,K—1. In this approximation, the
total field at the K'th iteration uk () is used to compute the
measurements by sampling the field at z€l'.

B. Forward Model

We propose to learn the forward model characterizing a
GSSI-400 GPR setup directly from data due to the difficulty
in devising an analytical forward model. We adopt a modular
architecture where the first module behaves as a wave prop-
agation operator and learns to predict the scattered wavefield
()2 u(x)—ui, (), arising from a point-source incident upon
an underground structure. The second module, referred to
as the calibration network, learns to predict the GSSI-400
scattered wavefield measurements at the receiver location from

the predicted point-source scattered wavefield output by the
first module. The objective of the first module closely aligns
with the problem that we previously tackled in [14f]. Drawing
inspiration from both FNO [12] and IBA Eq. (Z), Zhao et
al. [14]] introduced BFNO, a model adept at learning the wave
propagation in a point source setup.

1) Born FNO: Consider a uniformly sampled 2D domain
DCR? and sets Q2{w;,wa,....wn, } and S={1,2,....S}. For
all frequencies wef) and sources s€8, the BENO is designed
to predict the scattered wavefield u} at each grid point in D.
This is accomplished by considering the free-space incident
wavefield ;] . and the underground permittivity distribution
€, both discretized on the same grid D of size njXng, as
inputs. For our setup, the BFNO operator B can be described
as the mapping B: R Xn2X3 3 Rmixn2x2 gych that, V€D,
Ywe, and VseS:
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where P., Py, and @ are local transformations parameterized
by multi-layer perceptrons (MLPs), F is the Fourier operator,
n is the number of layers, and o(:) is the Leaky ReLU
nonlinearity. We learn the BFNO model weights ¢z by training
the model to minimize a normalized-mean-squared error:
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where ej is a permittivity distribution from the training sample
7, u g[ 7 is the ground truth scattered field of source s for €’ at
frequency w, and DJCD is the random subset of gridpoints
of the full domain D used for training sample j and source s.

2) Calibration Module: In the second phase of forward
modeling, we aim to transform the predicted point-source
scattered wavefield measurements from the BFNO to GSSI-
400 scattered wavefield measurements. We denote this phase
as the calibration module. In this context, we investigate two
distinct calibration models to establish this mapping: one is
a linear model, and the other is a non-linear model. In the
nonlinear case, we use a neural network A with parameters A,
that are determined by minimizing the following loss function:

gl

where g’ and y! represent vectors whose entries contain the
point-source and GSSI-400 scattered wavefield measurements
at all frequencies, respectively, for a given training sample @
and source s€8. In the linear case, A is an affine transforma-
tion operator.
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The figure illustrates the algorithm pipeline, where the BFNO, Decoder (prior model), and Calibration Networks are pre-trained. During testing,

the decoder maps a latent code z to the estimated permittivity distribution e. Subsequently, e and the incident wavefield for each source and frequency are
used by the BFNO to predict the corresponding point-source scattered wavefield. The point-source scattered wavefield at the measurement locations is then
transformed into the corresponding GSSI-400 scatter wavefield using the calibration network. These predictions are used to compute the data consistency
(DC) loss with respect to the noisy GSSI-400 measurements. The latent code is optimized using the ADAM optimizer to minimize the DC loss for all sensors
and frequencies, along with the total variation (TV) loss of the estimated subsurface permittivity distribution.

C. Learned Signal Prior

Given the highly ill-posed nature of the problem arising
from sparse and restricted angle measurements, we constrain
the solution space to a low-dimensional subspace known as the
latent space, encoded by a convolutional auto-encoder £. Our
objective is to recover the latent code, which, when decoded
using a decoder G, recovers the permittivity distribution e.
The autoencoder weights are computed by minimizing the
following loss function:
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where ¢’ is the permittivity distribution at the training sample
i, and og is a fixed scalar.

D. Inverse Problem

The permittivity reconstruction problem can now be posed
as finding the latent code z that minimizes the following
reconstruction objective:

H,(B(G(z)w1.5) 1\ |
i:argminz DA
s y:}NW HS(B(g(Z)vawas)) 2
+R(G(2)),
(11)

where Hg is a sampling operator that selects the wavefield
at the receiver location for each of the sensor s€S, 3¢ is the
noisy GSSI-400 scattered field measurement at frequency we(
for source s€S, and R(-) represents a suitable regularizer such
as total variation. The unknown permittivity distribution of the
underground scene is then recovered as é=G(z). An overview
of our approach is illustrated in Fig. [T}

0.5m

1m

Fig. 2. Example gprMax setup and the underground scene considered in this
work. The GSSI-400 scanner moves horizontally to collect measurements.

III. NUMERICAL EXPERIMENTS
A. Dataset

Our dataset encompasses gprMax simulations of
400 underground scenes, split between 390 training scenes
to train the BFNO module and 10 test scenes reserved for
solving the inverse problem. Of the 390 scenes, 190 are used
to train the calibration module. Furthermore, we generated
an additional 5,000 underground scenes to train the encoder
& and decoder G. Both point source (Ricker wavelet within
[250MHz,700MHz] band) and GSSI-400 measurements are
generated for training and testing.

The underground scenes are of size Imx1m discretized at
157x157 (i.e. n1=no=157) pixel grid and composed of three
horizontal layers, as illustrated in Fig. [2] The top layer com-
prises 0.25 m of air with ;= 1 and serves as the placement for
the GSSI-400, point-source, and point-receiver components.
The depth and permittivity of the second layer are randomly
sampled from dj~ ¢£(0.15,0.3) m and e;~ U(3,5), respec-
tively. The depth of the third layer is do= 1m—0.25m—d;, and
ea~ U(5,10). The third layer contains two non-overlapping
objects, each positioned randomly within the central 0.5m
Xdy area. The first object is a circle with a radius sampled
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Fig. 3. Example predictions of GSSI-400 scattered field measurements.

from 2£(0.05,0.1) m, and it is composed of air; therefore,
es=1. The second object is either a circle, with a radius
randomly sampled from 2/(0.05,0.1) m, or a square, with a
side randomly sampled from ¢/(0.05,0.1) m. The permittivity
of the second object is randomly sampled from e;~ /(3,10).
To expedite the gprMax simulation and data collection, we
sample a subset DJ comprising 20% of the point receiver
locations from the 157157 grid for a given source s and
underground scene j.

B. Training Details

1) Born FNO: We used a single 5-layer BFNO similar
to [[14] that predicts the point-source scattered wavefield for
a given point-source location, frequency, and permittivity
distribution of the underground scene. The BFNO model was
trained with the loss function Eq. @I) a mini-batch size of 64,
over 100,000 steps, utilizing the Adam optimizer. The learning
rate started at 10~3 and reduced by a factor of 2 at every
20,000 steps.

2) Calibration Network: We learn two calibration net-
works: one an affine transformation, and the other a non-linear
deep network composed of an MLP with 4 hidden layers and
a tanh activation function. Both networks were trained with
¢y loss function between the input point source g,€C25*1
measurements and output GSSI-400 y,€C?5*! measurements.
Both these networks were trained with ¢ loss function, a
mini-batch size of 128, over 42,000 steps, utilizing the Adam
optimizer. The learning rate started at 10~3 and reduced by a
factor of 2 at 21,000 steps.

Fig. [3] illustrates the predictions of the GSSI-400 scattered
wavefield measurements made by the calibration techniques
for two different test cases. The mean squared error (MSE)
averaged over all the test cases for the linear calibration is
0.0302, while for the non-linear calibration, it is 0.0023.

3) Auto-Encoder: We train a convolutional autoencoder
model to impose a prior on the underground scenes. The en-
coder employs a sequence of 5 convolutional layers with batch
normalization and LeakyReLU activation functions to extract
hierarchical features from the input underground permittivity

TABLE I
QUANTITATIVE PERFORMANCE COMPARISON OF VARIOUS RECEIVER AND
CALIBRATION SETUPS WITH NOISELESS MEASUREMENTS.

[ Receiver | Fidelity | Calibration ][ PSNR [ RSNR | SSIM |
Point Non-Realistic - 21.23 17.35 0.9094
GSSI-400 Realistic Linear 14.44 10.55 0.7254
GSSI-400 Realistic Non-Linear 19.29 15.41 0.8782
TABLE II

QUANTITATIVE PERFORMANCE AT VARIOUS MEASUREMENT SNRS.

[ Measurement SNR [ PSNR [ RSNR | SSIM |

15 dB 18.12 14.23 | 0.8494
20 dB 18.71 14.83 | 0.8693
25 dB 19.21 15.32 | 0.8706

distribution. The latent representation, sized 64 x 1, is obtained
by flattening the output of the last convolutional layer of the
encoder and passing it through a fully connected layer. The
decoder network mirrors the encoder’s structure in reverse
order, gradually upsampling the latent space to generate the
output permittivity distribution. The autoencoder was trained
with the loss function Eq. with 0¢=10"3, a mini-batch
size of 2,048, over 25,000 steps, utilizing the Adam optimizer.
The learning rate started at 10~3 and reduced by a factor of
2 at every 5,000 steps.

C. Reconstruction Algorithm Implementation Details

In our setup, S=28 and N,,=25. For regularization R(-), we
use an isotropic total variation function. We use ADAM [22]]
optimizer for 550 iterations to solve the optimization problem
Eq. (TI). For each test case, we experiment with initial
learning rates of 0.005, 0.01, and 0.015. We then report
the reconstruction that results in the lowest optimization loss
in Eq. (TI). We reduce the learning rate by a factor of 2
for the last 50 iterations of the algorithm. Additionally, we
integrate the incremental frequency framework [10] into the
optimization process. Similar to [[14], we fine-tune our prior
G by jointly optimizing for z and ¢g, starting at iteration 350.

D. Reconstruction Results

Table [[] shows the average peak signal-to-noise ratio
(PSNR), reconstruction SNR (RSNR), and structural similarity
(SSIM) index performance for the various scenarios. The first
row in the table corresponds to the reconstruction that assumes
knowledge of the point-receiver, thereby eliminating the need
for the calibration process. This point-receiver setup is not
practical but serves as an upper bound on what one could
expect from an optimally calibrated GSSI-400 setup. The table
shows the non-linear calibration setup outperforms the linear
calibration, with its performance only slightly trailing behind
the non-realistic point-receiver setup.

Table presents the averaged performance metrics for
the reconstruction obtained using non-linear calibration across
the test cases at various measurement SNRs. Additive white
Gaussian noise is used to simulate noisy measurements. Ob-
serving the table, it is evident that the algorithm demonstrates
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robustness to noise in the system. We further illustrate exam-
ple reconstructions for both non-linear and linear calibration
setups at a measurement SNR of 20 dB in Fig. ] The figure
suggests that the reconstruction algorithm employing non-
linear calibration accurately recovers the depths and permit-
tivity values of all layers and objects, outperforming the linear
calibration setup.

IV. CONCLUSION

We considered the problem of reconstructing subsurface
permittivity distribution from realistic GPR measurements.
The forward model of our proposed framework first uses a
BFNO model to learn the complicated wave-object interaction,
predicting the scattered wavefield measurements of a point
receiver. Subsequently, a deep calibration network maps these
measurements to the desired response of a receiving antenna
architecture. This learned forward model, combined with a
learned prior, is then utilized in an optimization algorithm
to recover the permittivity distribution. Through numerical
experiments on simulated GSSI-400 antenna measurements,
we demonstrate that the proposed framework, with a non-
linear calibration network, enables accurate reconstruction of
permittivity distribution even in the presence of measurement
noise, significantly outperforming its linear-calibration coun-
terpart.
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