
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Real-time Mixed-Integer Quadratic Programming for Vehicle
Decision Making and Motion Planning

Quirynen, Rien; Safaoui, Sleiman; Di Cairano, Stefano

TR2024-123 September 04, 2024

Abstract
We develop a real-time feasible mixed-integer programming-based decision making (MIP-
DM) system for automated driving. Using a linear vehicle model in a road-aligned coordinate
frame, the lane change constraints, collision avoidance and traffic rules can be formulated
as mixed-integer inequalities, resulting in a mixed-integer quadratic program (MIQP). The
proposed MIP-DM performs maneuver selection and trajectory generation by solving the
MIQP at each sampling instant. While solving MIQPs in real time has been considered
intractable in the past, we show that our recently developed solver BB-ASIPM is capable
of solving MIP-DM problems on embedded hardware in real time. The performance of this
approach is illustrated in simulations in various scenarios including merging points and traffic
intersections, and hardware-in-the-loop simulations in dSPACE Scalexio and MicroAutoBox-
III. Finally, we show experiments using small-scale vehicles.

IEEE Transactions on Control Systems Technology 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

1

Real-time Mixed-Integer Quadratic Programming
for Vehicle Decision Making and Motion Planning

Rien Quirynen, Sleiman Safaoui, and Stefano Di Cairano, Senior Member, IEEE

Abstract—We develop a real-time feasible mixed-integer
programming-based decision making (MIP-DM) system for au-
tomated driving. Using a linear vehicle model in a road-aligned
coordinate frame, the lane change constraints, collision avoidance
and traffic rules can be formulated as mixed-integer inequalities,
resulting in a mixed-integer quadratic program (MIQP). The
proposed MIP-DM performs maneuver selection and trajectory
generation by solving the MIQP at each sampling instant. While
solving MIQPs in real time has been considered intractable in
the past, we show that our recently developed solver BB-ASIPM
is capable of solving MIP-DM problems on embedded hardware
in real time. The performance of this approach is illustrated
in simulations in various scenarios including merging points
and traffic intersections, and hardware-in-the-loop simulations
in dSPACE Scalexio and MicroAutoBox-III. Finally, we show
experiments using small-scale vehicles.

Index Terms—Autonomous driving, Decision making, Mixed
integer programming, Motion planning, Predictive control

I. INTRODUCTION

AUTOMATED transportation systems, even in the case of
partial automation, may lead to reduced road accidents

and more efficient usage of the road network. However, the
complexity of automated driving (AD) and advanced driver-
assistance systems (ADAS) and their real-time requirements
in resource-limited automotive platforms [1] requires the im-
plementation of a multi-layer guidance and control architec-
ture [2], [3]. Thus, the ADAS/AD system consists of multiple
interconnected components executing at different sampling
rates, where the integrated system must satisfy the overall
driving specifications [4], [5].

A typical guidance and control architecture is illustrated
in Fig. 1a, see, e.g., [6], [7]. Based on a route given by a
navigation system, a decision making module decides when to
perform maneuvers such as lane changing, stopping, waiting,
and intersection crossing. Given these decisions, a motion
planning system generates a state trajectory to execute the ma-
neuvers, and a vehicle control system computes the commands
to track the trajectory.

Optimization-based motion planning and control techniques,
such as model predictive control (MPC), account for dy-
namics, constraints and objectives in a model-based design
framework [8]. Leveraging hybrid system models including

Rien Quirynen was with Mitsubishi Electric Research Laborato-
ries, Cambridge, MA, USA at the time of this research (e-mail:
rien.quirynen@gmail.com).

Sleiman Safaoui was an intern at Mitsubishi Electric Research Lab-
oratories, Cambridge, MA, USA at the time of this research (email:
snsafaoui@gmail.com).

Stefano Di Cairano is with Mitsubishi Electric Research Laboratories,
Cambridge, MA, USA (e-mail: dicairano@ieee.org).

both discrete and continuous decision variables [9], hybrid
MPC can tackle a large range of problems, including switch-
ing control [10], obstacle avoidance [11], logic rules and
temporal logic specifications [5]. However, the mixed-integer
optimal control problem (MIOCP) to be solved at each step
is non-convex and NP-hard [12]. For a linear-quadratic
objective, linear or piecewise-linear dynamics and inequality
constraints, the MIOCP results in a mixed-integer quadratic
program (MIQP).

Recent work [13] indicates that, by exploiting the particular
structure of the MIOCPs, real-time solvers can achieve per-
formance comparable to commercial tools, e.g., GUROBI [14]
and MOSEK [15], especially for small to medium-scale prob-
lems. Therefore, we apply the tailored BB-ASIPM solver [13]
that uses a branch-and-bound (B&B) method with reliability
branching and warm starting [16], block-sparse presolve tech-
niques [13], early termination and infeasibility detection [17]
within a fast convex quadratic programming (QP) solver based
on an active-set interior point method (ASIPM) [18].

In this paper, we design a mixed-integer programming deci-
sion making (MIP-DM) module that simultaneously computes
a sequence of discrete decisions and a continuous motion
trajectory for the vehicle in a hybrid MPC framework. This ap-
proach eliminates the need for a separate motion planner in the
ADAS/AD architecture as long as an advanced vehicle control
algorithm is used, e.g., based on nonlinear MPC (NMPC), see
Fig. 1b. We demonstrate the proposed MIP-DM approach in
simulations in various scenarios including merging points and
traffic intersections, and we confirm its real-time feasibility
in dSPACE Scalexio and MicroAutoBox-III rapid prototyping
units commonly used for automotive development. Finally, we
present results from hardware experiments using MIP-DM in
combination with NMPC-based reference tracking on a setup
with small-scale automated vehicles.

A. Relation with Existing Literature

In the DARPA Urban Challenge [19], most teams imple-
mented rule-based decision making systems involving hand-
tuned heuristics for different urban-driving scenarios. Some
recent works on vehicle decision making are based on machine
learning [20]–[22], which often lacks interpretability and may
lack safety guarantees without additional safety layers [23].
The work in [7] proposes automata combined with set reacha-
bility, however it aims to determine only maneuver feasibility,
not accounting for performance. The work in [24] proposes
simultaneous trajectory generation and maneuver selection, but
its complexity grows rapidly with the number of obstacles.

2

Our prior work [5] defined traffic rules as signal temporal
logic (STL) formulae that are converted into mixed-integer
inequalities resulting in MIQPs. This provides formal guaran-
tees at the price of an optimization problem often too large
for real-time implementation, in part due to the automated
STL formulae translation. Motivated by the latter results, the
present paper proposes a real-time feasible MIQP formulation
for vehicle decision making and motion planning. An overview
on MIP-based decision making, motion planning and control
problems may be found in [25], [26]. For ADAS/AD systems,
[27], [28] propose MIPs for vehicle lane changing and over-
taking maneuvers, e.g., solving separate optimization problems
for longitudinal and lateral motion planning in [28]. In [29],
[30], motion planning in Cartesian coordinates is achieved by
MIQP using disjunctive region-based linearization.

B. Contributions

This paper provides three main contributions. First, we
present a guidance and control architecture that integrates
the MIP-DM with a reference tracking NMPC controller.
The MIP-DM provides a safe trajectory based on a simpli-
fied vehicle model in the MIQP formulation, which is used
for efficient computations in NMPC by sequential quadratic
programming (SQP). Second, we present simulation results
of MIP-DM with our embeddable BB-ASIPM solver in a
range of traffic scenarios, while operating in a dynamic envi-
ronment with potentially changing traffic rules, and compare
against state-of-the-art software tools GUROBI and MOSEK.
We also validate the method in experiments using mini-car.
Third, we demonstrate real-time feasibility of the proposed
approach in rapid prototyping hardware (dSPACE Scalexio and
MicroAutoBox-III), and we present experimental results using
small-scale automated vehicles. To the best of our knowledge,
this paper presents the first MIP for decision making with an
embedded solver that is real-time feasible in hardware-in-the-
loop (HIL) simulations and vehicle experiments.

C. Outline and Notation

This paper is structured as follows. Section II introduces the
objectives and problem formulation, followed by a description
of the MIP-DM in Section III. The MIQP solver is described
in Section IV, and the integration with NMPC is discussed in
Section V. The simulation results are shown in Section VI.
Finally, Section VII presents results from the hardware exper-
iments and our conclusions are established in Section VIII.

Notation: R, R+, R0+ (Z, Z+, Z0+) are the set of real, pos-
itive real and nonnegative real (integer) numbers, B = {0, 1},
and Zba = {a, a+ 1, . . . , b− 1, b}. The logical operators and,
or, xor, not are ∧, ∨, ⊻, ¬, and the logical operators implies
and equivalent (if and only if) are =⇒ , ⇐⇒ . Inequalities
between vectors are intended componentwise.

II. PROBLEM SETUP AND FORMULATION

This section briefly describes common components in a
multi-layer guidance and control architecture for ADAS/AD,
and then introduces the MIOCP formulation for MIP-DM.

(a) Typical architecture, e.g. [7]. (b) MIP-DM architecture.

Fig. 1: Multi-layer control architecture for ADAS/AD.

A. Multi-layer Control Architecture for Automated Driving

A typical guidance and control architecture is illustrated in
Fig. 1a. A perception, sensing and estimation module uses
various on-board sensor information, such as radar, LIDAR,
camera, and global positioning system (GPS) information,
to estimate the vehicle states, parameters, and parts of the
surroundings relevant to the driving scenario [31]. Based on a
route given by a navigation system, a decision making module
determines what maneuvers to perform, e.g., lane changing,
stopping, waiting, intersection crossing [7]. Then, a motion
planning system generates a collision-free and kinematically
feasible trajectory to perform the maneuvers, see, e.g., [32]. A
vehicle control system computes the commands to execute the
motion planning trajectory, see, e.g., [33]. Additional low-level
controllers operate the vehicle actuators.

B. Architecture for MIP Decision Making (MIP-DM)

In this paper, an autonomous vehicle must reach a desired
destination while obeying the traffic rules. This requires the
vehicle to adjust its velocity to comply with speed limits, to
avoid collisions, to follow and change lanes, and to cross
intersections following right of way rules. We propose an
alternative architecture to that in Fig. 1a, using MIP-based
vehicle decision making, see Fig. 1b. In this architecture, the
MIP-based decision making determines the sequence of next
maneuvers and a coarse reference trajectory that satisfies traffic
rules and avoids obstacles along a future horizon, and the
NMPC tracks such a trajectory while avoiding collisions, with
a shorter horizon and a higher control rate to compensate for
model errors, disturbances, and sensing and prediction errors
on other vehicles.

A detailed comparison of the architectures in Fig. 1 may
be difficult, and beyond the scope of this paper. Here, we aim
at demonstrating the feasibility of the architecture in Fig. 1b,
and briefly discuss some potential benefits, next.

The typical architecture in Fig 1a separates decision making
and motion planning, and computes trajectories for each
selected sequence of maneuvers. Conservative approaches may
only select a single maneuver, while computationally expen-
sive approaches may generate trajectories for every sequence
of maneuvers. For motion planning in Fig 1a, since decision

3

making may only provide maneuvers and not reference trajec-
tories, using optimization-based methods may be hard, due
to the non-convexity and the lack of a good initial guess.
Instead, the architecture based on MIP-DM in Fig 1b inte-
grates decision making and motion planning. The maneuver
sequences are generated in the branch-and-bound method of
the MIP solver, and, although the worst case complexity is still
combinatorial, branch-and-bound and integer pre-solving tech-
niques provide a computationally efficient way of searching for
feasible and optimal solutions [34]. Such solution provides a
coarse reference trajectory and an action sequence that may be
a suitable initial guess for optimization-based control involving
non-convex problems.

From an implementation perspective, fewer layers usually
reduce the complexity of the software architecture, the inter-
module communication and potential negative side effects. In
Fig. 1b, the main two layers are optimization-based, and large
portions of code and libraries may be shared. On the other
hand, the MIP-DM may treat obstacles in a more computa-
tional burdensome way than other methods, i.e., with addi-
tional integer variables, and mixed-integer solvers, no matter
how simplified, are typically more complex than rule-based or
graph-based decision makers and well-known motion planning
methods, e.g., sampling based. Thus, the final choice has to
be based on the application specifications and computational
platform, but our results demonstrate that the architecture in
Fig 1b may be a valid alternative to that in Fig. 1a.

The problem setup in this work requires the following
simplifying assumptions.

Assumption 1: There exists a prediction time window along
which the following are known

1) the position and orientation for each of the obstacles in
a sufficiently large neighborhood of the ego vehicle,

2) the map information, including center lines, road curva-
ture and lane widths within the current road segment,

3) the current traffic rules and any changes to the rules,
e.g., traffic light timings and/or speed zone changes.

Assumption 1.1 requires the ego vehicle to be equipped with
sensors to detect static and dynamic obstacles within a given
range and to locate itself in the environment. Furthermore, the
ego vehicle must be equipped with a module that provides
conservative predictions for future trajectories of the dynamic
obstacles, e.g., using techniques referenced in [2], [3]. Such
predictions are not expected to be exact since the feedback
mechanism of the architecture proposed here will adjust the
trajectory, in presence of prediction errors. Assumption 1.2
requires the availability of map information and/or the use of
online updates and corrections to such map information [31].
Assumption 1.3 requires a combination of map information,
online perception [31], and/or vehicle-to-infrastructure (V2I)
communication [35]. Based on these assumptions, we define
the problem statement and objectives.

Definition 2 (MIP Decision Making (MIP-DM)): Under
Assumption 1 and for given navigation information, at each
sampling instant, the MIP-DM module solves an MIOCP on
embedded hardware and under strict timing requirements. The
solution provides desired maneuvers that the vehicle should
execute, and a coarse trajectory, i.e., a sequence of waypoints

and target velocities, over a horizon of several seconds for the
vehicle control module to execute the maneuver.

C. Integration of MIP-DM with NMPC Tracking Controller

Based on Def. 2, the MIP-DM computes a safe trajectory
that is executed by the NMPC tracking controller in Fig. 1b,
i.e., the vehicle control module. The MIP-DM trajectory is
used in NMPC as an effective warm start for the nonconvex
optimization problem, e.g., using SQP with the real-time
iteration (RTI) [36]. The MIP-DM plans for long horizon
trajectories with coarse granularity by solving a nonconvex
optimization problem formulated on a simplified linear vehicle
model, with a long sampling time period, Tmip

s ≈ 0.4 − 2 s,
and a relatively long prediction horizon, Tmip ≈ 10 − 20 s.
The NMPC tracks such trajectories with finer granularity
while enforcing constraints, by solving a convex problem
formulated on a more accurate nonlinear kinematic model,
with a short sampling time period Tmpc

s ≈ 0.02 − 0.1 s, and
a relatively short prediction horizon, Tmpc ≈ 2 − 4 s. Thus,
the NMPC compensates for MIP-DM prediction model errors
and disturbances, corrects possible MIP-DM intersampling
constraint violations, and provides faster reactions to sensing
and prediction errors of other vehicles, thus improving the
overall collision avoidance.

D. Mixed-integer Optimal Control Problem (MIOCP)

At each sampling time instant, the proposed MIP-DM solves
the following MIOCP

min
X,U

N∑
i=0

1

2

[
x(i)
u(i)

]⊤
H(i)

[
x(i)
u(i)

]
+

[
q(i)
r(i)

]⊤ [
x(i)
u(i)

]
(1a)

s.t. x(i+ 1) =
[
A(i) B(i)

] [x(i)
u(i)

]
+ a(i), ∀i ∈ ZN−1

0 , (1b)[
x(i)
u(i)

]
≤

[
x(i)
u(i)

]
≤

[
x(i)
u(i)

]
, ∀i ∈ ZN0 , (1c)

c(i) ≤
[
C(i) D(i)

] [x(i)
u(i)

]
≤ c(i), ∀i ∈ ZN0 , (1d)

uj(i) ∈ Z, ∀j ∈ I(i), ∀i ∈ ZN0 , (1e)

where i ∈ {0, 1, . . . , N} is the time, N is the horizon length,
the state variables are x(i) ∈ Rni

x , the control and auxiliary
variables are u(i) ∈ Rni

u and I(i) denotes the index set of
integer decision variables uj(i), ∀j ∈ I(i), ∀i ∈ ZN0 , i.e.,
the cardinality |I(i)| ≤ niu denotes the number of control and
auxiliary variables that are integer valued. The objective in (1a)
defines a linear-quadratic function with positive semi-definite
Hessian matrix H(i) ⪰ 0 and gradient vectors q(i) ∈ Rni

x

and r(i) ∈ Rni
u . The constraints include dynamic constraints

in (1b), simple bounds in (1c), affine inequalities in (1d)
and integer feasibility constraints in (1e). The initial state
constraint x(0) = x̂t, where x̂t is a current state estimate
at time t, can be enforced using the simple bounds in (1c).
The MIOCP (1) includes control variables on the terminal
stage, u(N) ∈ RnN

u , due to possibly needing auxiliary vari-
ables to formulate the mixed-integer inequalities . A binary
optimization variable uj(i) ∈ {0, 1} can be defined as an

4

integer variable uj(i) ∈ Z in (1e), including the simple bounds
0 ≤ uj(i) ≤ 1 in (1c). For compactness, we denote X =
[x(0)⊤, . . . , x(N)⊤]⊤ and U = [u(0)⊤, . . . , u(N)⊤]⊤. The
MIOCP (1) can be reformulated as a block-sparse structured
MIQP [13], and solved with the corresponding algorithms.

III. MIXED-INTEGER QUADRATIC PROGRAMMING FOR
VEHICLE DECISION MAKING AND MOTION PLANNING

Next, we describe the MIP-DM for real-time feasible au-
tomated driving in real-world scenarios. Traffic rules and
switching dynamics are formulated using logical operators that
can be implemented using mixed-integer inequalities [37].

A. Linear Vehicle Model in Road-aligned Frame

The curvilinear coordinate system used in the prediction
model of the MIOCP (1) is shown in Fig. 2. A similar coor-
dinate system has been used for predictive control, e.g., [38],
[39]. The vehicle position is described by (ps, pn), where ps
denotes the progress along the center line of the lane in which
the ego vehicle is driving, and pn denotes the normal distance
of the vehicle position from the center line.

Fig. 2: Road-aligned curvilinear coordinate system for a
curved segment; ps is the arc length along the center line and
pn is the lateral deviation.

Assumption 3: The turning radius is much larger than the
wheelbase of the vehicle, such that the steering and slip angles
are relatively small and their difference for the outside and
inside wheels is negligible.

Based on Ass. 3, which is common in vehicle motion plan-
ning [6], [32], we use a simplified linear vehicle model in the
curvilinear coordinate system and with decoupled longitudinal
and lateral kinematics

ps(i+ 1) = ps(i) + Ts vs(i),

vs(i+ 1) = vs(i) + Ts as(i),

pn(i+ 1) = pn(i) + Ts vn(i),

(2)

where the control inputs are the longitudinal acceleration as(i)
and the lateral velocity vn(i) at each time step i ∈ ZN−1

0 . To
approximate the nonholonomic constraints for vehicles, similar
to [40], we enforce the linear inequalities on the lateral and
longitudinal velocity

−α vs(i) ≤ vn(i) ≤ α vs(i), i ∈ ZN−1
0 , (3)

where α > 0, and we assume vs(i) ≥ 0 at all time steps.

Proposition 4: The constraint in (3) is a linear approxima-
tion of a vehicle steering limit and, using a kinematic bicycle
model and given the vehicle’s minimum turning radius Rmin,

α = sin
(

tan−1

(
lr

Rmin

))
≈ lr
Rmin

, (4)

where lr is the distance from center of gravity to the rear axle.
Considering the kinematic bicycle model [41]

ṗX = v cos(ψ + β), ṗY = v sin(ψ + β), (5a)

ψ̇ = v
cos(β)
L

tan(δ), β = tan−1

(
lr tan(δ)

L

)
, (5b)

where (pX, pY) is the position of the vehicle’s center of gravity
in an absolute frame, and L = lf + lr is the wheelbase. For a
constant radius R, or road curvature 1

R , the yaw rate is ψ̇ =
v
R [41, Sec. 2.2], such that tan(δ) ≈ L

R and β = tan−1
(
lr
R

)
.

The lateral velocity in the car body frame is ṗy = v sin(β).
Given a minimum turning radius Rmin > 0, the steady state
lateral velocity is vmax

y = v sin(tan−1(lr
Rmin)), and therefore

in (3), αmax
R = sin(tan−1(lr

Rmin)) ≈ lr
Rmin > 0.

The vehicle model (2) is an approximation of more precise
models, see, e.g., [42], which are usually nonlinear. Additional
constraints on the lateral acceleration may be included, but
are omitted in this paper for simplicity. The MIP-DM (1)
operates in normal driving conditions, and in those conditions
some vehicle nonlinearities, such as those in the road-tire
friction curve, are not excited, while others can be neglected
because of the long horizon and coarse sampling period. In
addition, errors due to the simplified model in MIP-DM are
compensated by the NMPC tracking control layer in Fig. 1b.

Remark 5: Given a time varying road radius R(i), which
may be positive or negative depending on the direction of the
road curvature, the lateral velocity in (2) is bounded as vn(i) ≤
vmax
y − vRy (i), where vmax

y = v αmax
R , and vRy (i) = v αR(i)

denotes the steady state lateral velocity to follow the center of
the road with radius R(i). Eq. (3) may be replaced by

(−αmax
R − αR(i))vs(i) ≤ vn(i) ≤ (αmax

R − αR(i))vs(i), (6)

where αmax
R = lr

Rmin > 0 is the maximum steering and
αR(i) = lr

R(i) is the steering needed to follow the center of
the road with radius R(i), see Proposition 4.

Remark 6: The vehicle model in Eqs. (2), (3) is simplified
and conservative so that the NMPC can track the MIP-
DM reference by leveraging its higher control rate while
using a more precise vehicle model. As a consequence, the
solutions obtained by MIP-DM may not be optimal among
all vehicle trajectories. However, for automated driving in
everyday conditions and general roads, optimality is not a key
requirement, as safety, consistent and explainable operation,
robustness, and simple and efficient computations are favored.
The simplifications developed here trade the former for the
latter ones.

B. Lane Change and Timing Delay Constraints

For proper driving, we enforce lane bound constraints

−wl

2
≤ pn(i)− prefn (i) ≤ wl

2
, i ∈ ZN0 , (7)

5

where wl denotes a lane width given by the map and prefn ∈ R
is an auxiliary state variable that denotes the lateral position of
the center line of the current lane of the vehicle. For equal lane
width values wl, the vehicle is in lane j if prefn = (j−1)wl for
j ∈ {1, . . . , nl}, where nl is the number of lanes in the current
traffic scenario. Even though the reference lane value may
jump from one time step prefn (i) to the next prefn (i+1), it may
take multiple time steps for the lateral position to transition
from the center line of one lane to the next, i.e., pn(i− l) ≈
prefn (i) and pn(i+ k) ≈ prefn (i+ 1), where l ≥ 0 and k ≥ 1.

1) Lane Change Decision Constraints: We use two binary
variables buc (i), b

d
c (i) ∈ {0, 1} that denote whether the vehicle

performs a lane change left or right, respectively, at time step
i ∈ ZN−1

0 . We also introduce an auxiliary variable ∆c(i) ∈ R
defined by buc (i) and bdc (i) for i ∈ ZN−1

0 , through

buc (i) = 1 =⇒ ∆c(i) = wl ∧ bdc (i) = 0,

bdc (i) = 1 =⇒ ∆c(i) = −wl ∧ buc (i) = 0,

buc (i) = 0 ∧ bdc (i) = 0 =⇒ ∆c(i) = 0.

(8)

The implications in (8) are implemented using mixed-integer
inequality constraints, e.g., by the big-M technique [34]. The
auxiliary state dynamics are

prefn (i+ 1) = prefn (i) + ∆c(i), (9a)

nLC(i+ 1) = nLC(i) + (buc (i) + bdc (i)), (9b)

where nLC(i) counts the number of lane changes over the
prediction horizon and is initialized to nLC(0) = 0.

Remark 7: The state nLC(i) ∈ Z is an integer variable, but
it can be relaxed to be continuous because the sum in (9b)
is guaranteed to be integer. Similarly, prefn and ∆c could be
reformulated as prefn = wl p̃

ref
n and ∆c = wl ∆̃c, where p̃refn ∈

{0, 1, . . . , nl − 1} and ∆̃c ∈ {−1, 0, 1}. State of the art MIP
solvers can possibly use these integer feasibility constraints to
reduce the computational effort [34]. For simplicity, we only
use continuous and binary optimization variables.

2) Timing Delay Constraints for Lane Changes: We en-
force a minimum time delay of tmin between two consecutive
lane changes. The lane change variables buc (i), b

d
c (i) ∈ {0, 1}

reset a timer tc(i) as

tc(i+ 1) =

{
tc(i) + Ts if buc (i) = bdc (i) = 0,
0 otherwise, (10)

which can be implemented by mixed-integer inequality con-
straints, e.g., using again the big-M technique. Given tc(i), we
impose a minimum time between lane changes

buc (i) = 1 ∨ bdc (i) = 1 =⇒ tc(i) ≥ tmin, i ∈ ZN−1
0 . (11)

C. Polyhedral Obstacle Avoidance Constraints

The MIP-DM enforces obstacle avoidance constraints to
avoid a region of collision risk around other traffic partic-
ipants, e.g., vehicles, bicycles or pedestrians. The position
and dimensions of the safety region may be time varying
and adapted to a prediction of the behavior for each of the
traffic participants. In addition, obstacle avoidance constraints
enforce stopping maneuvers, e.g., in case of a stop sign or
a red traffic light at an intersection. Per Assumption 1, the

Fig. 3: Obstacle avoidance constraints using binary variables
and an axis-aligned rectangular collision region. The extent
of the region is increased by the geometric shape of the ego
vehicle and includes an additional safety margin. The light red
shaded region is enforced as soft constraints, while the dark
region is enforced as hard constraints.

prediction of obstacle motions, the map information and the
traffic rules are known. For simplicity, we use axis-aligned
rectangular collision regions, see, Fig. 3. Alternatively, any
polyhedral representation of the collision regions could be
used, see, e.g., [25]. The size of the collision region around
the obstacle is increased with the geometric shape of the ego
vehicle and includes an additional safety margin for robustness
to discretization errors, model mismatch and/or disturbances.

As shown in Fig. 3, obstacle avoidance for an axis-aligned
rectangular region results in four disjoint feasible sets. We
introduce 4 auxiliary binary variables bjo(i) = [bjo,k(i)]k∈Z4

1

for j ∈ Znobs
1 , to implement the logical implications

bjo,1 = 1 ⇐⇒ ps ≤ pjs−tsafevs + νcs ,

bjo,2 = 1 ⇐⇒ ps ≥ pjs+tsafevs − νcs ,
bjo,3 = 1 ⇐⇒ pj

s
−tsafevs + νcs ≤ ps ≤ pjs+tsafevs − νcs

∧ pn ≤ pjn + νcn,

bjo,4 = 1 ⇐⇒ pj
s
−tsafevs + νcs ≤ ps ≤ pjs+tsafevs − νcs

∧ pn ≥ pjn − νcn,

(12)

where we omit the index i ∈ ZN0 for readability, and we use
slack variables νcs (i) ≥ 0, νcn(i) ≥ 0 to ensure feasibility. In
addition, tsafevs corresponds to an adaptive velocity-dependent
safety margin, where tsafe is the safety distance in seconds,
where in general it is recommended tsafe ≈ 2 s, and vs is the
longitudinal velocity of the ego vehicle, as predicted in the
optimal control problem. Alternatively, vs may be fixed to the
current value and kept constant along the prediction horizon,
for simplicity. We impose that the ego vehicle is in one of the
feasible sets by

∑4
k=1 b

j
o,k(i) = 1. Hard obstacle avoidance

constraints can be defined by enforcing upper bounds on the
slack variables 0 ≤ νcs (i) ≤ νcs and 0 ≤ νcn(i) ≤ νcn, see
Fig. 3. To reduce the number of variables in the MIP, a single
slack variable νcs (i) = asn ν

c
n(i) may be used, where asn > 0

is a constant.
Remark 8: For each obstacle j ∈ Znobs

1 in (12), we
predict its position based on a constant velocity profile in
curvilinear coordinates. Future work may include the use of a

6

more advanced prediction model, e.g., a switching dynamical
model [43] or a neural network classifier [44].

Remark 9: The predicted trajectory of the ego vehicle cannot
“jump over” an obstacle driving in the same lane between
two subsequent discretization points due to intersampling
constraint violation, if the safety distance in (12) is at least
tsafe >

Ts

2 in front and behind the obstacle, where Ts is the
discretization time of the MIP-DM. A similar margin can be
added also laterally to avoid “cutting corners”, while noting
that, by enforcing constraints in a finer time grid and updating
at a higher frequency, NMPC corrects constraint violations in
the intersampling, and due to incorrect obstacle predictions.

1) Traffic Intersection Crossing Constraints: The obstacle
avoidance constraints in (12) are also used to prevent the
ego vehicle from crossing a traffic intersection, e.g., forcing
the vehicle to stop during a particular time window. As in
Fig. 3, the avoidance region is defined by the dimensions of
the intersection, enlarged to account for the physical shape of
the ego vehicle and with additional safety margins to account
for modeling errors. If the intersection is controlled by traffic
lights and if the traffic light changes are known, e.g., using
V2I communication [35], the intersection crossing constraints
are time varying within the prediction horizon. For example,
if it is known that a traffic light will turn red, the intersection
crossing constraints (12) force the ego vehicle to slow down
and plan a stopping maneuver. The constraints are relaxed
at future time steps within the prediction horizon when the
traffic lights are predicted to become green. Alternatively, the
intersection crossing constraints may be implemented based
on map information and/or the perception system [31].

D. Zone-dependent Traffic Rules

In real-world scenarios, certain traffic rules change in dif-
ferent road zones, for instance:

• speed limit, e.g., the vehicle enters a low-speed zone,
• lane changes, e.g., lane changes become forbidden,
• available lanes, e.g., a three-lane road transitions become

two-lane road or the vehicle must merge in a new road.
We introduce binary variables bz = [b1z , . . . , b

nz
z], where nz

denotes the number of position-dependent zones. Each zone is
represented by a range [p

j
, pj] for j ∈ Znz

1 in the longitudinal
ps-direction. We detect whether the vehicle is in zone j as

bjz(i) = 1 ⇐⇒ p
j
(i) ≤ ps(i) ≤ pj(i). (13)

Because the position-dependent zones are disjoint, the vehicle
needs to be in exactly one zone, i.e.,

∑nz

j=1 b
j
z = 1.

The auxiliary binary variables bz and constraints in (13)
enable implementing the zone-dependent traffic rules. For
example, changing speed limits can be enforced by

vs(i) ≤
nz∑
j=1

bjz v
j
s(i), (14)

where the speed limit vjs(i) corresponds to zone j ∈ Znz
1 .

Similarly, the constraints on feasible lanes can be adjusted as
nz∑
j=1

bjz p
ref,j
n

(i) ≤ prefn (i) ≤
nz∑
j=1

bjz p
ref,j
n (i). (15)

Fig. 4: Zone-dependent traffic rule: transition from a zone
with three lanes (b1z = 1) to a zone with two lanes (b2z = 1),
using MIP inequalities in (13),(15).

The constraints in (15) can be used to enforce a maximum
position at which the ego vehicle needs to perform a lane
change maneuver, e.g., as requested by a routing module in
order to make a turn at the next traffic intersection. Fig. 4
shows the transition from a three-lane road segment into a
two-lane road segment using Eq. (15).

E. Extended Dynamic System with Auxiliary Variables

The vehicle kinematics (2) and the auxiliary dynamics (9)
result in the prediction model (1b)

ps(i+1)
pn(i+1)
vs(i+1)

prefn (i+1)

nLC(i+1)

 =

[
1 0 Ts 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
ps(i)
pn(i)
vs(i)

prefn (i)

nLC(i)

+[
0 0 0 0 0
0 Ts 0 0 0
Ts 0 0 0 0
0 0 1 0 0
0 0 0 1 1

]
as(i)
vn(i)
∆c(i)
buc (i)

bdc (i)

.
(16)

subject to simple bounds on states for i ∈ ZN0

−wl

2
≤ pn(i) ≤ (nl −

1

2
)wl, vs(i) ≤ vs(i) ≤ vs(i),

0 ≤ prefn (i) ≤ (nl − 1)wl, 0 ≤ nLC(i) ≤ nmax
LC ,

(17)

and on control inputs for i ∈ ZN−1
0

as(i) ≤ as(i) ≤ as(i), vn(i) ≤ vn(i) ≤ vn(i). (18)

F. Objective for Decision Making and Motion Planning

The objective function (1a) of the proposed MIP-DM is∑N
i=0 ℓi(x(i), u(i)), where the stage cost is

ℓi = w1 ∥ps(i)− prefs (i)∥22 + w2 ∥pn(i)− prefn (i)∥22
+ w3 as(i)

2 + w4 vn(i)
2 + w5 bc(i)

+ w6 |prefn (i)− prefn (i)|+ w7 ν
c(i),

(19)

bc(i) = buc (i) + bdc (i), ν
c(i) = νcs (i) + νcn(i), and wj ≥ 0

for j = 1, . . . , 7 are weights. The first term in (19) is
the longitudinal tracking error with respect to a reference
trajectory prefs (i), e.g., computed based on a desired reference
velocity. The second term minimizes the lateral tracking error
with respect to the current center lane. The third and fourth
terms penalize the control actions, longitudinal acceleration
and lateral velocity, respectively. The fifth term penalizes lane
change decisions, avoiding unnecessary lane changes, and
rendering unlikely aborting a lane change, unless necessary
for constraint satisfaction, i.e., to preserve safety.

The sixth term in (19) minimizes a tracking error of the
current lane with respect to a given preferred lane value prefn (i),

7

e.g., the right lane in right-hand traffic or the left lane when a
vehicle desires to make a left turn at a next traffic intersection.
To handle the absolute value in (19), we minimize an auxiliary
control variable ∆prefn , satisfying

∆prefn ≥ prefn − prefn , ∆prefn ≥ prefn − prefn , (20)

such that ∆prefn ≥ |prefn −prefn | holds. The squared terms in (19)
may be replaced by absolute values which results in a mixed-
integer linear program (MILP) instead of an MIQP. However,
a quadratic cost is often preferred for vehicle applications, see,
e.g. [29], [40], because it results in smoother control actions
and trajectories than a linear cost, due to the different proper-
ties of the optimal points. The last term in (19) corresponds to
a penalty on the slack variables for soft constraint violations.
The weight w7 ≫ 0 is chosen large enough to ensure that a
feasible solution with νc(i) = 0 is found if and when it exists.

Remark 10: The weights wj ≥ 0 in (19) may be adapted
to the traffic conditions, e.g., adjusting the balance between
the time to execute a lane change and comfort. An in depth
discussion on this is outside the scope of this paper.

The complete MIOCP of the proposed MIP-DM is

min
X,U

N∑
i=0

ℓi(x(i), u(i)) in Eq. (19)

s.t. x(0) = x̂t,

Extended state dynamics in Eq. (16),
Simple bound constraints in Eqs. (17)-(18),
Lateral velocity constraint in Eq. (6),
Lane change constraints in Eqs. (7)-(8),
Time delay constraints in Eqs. (10)-(11),
Obstacle avoidance constraints: Section III-C,
Zone-dependent traffic rules: Section III-D.

(21)

The state vector is x = [ps, pn, vs, p
ref
n , nLC, tc], and the con-

trol and auxiliary input vector is u = [as, vn, t̃c,∆c, bc, bo, bz].
The binary optimization variables include the lane change
variables bc = [buc , b

d
c], the obstacle avoidance variables

bo = [b1o, . . . , b
nobs
o], and the traffic zone variables bz =

[b1z , . . . , b
nz
z], while the remaining variables are continuous.

Remark 11: With an upper bound on the number of obstacles
taken into account in a single problem, the MIOCP dimensions
are fixed. This allows for static memory allocation, as required
for implementing the MIP-DM in embedded platforms suitable
for automotive applications, as discussed later.

IV. EMBEDDED MIQP SOLVER FOR MIXED-INTEGER
MODEL PREDICTIVE CONTROL

The MIOCP (21) is converted into the MIQP

min
z

1

2
z⊤H z + h⊤z (22a)

s.t. G z ≤ g, F z = f, (22b)
zj ∈ Z, j ∈ I, (22c)

where z includes all optimization variables and the index set
I denotes the integer variables. Next, we summarize the main
ingredients of the BB-ASIPM solver [13] that uses a B&B

Fig. 5: Branch-and-bound (B&B) method as a binary search
tree. A selected node can be either branched, resulting in
2 partitions for each binary variable uj ∈ {0, 1}, or pruned,
based on feasibility or the current upper bound.

method with reliability branching and warm starting [16],
block-sparse presolve techniques [13], early termination and
infeasibility detection [17] within a fast convex QP solver [18].

Remark 12: The BB-ASIPM solver is not tailored to
the MIP-DM problem (21), but rather designed to solve any
MIOCP as in Eq. (1). However, the problem formulation is
an important factor affecting the computational burden of any
MIQP solver, see, e.g., [10].

A. Branch-and-bound Method and Search Heuristics

The B&B algorithm sequentially creates partitions of the
MIQP as shown in Fig. 5. For each partition, a local lower
bound on the optimal objective value is obtained by solving
a convex relaxation of the MIQP subproblem. If the relax-
ation yields an integer-feasible solution, the B&B updates the
global upper bound for the MIQP solution, which is used to
prune tree partitions. The B&B method terminates when the
difference between the upper and lower bound is below a user-
defined threshold. A key decision is how to create partitions,
i.e., which node to choose and which discrete variable to select
for branching. BB-ASIPM uses reliability branching which
combines strong branching and pseudo-costs [45].

B. Block-sparse Exact Presolve Reduction Techniques

We refer to the parametric MIQP from (22) as P(θ), in
which the parameter vector θ includes the state estimate x̂t,
and we denote the discrete variables in (22c) by d ∈ ZNd . We
use the compact notation P(θ, dR = d̂) to denote the MIQP
after fixing dj = d̂j , j ∈ R where R is an index set.

Definition 13 (Presolve Step): Given problem P(θ) and a set
of integer values {d̂j}j∈R for the index set R ⊆ {1, . . . , Nd},
the presolve step computes

{infeasible, d̂+,R+} ← Presolve(P(θ), d̂,R), (23)

resulting in updated integer values {d̂+j }j∈R+ for the index
set R+ ⊆ {1, . . . , Nd}, such that:

1) The new index set includes the original set, R ⊆ R+.
2) P(θ, dR+ = d̂+) is infeasible / unbounded only if
P(θ, dR = d̂) is infeasible / unbounded.

8

3) Any feasible / optimal solution of P(θ, dR+ = d̂+) maps
to a feasible / optimal solution of P(θ, dR = d̂), with
identical objective value.

A presolve routine applied to a root node in B&B corresponds
to Definition 13 with R = ∅. In general, presolve cannot prune
all of the binary or integer decision variables, but often it leads
to a reduced problem that is significantly faster to solve.

We use the tailored block-sparse presolve procedure [13,
Section 4] that abides by the rules in Def. 13, and includes:

• Domain propagation to strengthen bounds based on con-
straints of the MIQP, which may lead to fixing multiple
integer variables. A tailored implementation for MIOCPs
of the form in (1) based on an iterative forward-backward
propagation is described in [13, Alg. 2].

• Redundant constraints are detected and removed based
on updated bound values, which may also benefit dual
fixing of multiple variables, see [13, Alg. 4].

• Coefficient strengthening to tighten the feasible space of
the convex QP relaxation without removing any integer-
feasible solution of the MIQP. A block-sparse implemen-
tation is described in [13, Alg. 5].

• Variable probing to obtain tightened bound values for
multiple optimization variables by temporarily fixing a
binary variable to 0 and 1, see [13, Alg. 6].

The presolve procedure in [13] terminates if the problem is
detected to be infeasible or if insufficient progress is made
from one iteration to the next, but an upper limit on the number
of presolve iterations or a timeout is typically included for
efficiency.

C. Block-sparse QP solver for Convex Relaxations

A primal-dual interior point method (IPM) uses a Newton-
type algorithm to solve a sequence of relaxed Karush-Kuhn-
Tucker (KKT) conditions for the convex QP. We use the active-
set based inexact Newton implementation of ASIPM [18],
which exploits the block-sparse structure in the linear sys-
tem with improved numerical conditioning, reduced matrix
factorization updates, warm starting, early termination and
infeasibility detection [17]. If the convex QP relaxation

• is infeasible,
• has optimum exceeding the current global upper bound,

the node and the corresponding subtree can be pruned from
the B&B tree. A considerable computational effort can be
avoided if the above scenarios are detected early, i.e., before
reaching the solution of the convex QPs. In [17], we describe
an early termination method based on a tailored dual feasibility
projection strategy applicable to BB-ASIPM to handle both
cases and to reduce the computational effort of the B&B
method without affecting the quality of the optimal solution.

D. Embedded Software Implementation of Hybrid MPC

In hybrid MPC, warm starting can be used to reduce the
computational effort in the B&B method from one time step
to the next as discussed in [46], [47]. BB-ASIPM uses tree
propagation [13], [16] to efficiently reuse the branching deci-
sions and pseudo-costs from the previous MIQP solution. The

BB-ASIPM solver is implemented in self-contained C code,
which allows for real-time implementations on embedded mi-
croprocessors as shown next. An upper bound can be imposed
on the number of B&B iterations to ensure a maximum
computation time below a threshold. If an integer-feasible
solution is found, the B&B method automatically provides a
bound on the suboptimality. As in any real-world safety critical
application where a complex numerical algorithm is deployed,
it is advisable to include simple backup strategies for when the
algorithm is unable to converge to a feasible solution within
the available time. Some examples are using a previously
computed motion plan or a default maneuver, such as staying
in the lane and following the vehicle ahead, or slowing
down/braking to a stop. However, in all the simulations in
Section VI and experiments in Section VII, BB-ASIPM never
failed to compute a feasible solution within the maximum
number of B&B iterations, and in most cases the globally
optimal solution was found.

V. INTEGRATION OF MIP-DM AND NMPC REFERENCE
TRACKING CONTROLLER

The NMPC reference tracking controller executes the mo-
tion plan of the MIP-DM, see Fig. 1b. Based on the ve-
hicle model in (2), the MIP-DM reference trajectory in
curvilinear coordinates

[
ps(i), pn(i), vs(i)

]⊤
, i ∈ ZN0 , is

transformed to a Cartesian coordinate frame (pX, pY) as in
Fig. 2. With the approximation of the heading angle ψ(i) ≈
arctan

(
pY(i+1)−pY(i)
pX(i+1)−pX(i)

)
, we obtain the reference trajectory[

pX(i), pY(i), ψ(i), v(i)
]⊤

for i ∈ ZN0 . As in [33], [48],
we use a 3rd order polynomial approximation, resulting in
yref(τ) =

[
prefX (τ), prefY (τ), ψref(τ), vref(τ)

]⊤
for 0 ≤ τ ≤

Tmpc, where Tmpc is the NMPC horizon length.
For the NMPC prediction model, we use the nonlinear

kinematic model (5) with additional actuation dynamics [33],
resulting in the continuous time dynamics

ṗX = v cos(ψ + β), ṗY = v sin(ψ + β), (24a)

ψ̇ = v
cos(β)
L

tan(δf), δ̇f =
1

td
(δ − δf), (24b)

v̇ = u1, δ̇ = u2, (24c)

where pX, pY denotes the two-dimensional position in Carte-
sian coordinates, ψ is the heading angle and ψ̇ the heading
rate, v is the longitudinal velocity, δ and δf are the commanded
and actual front wheel steering angle, respectively, and L, β as
in (5). First order front steering dynamics are included in (24b)
for the steering actuation response, and the inputs u1, u2 are
the acceleration and steering rate command, respectively.

At each control time step t, the NMPC solves

min
X,U

1

2

Nmpc∑
i=0

∥y(k)− yref(tk)∥2Q + ∥u(k)∥2R+ rν ν(k) (25a)

s.t. x(0) = x̂t, (25b)

x(k + 1) = fk (x(k), u(k)) , ∀k ∈ ZN
mpc−1

0 , (25c)

ck ≤ ck (x(k), u(k)) ≤ ck, ∀k ∈ ZN
mpc

0 , (25d)

9

where the Nmpc control intervals are defined by an equidistant
grid of time points tk = k T

mpc

Nmpc for k ∈ ZNmpc

0 over the
NMPC horizon, x̂t is the current state estimate at time t, and
the constraints in (25c) are a discretization of the continuous
time dynamics in (24), e.g., using a 4th order Runge-Kutta
method. The NMPC includes the squared output, y, tracking
error with respect the reference, yref , and command effort,
and an L1 penalty on the slack variable ν(k) ≥ 0 where the
weight rν ≫ 0 is sufficiently large to ensure that ν(k) = 0,
when a feasible solution exists [49].

Constraints (25d) include hard bounds on the control inputs
and soft constraints for limiting the distance to the reference
trajectory, the velocity and the steering angle

−eY ≤ eY + ν, −δf ≤ δf + ν, −v ≤ v + ν, (26a)

eY ≤ eY + ν, δf ≤ δf + ν, v ≤ v + ν, (26b)

−δ̇ ≤ δ̇ ≤ δ̇, −v̇ ≤ v̇ ≤ v̇, (26c)

where eY(k) = cos(ψref(tk))(pY (k) − prefY (tk)) −
sin(ψref(tk))(pX(k)−prefX (tk)) is the distance to the reference
trajectory. Instead of the rectangular collision region in curvi-
linear coordinates as in the MIP-DM (see Fig. 3), in NMPC
obstacle avoidance is enforced by ellipsoidal constraints in
Cartesian coordinates,

1 ≤
(
p̃x,j(k)

ax,j

)2

+

(
p̃y,j(k)

ay,j

)2

, (27)

where
[
p̃x,j
p̃y,j

]
= R(oψ,j)

⊤
[
pX − oX,j
pY − oY,j

]
is the rotated distance,

(oX,j , oY,j , oψ,j) is the obstacle’s pose, and (ax,j , ay,j) are
the lengths of the principal semi-axes of the ellipsoid that
ensure a safety margin around each obstacle. Our efficient
implementation of NMPC solves the nonlinear program in (25)
using the RTI algorithm in [36], which performs a single SQP
iteration at each control time step based on a shifted solution
guess from the previous time step. An extensive discussion
on the NMPC optimization algorithm, and its implementation
and computation times in small-scale vehicle experiments can
be found in [48] and hence is not repeated here.

Remark 14: MIP-DM may be slow in reacting to sensing or
prediction errors of other vehicles, due to its sampling period
typically Tmip

s ≈ 0.4 − 2 s. Therefore, obstacle avoidance is
executed by both MIP-DM and by NMPC, which has a higher
control rate with sampling period Tmpc

s ≈ 0.02 − 0.1 s, and
hence ensures constraint enforcement on a finer time grid and
a more rapid reaction to sensing or prediction errors of the
other vehicles.

VI. NUMERICAL SIMULATION RESULTS

We present numerical simulation results for the MIP-DM
described in Section III, in a variety of traffic scenarios. We
also compare the BB-ASIPM solver in Section IV against
state-of-the-art software tools, and we demonstrate its real-
time feasibility on dSPACE rapid prototyping units.

TABLE I: Problem dimensions and parameters in MIQP
formulation of Section III for each of the test scenarios in
Fig. 6. The number of binary variables per each step in the
MIOCP prediction horizon is nb = 2 + 3nobs + nz.

N nx nu nb nc nobs nz

1⃝ see Fig. 6a 15 6 20 14 60 3 3
2⃝ see Fig. 6b 15 6 18 12 56 3 1
3⃝ see Fig. 6c 15 6 23 17 71 4 3
4⃝ see Fig. 6d 15 6 24 18 73 4 4
5⃝ see Fig. 6e 15 6 16 10 47 2 2
6⃝ see Fig. 6f 15 6 17 11 49 2 3
7⃝ see Fig. 6g 15 6 20 14 60 3 3
8⃝ see Fig. 6h 15 6 20 14 60 3 3

A. Problem Formulation and Simulation Test Scenarios

In this section, we perform simulations of MIP-DM in
Matlab using the vehicle model in (2) to show the variety
of traffic scenarios that can be handled using the MIQP in
Section III. We use the simple model (2) to assess the behavior
and the stand-alone computational load of MIP-DM. In these
simulations, the obstacles do not react to the ego vehicle’s
behavior, i.e., they do not favor or actively harm the ego
vehicle, but rather only pursue their own objectives while
satisfying the traffic rules. While in the experiments there is
some limited reaction of the traffic to the ego vehicle, e.g., the
following and queuing behavior and the intersection rules, the
evaluation and adaptation of the method to traffic participants
that continuously react to the ego motion, i.e., interactively
planning with traffic, is left for future studies. Also, in the
experiments reported later we validate robustness to model
approximations, disturbances, sensing and prediction errors.

Fig. 6 shows a snapshot of Matlab simulations for 8 test
scenarios. Table I shows the problem dimensions and param-
eter values in the MIQP formulation of Section III for the
scenarios in Fig. 6, where N = 15 is the horizon length, nx
is the number of state variables, nu is the number of control
variables, nc is the number of inequality constraints, each per
time step, and nb = 2 + 3nobs + nz is the number of binary
variables per time step, with nobs the maximum number of
obstacles (see Section III-C), and nz the number of zones (see
Section III-D). Using a sampling time of Ts = 1 s, the MIP-
DM time horizon is T = N Ts = 15 s.

Scenario 1 in Fig. 6a shows the ego vehicle overtaking
three obstacles, where two obstacles are on lane 1 and a third
obstacle is on lane 2, on a road segment with one-way traffic.
Lane 1 refers to the rightmost lane with respect to the ego
vehicle’s direction of motion. Scenario 2 in Fig. 6b shows the
ego vehicle swaying around two parked vehicles (stopped) on
lane 1, while avoiding a third vehicle on lane 2. Scenario 3
in Fig. 6c shows the ego vehicle overtaking one vehicle on
lane 1 before stopping at an intersection, then crossing after
two other vehicles. Scenario 4 in Fig. 6d shows the ego vehicle
overtaking three obstacles (two vehicles on lane 1 and one
on lane 2) on a curved road segment with one-way traffic,
followed by stopping and crossing an intersection. In the test

10

(a) Scenario 1: ego vehicle overtakes three obsta-
cles on a one-way traffic road.

(b) Scenario 2: ego vehicle sways for two parked
vehicles (only one visible), avoiding a third vehicle
on another one-way traffic lane.

(c) Scenario 3: ego vehicle overtakes before stop-
ping at intersection, then continues after two vehi-
cles finish crossing the intersection.

(d) Scenario 4: ego vehicle overtakes obstacles on
a curved road with one-way traffic, followed by
stopping and crossing an intersection.

(e) Scenario 5: ego vehicle merges to lane 2
between three vehicles in one-way traffic.

(f) Scenario 6: ego vehicle merges at the end of
lane onto a new lane while avoiding/overtaking
three vehicles (only one visible).

(g) Scenario 7: ego vehicle performs right turn at a
T-intersection, merging between two vehicles (only
one visible) on the same lane.

(h) Scenario 8: ego vehicle turns left at T-
intersection, following one vehicle while avoiding
two other vehicles driving in the opposite direction.

Fig. 6: Snapshot of the closed-loop Matlab simulations using the MIP-DM in 8 test scenarios. The ego vehicle is shown in
blue, other vehicles in red. A video recording of the simulations is available at: https://youtu.be/fe9lUOQUPoU.

scenarios 1-4, lane 1 is the preferred lane prefn in (19), so that
the ego vehicle always returns to lane 1 after each overtaking
or sway maneuver.

Scenario 5 in Fig. 6e shows the ego vehicle merging from
lane 1 to lane 2 between three vehicles on lane 2, i.e., the
preferred lane prefn in (19) is lane 2. Scenario 6 in Fig. 6f shows
the ego vehicle merging at the end of its lane onto a new lane
while avoiding and/or overtaking three vehicles on the same
lane. Scenario 7 in Fig. 6g shows the ego vehicle performing a
right turn at a T-intersection, merging between two vehicles on
the same lane of the new road segment. Scenario 8 in Fig. 6h
shows the ego vehicle performing a left turn at a T-intersection,
following one vehicle on the same lane while avoiding two
other vehicles driving in the opposite direction. In the test
scenarios 5-8, after a merging or turning maneuver, the ego
vehicle overtakes any other vehicle that is driving below the
speed limit.

B. Computational Performance and Solver Comparisons

Table II shows the average and worst-case computation
times of MIP-DM for each of the 8 simulation scenarios
that are illustrated in Fig. 6, using the MIQP formulation
as described in Section III and where the MIQPs at each
control time step are solved using either GUROBI, MOSEK or
BB-ASIPM. It can be observed that the average and worst-case
computation times of BB-ASIPM are approximately 5 and
4 times faster than MOSEK, respectively. On the other hand,
the average and worst-case computation times of GUROBI
are approximately 1.5 and 2.5 times faster than BB-ASIPM,
respectively. All the default presolve options are enabled in the
GUROBI solver, and the maximum number of B&B iterations
in the BB-ASIPM solver was never reached in the scenarios in
Table II. Computation times in Table II and Fig. 7 are obtained
by executing the MIP-DM simulations in a single core of a
2.4 GHz Intel Core i9 processor.

11

TABLE II: Average and worst-case computation times for each of the 8 scenarios in Fig. 6 for MIP-DM with the MIQP
formulation in Section III, for GUROBI, MOSEK and BB-ASIPM.

GUROBI MOSEK BB-ASIPM
Mean time Max time Mean time Max time Mean time Max time

1⃝ see Fig. 6a 12.6 ms 31.5 ms 142.5 ms 558.6 ms 21.8 ms 85.1 ms
2⃝ see Fig. 6b 6.3 ms 18.9 ms 32.4 ms 191.2 ms 8.1 ms 49.7 ms
3⃝ see Fig. 6c 7.8 ms 25.6 ms 60.9 ms 225.0 ms 10.6 ms 54.3 ms
4⃝ see Fig. 6d 7.7 ms 25.5 ms 57.9 ms 200.6 ms 12.3 ms 65.9 ms
5⃝ see Fig. 6e 5.8 ms 23.3 ms 47.5 ms 254.9 ms 8.6 ms 60.8 ms
6⃝ see Fig. 6f 6.4 ms 23.7 ms 58.8 ms 262.7 ms 9.3 ms 57.5 ms
7⃝ see Fig. 6g 4.9 ms 23.0 ms 31.9 ms 348.8 ms 7.0 ms 58.3 ms
8⃝ see Fig. 6h 5.0 ms 23.0 ms 33.6 ms 153.6 ms 6.0 ms 45.7 ms

Fig. 7 shows the average and worst-case computation times
of MIP-DM for an overtaking scenario similar to Fig. 6a,
showing results for 200 randomized simulations for each
number of obstacles nobs ∈ Z7

1, using GUROBI, MOSEK and
BB-ASIPM. For each simulation, the initial position, the lane
and velocity for each of the obstacle vehicles are selected
randomly from a uniform distribution. Based on the results in
Fig. 7, the MIP-DM using the BB-ASIPM solver is able to re-
main real-time feasible for nobs ∈ Z7

1 on a standard computer.
As expected, the gap between the average computation time of
BB-ASIPM versus GUROBI grows for an increasing number
of obstacles nobs, but the worst-case computation times remain
below the sampling time of Ts = 1 s, which is is not the case
for MOSEK. Based on prior works in [21], [27], [28], it is often
sufficient to consider up to nobs = 5 surrounding vehicles, for
example, including the leading vehicle ahead in the current
lane of the ego vehicle and the leading and following vehicles
in the left and right adjacent lanes.

Fig. 7: Average and worst-case computation times of MIP-
DM for an overtaking scenario similar to Fig. 6a. Results
for 200 randomized simulations for each number of obstacles
nobs ∈ Z7

1, using GUROBI, MOSEK and BB-ASIPM.

Given the relatively simple and compact algorithmic im-
plementation in BB-ASIPM when compared to the extensive
collection of advanced heuristics, presolve and cutting plane
techniques in the commercial GUROBI [14] solver, it is
reassuring to see that BB-ASIPM remains competitive with
state-of-the-art software tools in Table II. On the other hand,
the software implementation of BB-ASIPM [13] is relatively

compact, on the order of 200KB, and self-contained, such that
it can execute on an embedded microprocessor for real-time
vehicle decision making and motion planning. Instead, state-
of-the-art optimization tools such as GUROBI and MOSEK
typically are not designed for embedded control hardware with
limited computational resources and available memory [1],
since they are closed-source, have large program code (several
MB), and extensively use features that are not compatible
with hard real-time requirements, such as dynamic memory
allocation and caching.

C. Hardware-in-the-loop Simulation Results on dSPACE
Scalexio and MicroAutoBox-III Rapid Prototyping Units

Next, we present detailed results of running hardware-in-
the-loop simulations for each of the 8 test scenarios shown
in Fig. 6 on both the dSPACE Scalexio1 and the dSPACE
MicroAutoBox-III (MABX-III)2 rapid prototyping units. Ta-
ble III shows the average and worst-case computation times,
the number of B&B iterations, total number of ASIPM iter-
ations, and the memory usage of the BB-ASIPM solver on
Scalexio and MABX-III. The memory usage is categorized
into text that contains code and constant data, which is
typically stored in ROM, and data that is stored in RAM.

From Table III, MIP-DM is real-time feasible using the
proposed BB-ASIPM solver for each of the 8 simulation
scenarios on both the dSPACE Scalexio and MABX-III units,
as the worst-case computation time is below the sampling
period Ts = 1 s at each time step. Considering all test
scenarios, the computation times on the dSPACE Scalexio are
always below 200 ms, below 100 ms 99% of the times, and
in average 17.3 ms. On MABX-III, the computation times are
always below 800 ms, below 400 ms 99% of the times, and
in average 76.3 ms. The total memory usage for MIP-DM,
solver and fully pre-allocated memory is approximately 18 MB
on Scalexio and 16.1 MB on MABX-III, due to the different

1dSPACE Scalexio DS6001 unit, with an Intel i7-6820EQ quad-core
2.8 GHz processor with 64 kB L1 cache per core, 256 kB L2 cache per
core, 8 MB shared L3 cache, 4 GB DDR4 RAM, and 8 GB flash memory.
In the presented results, MIP-DM executes in a single core.

2dSPACE MicroAutoBox-III DS1403 unit, with four ARM Cortex-A15
processor cores with 32 kB L1 cache per core, 4 MB shared L2 cache, 2 GB
DDR3L RAM, and 64 MB flash memory. In the presented results, MIP-DM
executes in a single core.

12

compilers. As expected, Table III shows that, for each test
scenario, the number of iterations on Scalexio and MABX-III
is identical.

VII. EXPERIMENTAL RESULTS OF MIP-DM AND NMPC
ON SMALL-SCALE AUTOMATED VEHICLES

Next, we validate the performance of MIP-DM in com-
bination with NMPC for reference tracking on experiments
with small-scale vehicles, using ROS and an Optitrack motion-
capture system [6]. First, we present the hardware and software
setup, and then we show the results from the experiments.

A. Hardware Setup and Software Implementation

The hardware setup, shown Fig. 8, is based on the Ham-
ster [50] vehicle, see Fig. 8a, a 25 × 20 cm mobile robot
with electric steering and electric motor speed control. The
robot is equipped with sensors such as a rotating 360 deg
Lidar, an inertial measurement unit, GPS receiver, HD cam-
era, and motor encoders. It has Ackermann steering and its
kinematic behavior emulates that of a regular vehicle. We use
an Optitrack motion-capture system [51], see Fig. 8b, to obtain
position and orientation measurements for each of the Hamster
vehicles, to focus our validation on the control performance.

Our test setup consists of three vehicles driving on a
two-lane track shaped as a figure eight, causing a traffic
intersection, see, Fig. 8c. Two Hamsters are designated as
obstacles, executing a PID controller that tracks the center
line of the current lane, and an adaptive cruise controller to
ensure a safe following distance from the vehicle in front.
A traffic intersection coordinator forces each of the obstacles
to stop in front of the intersection for at least three seconds
before continuing the execution of the lane keeping controller
when the intersection is free. We adopt a first-come first-
served rule in case multiple Hamsters arrive at the intersection
around the same time, which is consistent with the driving
rules in United States for non-signalized 4-way intersections.
The third Hamster is the ego vehicle that is controlled by
the multi-layer control architecture shown in Fig. 9, i.e., the
proposed MIP-DM method in combination with the NMPC for
reference tracking as described in Section V. In the MIP-DM
optimization problem, the obstacle vehicles are predicted to
maintain a constant velocity, which contrast with their actual
behavior in the intersection and in following/queuing behind
a leading vehicle. This allows us to evaluate the MIP-DM
robustness to incorrect predictions of the other vehicles, which
is achieved by feedback.

The sampling period of MIP-DM is reduced with respect
to that of Section VI due to the scaling of the vehicles. MIP-
DM executes with a sampling period of Tmip

s = 0.3 s and
horizon length Nmip = 15. The NMPC problem in (25)
includes nx = 6 states, nu = 3 control inputs and Nmpc = 80
control intervals with a sampling period of Tmpc

s = 25 ms
over a Tmpc = 2 s horizon length. The NMPC controller is
implemented with a sampling frequency of 40 Hz, using the
real-time iteration (RTI) algorithm [36] in the ACADO code
generation tool [52] and the PRESAS QP solver [48]. Each of

the components in Fig. 9 is executed in a separate ROS node
on a single dedicated desktop computer3.

B. Experimental Results using Small-scale Vehicles

Based on the MIP-DM in Section III, the capabilities of the
ego vehicle include lane and lead following, lane selection and
lane change execution, swaying maneuvers, queuing behaviors
and stopping/crossing at a traffic intersection. For a qualitative
assessment, the behavior in similar scenarios of an architecture
as in Fig. 1a may be found in [7]. Based on the zone
constraints in the MIP (see Section III-D), we implement a
traffic rule that allows lane changes only in the bottom right
loop of the figure eight track (see Fig. 8c).

Fig. 10 shows four snapshots of an experiment. The left
side of each subfigure shows the location of the ego (blue)
and two obstacles (red) on the eight shaped track, the safety
ellipsoid around each obstacle (dashed red line), the NMPC
predicted trajectory (cyan cross markers) and the MIP-DM
reference trajectory (blue solid circles). The bottom right side
of each subfigure in Fig. 10 illustrates the proposed MIP-
DM, i.e., it shows the two-lane road in curvilinear coordinates,
the location of the ego (blue), two obstacles (red), the inter-
section (purple), and the MIP solution trajectory (blue solid
circles) over a Tmip = 4.5 s horizon length. For each obstacle,
the dark red/purple region represents the physical shape, while
the larger shaded area corresponds to the avoidance constraints
in the MIP-DM that accounts for the ego vehicle shape and
margins. A sequence of larger shaded areas is shown for each
obstacle based on a prediction of the obstacle behavior over
the MIP-DM horizon. The top right side of each subfigure in
Fig. 10 shows the steering angle and velocity command in the
NMPC control input trajectory over a Tmpc = 2 s horizon.

Fig. 10a shows the trajectories for MIP-DM and NMPC at
26 s in the experiment, demonstrating the ego vehicle stopping
at the traffic intersection. After the obstacle (Hamster 3)
finishes crossing the intersection, the ego crosses at 33 s
in the experiment. Fig. 10b shows the trajectories at 61 s,
demonstrating the ego changing lane and overtaking a slower
obstacle to achieve the desired velocity of 0.4 m/s. Fig. 10c
shows the trajectories at 69 s, demonstrating the ego changing
lane back to the preferred lane after overtaking the slower
obstacle. Finally, Fig. 10d shows the trajectories at 183 s in
the experiment, demonstrating the ego queuing behind a slower
obstacle because overtaking is not allowed in that zone.

Fig. 11 shows the trace of ego positions (in blue) during
the 200 s experiment, and each of the locations where the ego
vehicle came to a full stop as red dots. The ego vehicle consis-
tently stops at a desired safety distance from the intersection
before crossing. The one red dot away from the intersection is
due to the queuing behavior in Fig. 10d. In addition, Fig. 11
confirms that the ego vehicle only makes lane changes in
the bottom right loop of the track, demonstrating the zone-
dependent traffic rules in Section III-D. Finally, Fig. 12 shows
the CPU times for the BB-ASIPM solver to implement the
MIP-DM during the experiment. The computation times are

3The desktop for vehicle experiments is equipped with an Intel i7-6900K
CPU @ 3.20GHz ×8 processor, 64 GB RAM, and Ubuntu 16.04 LTS.

13

TABLE III: Average and worst-case computation times, number of B&B iterations, total number of ASIPM iterations, and
memory footprint of embedded BB-ASIPM on dSPACE Scalexio and on dSPACE MABX-III, for hardware-in-the-loop
simulations of the MIP-DM method for the 8 scenarios in Fig. 6.

BB-ASIPM solver BB-ASIPM on dSPACE Scalexio BB-ASIPM on dSPACE MABX-III
B&B iters ASIPM iters CPU time [ms] Memory [KB] CPU time [ms] Memory [KB]

mean max mean max mean max text data mean max text data

1⃝ see Fig. 6a 6.3 65 56.1 495 22.7 185.2 170 13633 99.9 774.0 132 12217
2⃝ see Fig. 6b 4.7 35 41.2 199 14.0 56.0 167 12639 63.4 240.1 132 11407
3⃝ see Fig. 6c 4.3 25 42.2 153 16.9 60.9 170 18015 74.6 252.8 133 16209
4⃝ see Fig. 6d 7.5 39 66.4 353 27.5 131.7 177 18258 119.6 542.8 134 16343
5⃝ see Fig. 6e 4.1 27 37.6 241 13.2 71.8 170 14391 59.2 300.2 132 12975
6⃝ see Fig. 6f 7.9 45 73.4 351 18.8 102.2 170 11896 83.9 425.6 133 10897
7⃝ see Fig. 6g 3.8 37 41.1 204 12.5 61.4 170 12364 54.6 251.5 133 11283
8⃝ see Fig. 6h 4.4 37 42.3 261 12.8 74.1 170 14391 55.0 308.1 132 12975

(a) Small-scale autonomous vehicle.

(b) OptiTrack motion capture camera.
(c) Experiments using three small-scale vehicles: the ego vehicle (blue flag)
executing the MIP-DM and NMPC, and two obstacles (no flag).

Fig. 8: Experimental testbench that consists of small-scale automated vehicles (a) with on-board sensors, and an OptiTrack
motion capture system (b). Track and snapshot of the positions of the ego vehicle and of the two obstacle vehicles (c).

Fig. 9: Multi-layer control architecture with MIP-DM, NMPC
controller, and an extended Kalman filter (EKF) for state
estimation based on measurements from the Optitrack system
and on-board sensors of the Hamster.

always below 120 ms and therefore real-time feasible, for
Tmip
s = 300 ms.

VIII. CONCLUSIONS AND OUTLOOK

We developed a mixed-integer programming-based decision
making for automated driving that uses a linear vehicle model
in a road-aligned coordinate frame, lane selection and lane
change timing constraints, polyhedral collision avoidance and
intersection crossing constraints, and zone-dependent traffic
rule changes. We leveraged our recently developed embed-
ded BB-ASIPM solver, using a branch-and-bound method
with reliability branching and warm starting, block-sparse
tailored presolve techniques, early termination and infeasibility
detection within an active-set interior point method. The
performance of the MIP-DM method was demonstrated by
simulations in various scenarios including merging points and
traffic intersections, and real-time feasibility was demonstrated
by hardware-in-the-loop simulations on dSPACE Scalexio
and MicroAutoBox-III rapid prototyping units. Finally, we
presented results from experiments on a setup with small-
scale vehicles, integrating the MIP-DM with a nonlinear model
predictive control for reference tracking.

Future works will focus on more advanced behavior pre-

14

(a) Trajectories for MIP-DM and NMPC at 26 s of
experiment: ego vehicle stopping at traffic intersection.

(b) Trajectories for MIP-DM and NMPC at 61 s of
experiment: ego vehicle overtaking slower obstacle to
achieve desired velocity.

(c) Trajectories for MIP-DM and NMPC at 69 s of
experiment: ego vehicle returning to preferred lane after
overtaking slower obstacle.

(d) Trajectories for MIP-DM and NMPC at 183 s of
experiment: ego vehicle slowing down behind slower
obstacle because overtaking is not allowed.

Fig. 10: Predicted trajectories of MIP-DM (Tmip
s = 0.3 s), and NMPC (Tmpc

s = 0.025 s) tracking the MIP-DM reference,
at some instants of the experiments. The left side of each subfigure shows the eight shaped track, the ego (blue) and two
obstacles (red), safety ellipsoid around each obstacle (dashed red line), NMPC predicted trajectory (cyan cross markers) and
MIP-DM reference (blue solid circles). The bottom right side of each subfigure shows the ego (blue), two obstacles (red),
traffic intersection (purple), and MIP-DM solution (blue solid circles) in curvilinear coordinates, and the top right side shows
the NMPC command trajectory (cyan cross markers). A video is available at: https://youtu.be/fe9lUOQUPoU.

Fig. 11: Trace of ego vehicle positions during experiments in
Fig. 10: red dots indicate positions at which the ego stopped,
either at the intersection or queuing behind an obstacle.

diction models for other vehicles, possibly capturing the
interactions between vehicle motion plans in dense traffic, and
explicit handling of uncertainty in the modeling and perception
of the environment.

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

M
IP

 s
o
lu

ti
o
n
 t
im

e
 [
s
]

Fig. 12: CPU time of BB-ASIPM for MIP-DM (Tmip
s =

0.3 s) in the experiments in Fig. 10.

REFERENCES

[1] S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and
model predictive control for aerospace and automotive applications,”
in Amer. Control Conf., 2018, pp. 2392–2409.

[2] B. Paden, M. Cáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of

15

motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[3] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and au-
tomated vehicles: State of the art and future challenges,” Annu. Rev.
Control, vol. 45, pp. 18 – 40, 2018.

[4] S. Di Cairano, U. Kalabić, and K. Berntorp, “Vehicle tracking control on
piecewise-clothoidal trajectories by mpc with guaranteed error bounds,”
in 55th IEEE Conf. Decision and Control, 2016, pp. 709–714.

[5] Y. E. Sahin, R. Quirynen, and S. Di Cairano, “Autonomous vehicle
decision-making and monitoring based on signal temporal logic and
mixed-integer programming,” in Amer. Control Conf., 2020.

[6] K. Berntorp, T. Hoang, R. Quirynen, and S. Di Cairano, “Control
architecture design for autonomous vehicles,” in IEEE Conf. Control
Techn. Appl., 2018.

[7] H. Ahn, K. Berntorp, P. Inani, A. J. Ram, and S. Di Cairano,
“Reachability-based decision-making for autonomous driving: Theory
and experiments,” IEEE Trans. Control Syst. Technol., vol. 29, no. 5,
pp. 1907–1921, 2021.

[8] D. Mayne and J. Rawlings, Model Predictive Control. Nob Hill, 2013.
[9] A. Bemporad and M. Morari, “Control of systems integrating logic,

dynamics, and constraints,” Automatica, vol. 35, pp. 407–427, 1999.
[10] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal

control of piecewise-affine systems,” in Hybrid Systems: Computation
and Control, 2019.

[11] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive
quadrotor flight through cluttered environments using mixed integer
programming,” in IEEE Conf. Robot. Autom., 2016.

[12] A. Pia, S. Dey, and M. Molinaro, “Mixed-integer quadratic programming
is in NP,” Mathematical programming, vol. 162, pp. 225–240, 2017.

[13] R. Quirynen and S. Di Cairano, “Tailored presolve techniques in branch-
and-bound method for fast mixed-integer optimal control applications,”
Optimal Control Appl. Methods, vol. 44, no. 6, pp. 3139–3167, 2023.

[14] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023, www.gurobi.com.

[15] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual.,
2023, www.mosek.com.

[16] P. Hespanhol, R. Quirynen, and S. Di Cairano, “A structure exploiting
branch-and-bound algorithm for mixed-integer model predictive con-
trol,” in Europ. Control Conf., 2019.

[17] J. Liang, S. Di Cairano, and R. Quirynen, “Early termination of convex
qp solvers in mixed-integer programming for real-time decision making,”
IEEE Control Systems Letters, vol. 5, no. 4, pp. 1417–1422, 2021.

[18] J. Frey, S. Di Cairano, and R. Quirynen, “Active-set based inexact
interior point QP solver for model predictive control,” in IFAC World
Congr., 2020.

[19] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Challenge:
Autonomous Vehicles in City Traffic, 1st ed. Springer Publishing
Company, Incorporated, 2009.

[20] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annu. Rev. Control Robot. Auton.
Syst., 2018.

[21] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,
“High-level decision making for safe and reasonable autonomous lane
changing using reinforcement learning,” in IEEE Intell. Transp. Syst.
Conf., 2018, pp. 2156–2162.

[22] Q. Liu, X. Li, S. Yuan, and Z. Li, “Decision-making technology for
autonomous vehicles: Learning-based methods, applications and future
outlook,” in IEEE Intell. Transp. Syst. Conf., 2021, p. 30–37.

[23] K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin,
A. D. Ames, and M. N. Zeilinger, “Data-driven safety filters: Hamilton-
jacobi reachability, control barrier functions, and predictive methods for
uncertain systems,” IEEE Control Systems Magazine, vol. 43, no. 5, pp.
137–177, 2023.

[24] K. Esterle, P. Hart, J. Bernhard, and A. Knoll, “Spatiotemporal motion
planning with combinatorial reasoning for autonomous driving,” in IEEE
Intell. Transp. Syst. Conf., 2018.

[25] A. Richards and J. How, “Mixed-integer programming for control,” in
Amer. Control Conf., 2005, pp. 2676–2683 vol. 4.

[26] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-
integer programming in motion planning,” Annu. Rev. Control, vol. 51,
pp. 65–87, 2021.

[27] I. Ballesteros-Tolosana, S. Olaru, P. Rodriguez-Ayerbe, G. Pita-Gil,
and R. Deborne, “Collision-free trajectory planning for overtaking on
highways,” in 56th IEEE Conf. Decision and Control, 2017, pp. 2551–
2556.

[28] C. Miller, C. Pek, and M. Althoff, “Efficient mixed-integer programming
for longitudinal and lateral motion planning of autonomous vehicles,”
in IEEE Intell. Vehicles Symposium, 2018, pp. 1954–1961.

[29] K. Esterle, T. Kessler, and A. Knoll, “Optimal behavior planning for
autonomous driving: A generic mixed-integer formulation,” in IEEE
Intell. Vehicles Symposium, 2020, pp. 1914–1921.

[30] T. Kessler, K. Esterle, and A. Knoll, “Mixed-integer motion planning
on german roads within the apollo driving stack,” IEEE Trans. Intell.
Vehicles, vol. 8, no. 1, pp. 851–867, 2023.

[31] J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Au-
tonomous vehicle perception: The technology of today and tomorrow,”
Transportation Research Part C: Emerging Technologies, vol. 89, pp.
384–406, 2018.

[32] K. Berntorp, T. Hoang, and S. Di Cairano, “Motion planning of
autonomous vehicles by particle filtering,” IEEE Trans. Intell. Veh.,
vol. 4, no. 2, pp. 197–210, 2019.

[33] R. Quirynen, K. Berntorp, K. Kambam, and S. Di Cairano, “Integrated
obstacle detection and avoidance in motion planning and predictive
control of autonomous vehicles,” in Amer. Control Conf., 2020, pp.
1203–1208.

[34] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. New York, NY, USA: Wiley-Interscience, 1988.

[35] T. Ersal, I. Kolmanovsky, N. Masoud, N. Ozay, J. Scruggs, R. Vasudevan,
and G. Orosz, “Connected and automated road vehicles: state of the art
and future challenges,” Vehicle System Dynamics, vol. 58, no. 5, pp.
672–704, 2020.

[36] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
Int. J. Control, vol. 93, no. 1, pp. 62–80, 2020.

[37] J. Hooker and M. Osorio, “Mixed logical-linear programming,” Discrete
Applied Mathematics, vol. 96-97, pp. 395–442, 1999.

[38] J. V. Frasch, A. J. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli,
and M. Diehl, “An auto-generated nonlinear MPC algorithm for real-
time obstacle avoidance of ground vehicles,” in Europ. Control Conf.,
2013, pp. 4136–4141.

[39] Y. Gao, A. Gray, J. V. Frasch, T. Lin, E. H. Tseng, J. K. Hedrick, and
F. Borrelli, “Spatial predictive control for agile semi-autonomous ground
vehicles,” in Proc. 11th int. symp. advanced vehicle control, 2012.

[40] X. Qian, F. Altché, P. Bender, C. Stiller, and A. de La Fortelle,
“Optimal trajectory planning for autonomous driving integrating logical
constraints: An miqp perspective,” in IEEE Intell. Transp. Syst. Conf.,
2016, pp. 205–210.

[41] R. Rajamani, Vehicle Dynamics and Control. Springer US, 2012.
[42] K. Berntorp, B. Olofsson, K. Lundahl, and L. Nielsen, “Models

and methodology for optimal trajectory generation in safety-critical
road–vehicle manoeuvres,” Vehicle System Dynamics, vol. 52, no. 10,
pp. 1304–1332, 2014.

[43] N. Suriyarachchi, R. Quirynen, J. S. Baras, and S. Di Cairano,
“Optimization-based coordination and control of traffic lights and mixed
traffic in multi-intersection environments,” in Amer. Control Conf., 2023.

[44] Y. Chen, U. Rosolia, C. Fan, A. Ames, and R. Murray, “Reactive motion
planning with probabilisticsafety guarantees,” in Proc. 2020 Conf. Robot
Learning, ser. Proceedings of Machine Learning Research, vol. 155,
2021, pp. 1958–1970.

[45] T. Achterberg, T. Koch, and A. Martin, “Branching rules revisited,”
Operations Research Letters, vol. 33, no. 1, pp. 42–54, 2005.

[46] A. Bemporad and V. V. Naik, “A numerically robust mixed-integer
quadratic programming solver for embedded hybrid model predictive
control,” in Proc. 6th IFAC NMPC Conf., 2018.

[47] T. Marcucci and R. Tedrake, “Warm start of mixed-integer programs
for model predictive control of hybrid systems,” IEEE Trans. Automatic
Control, vol. 66, no. 6, pp. 2433–2448, 2021.

[48] R. Quirynen and S. Di Cairano, “PRESAS: Block-structured precondi-
tioning of iterative solvers within a primal active-set method for fast
model predictive control,” Optimal Control Appl. Methods, 2020.

[49] R. Fletcher, Practical Methods of Optimization, 2nd ed. Chichester:
Wiley, 1987.

[50] Cogniteam, “The Hamster,” 2018, [accessed 8-January-2018]. [Online].
Available: www.cogniteam.com/hamster5.html

[51] Optitrack, “Prime 13 motion capture,” 2018, [accessed 23-January-
2018]. [Online]. Available: http://optitrack.com/products/prime-13

[52] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear MPC: a tutorial using ACADO
integrators,” Optimal Control Appl. Methods, vol. 36, pp. 685–704, 2014.

16

Rien Quirynen received the Bachelor’s degree in
computer science and electrical engineering and
the Master’s degree in mathematical engineering
from KU Leuven, Belgium. He received a four-
year Ph.D. Scholarship from the Research Founda-
tion–Flanders (FWO) in 2012-2016, and the joint
Ph.D. degree from KU Leuven, Belgium and the
University of Freiburg, Germany. He worked as a
senior research scientist at Mitsubishi Electric Re-
search Laboratories in Cambridge, MA, USA from
early 2017 until late 2023. Currently, he is a staff

software engineer at Stack AV. His research focuses on numerical optimization
algorithms for decision making, motion planning and predictive control of
autonomous systems. He has authored/coauthored more than 75 peer-reviewed
papers in journals and conference proceedings and 25 patents. Dr. Quirynen
serves as an Associate Editor for the Wiley journal of Optimal Control
Applications and Methods and for the IEEE CCTA Editorial Board.

Sleiman Safaoui received his B.S. degree in elec-
trical engineering from the University of Texas at
Dallas, Richardson, TX, USA in 2019. In 2023, he
received his M.S. and Ph.D. degrees in electrical
engineering from the University of Texas at Dallas,
Richardson, TX, USA while working with the Con-
trol, Optimization, and Networks Lab (CONLab).
From Aug 2021 to March 2022, he was an intern at
Mitsubishi Electric Research Laboratories (MERL)
where he worked on ground and aerial vehicle auton-
omy research projects. Dr. Safaoui was a Research

Associate with CONLab between March and May 2024. In June 2024,
he joined Exponent where he is currently an Associate with the Electrical
Engineering and Computer Science practice. His research interests include
robot planning and control under uncertainty, autonomous vehicles, advance
driver assistance systems (ADAS), and multirobot systems.

Stefano Di Cairano (Senior Member, IEEE) re-
ceived the Master’s (Laurea) and the Ph.D. de-
grees in information engineering in 2004 and 2008,
respectively, from the University of Siena, Italy.
During 2008-2011, he was with Powertrain Control
R&A, Ford Research and Advanced Engineering,
Dearborn, MI, USA. Since 2011, he is with Mit-
subishi Electric Research Laboratories, Cambridge,
MA, USA, where he is currently a Deputy Director,
and a Distinguished Research Scientist. His research
focuses on optimization-based control and decision-

making strategies for automotive, factory automation, transportation systems,
and aerospace. His research interests include model predictive control, con-
strained control, path planning, hybrid systems, optimization, and particle
filtering. He has authored/coauthored more than 250 peer-reviewed papers
in journals and conference proceedings and 80 patents. Dr. Di Cairano was
the Chair of the IEEE CSS Technical Committee on Automotive Controls and
of the IEEE CSS Standing Committee on Standards. He is the inaugural Chair
of the IEEE Technology Conferences Editorial Board and was an Associate
Editor of the IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2024-123.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

