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on the Europarl-ST benchmark, demonstrate that ZeroST achieves results comparable to
those of a strong cascaded translation system and significantly outperforms baseline models.
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Abstract

Our work introduces the Zero-Shot Speech Translation (Ze-
roST) framework, leveraging the synergistic potential of pre
trained multilingual speech and text foundation models. In-
spired by recent advances in multimodal foundation models,
ZeroST utilizes a Query Transformer (Q-Former) to seam-
lessly connect a speech foundation model, such as Whisper or
Massively Multilingual Speech (MMS), with a text translation
model like No-Language-Left-Behind (NLLB). Our proposed
learning framework enables the model to perform the speech-
to-text translation in a zero-shot manner, bypassing the need
for explicit supervision from expensive-to-collect speech-text
translation pairs during training. Our extensive experiments,
notably on the Europarl-ST benchmark, demonstrate that Ze-
roST achieves results comparable to those of a strong cascaded
translation system and significantly outperforms baseline mod-
els. This promising approach paves the way for future research
in zero-shot speech translation.

Index Terms: Zero-Shot, Automatic Speech Translation, Mul-
tilingual, Query Transformer, Foundation Models

1. Introduction

In recent years, tremendous advancements have been made in
multilingual speech foundation models, with such recent works
as Whisper [1] and Massively Multilingual Speech (MMS) [2],
as well as multilingual text foundation models, such as GPT
[3, 4, 5], TS [6, 7], and No-Language-Left-Behind (NLLB)
[8]. These foundation models form the backbone of many mod-
ern audio- and text-based natural language processing systems
[9, 10, 11]. As the performance of modality-specific perceptual
foundation models reaches new heights, a logical next research
step is to connect unimodal foundation models to create mul-
timodal foundation models capable of performing multimodal
tasks, such as image captioning [12], speech-to-text translation
[13, 14], multimodal retrieval [15, 16, 17], and others. One re-
cent research effort in this direction is bootstrapping language-
image pre-training with frozen image encoders and large lan-
guage models (BLIP-2) [12]. BLIP-2 bridges the representation
gap between a pre-trained vision foundation model and a pre-
trained large language model (LLM). The key idea in BLIP-2
is to translate visual representations outputted by a pre-trained
image encoder into “text-like” representations that can be in-
gested and processed by an LLM. To that end, BLIP-2 uses a
Query Transformer (Q-Former), initially proposed in [18], as
the bridge between the image encoder and the LLM, giving rise
to a multimodal LLM.

Our Work, inspired by BLIP-2, connects a pre-trained
multilingual speech foundation model, such as MMS [2] or
Whisper [1], with the pre-trained multilingual text translation
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Figure 1: A high-level illustration of our proposed ZeroST
model. A Query Transformer bridges the representation gap be-
tween a pre-trained speech foundation model and a pre-trained
text translation model to translate speech into text.

model NLLB [8] to perform multilingual speech-to-text trans-
lation (ST). Figure 1 shows a high-level illustration of our pro-
posed framework. Like BLIP-2, we use a Q-Former to bridge
the representation gap between the speech and text founda-
tion models. We refer to our framework as the Zero-Shot
Speech Translation (ZeroST) model since the Q-Former bridge
is trained using speech-text pairs in the same language, i.e., no
translation pairs are provided during the training of our frame-
work. Nonetheless, the model can generate text translations for
a speech waveform during inference in different languages. We
show this on the Europarl-ST benchmark (Table 1). Our model
performs comparably to a powerful cascaded translation sys-
tem and significantly outperforms the baselines set for this work
while never being exposed to speech-text translation examples
during training.

2. Proposed ZeroST Framework
2.1. Model Overview

Our proposed ZeroST model consists of three main modules:
speech foundation model, Q-Former, and text translation model.

Speech Foundation Model: We use either the pre-trained
Whisper-large-v3 [1] or pre-trained MMS [2] as our speech
encoder. Whisper is an encoder-decoder model, of which we
only use the encoder. Whisper is trained using 1M hours
of weakly-labeled speech downloaded from YouTube and 5SM
hours of pseudo-labeled YouTube recordings. The pseudo-
labels are obtained via Whisper-large-v2, a previous version of
Whisper-large-v3. The model is trained using supervised learn-
ing to maximize the conditional probability p(y|z), where x is
a speech waveform and y is its text transcript or translation. It
supports 96 spoken languages. The Whisper transformer en-
coder has 32 layers, an embedding dimension of 1280, and a
capacity of 630M parameters. The MMS transformer encoder
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Figure 2: An illustration of our proposed ZeroST learning process.

used in this work has 24 layers, an embedding dimension of
1024, and a capacity of 300M parameters. It is trained via
contrastive self-supervised learning (SSL) of the form proposed
in wav2vec-2.0 [19] on unlabeled speech data collected from
1K+ languages from several public corpora. We use these two
encoders to show that our ZeroST framework is robust to the
choice of the speech encoder.

When using MMS, the input to the model is a zero-mean
unit-variance speech waveform, while it is a 128-dimensional
log-mel spectrogram when using the Whisper encoder. MMS
can take variable-length speech waveforms sampled at 16 kHz
as input. We restrict the maximum size to 30 s due to mem-
ory constraints. Whisper takes in padded or trimmed 30 s
speech utterances as input, also sampled at 16 kHz. The pre-
trained checkpoints are available via HuggingFace' [20] and
fairseq® [21]. A linear projection layer transforms the output of
the speech encoder before inputting to the Q-Former to match
its embedding dimension.

Text Translation Model: We use NLLB [8] as the text
translation model. NLLB is a transformer encoder-decoder
trained on 200 x 200 text-to-text translation tasks. NLLB ranges
in size from 1.3B to 54.6B parameters. We use the 1.3B param-
eter model available via HuggingFace®. The encoder and de-
coder have 24 layers. The decoder has slightly more parameters
due to the cross-attention module. The model’s embedding size
is 1024 and its vocabulary has 256k BPE tokens.

Q-Former: Q-Former has the same architecture as the
NLLB decoder. Unlike the NLLB decoder, the self-attention
module in Q-Former is bi-directional. Q-Former’s self-attention
is initialized using the NLLB encoder’s self-attention. Q-
Former is conditioned on the output of the speech encoder via
its encoder-decoder cross-attention module. The input to the Q-
Former is a set of learnable embeddings referred to as queries,
whose number is a hyper-parameter. We found 256 to be the op-
timal number of queries for our work (Table 2). Since Q-Former
aims to output a representation close to the NLLB encoder’s
output and its decoder’s input, it is natural to parameterize Q-
Former with the same architecture as the NLLB encoder. This

lhllps://huggingface.co/openailwhisper—large—v3
2https:// github.com/facebookresearch/fairseq/tree/main/examples/mms
3 https://huggingface.co/facebook/nllb-200-1.3B

removes one source of discrepancy between the two. Next, we
detail how the model’s parameters are tuned.

2.2. Learning Process

We propose a two-step learning process (cf. Fig. 2 for illustra-
tion). The first step involves using the NLLB encoder as the
teacher training the student Q-Former. The goal is to reduce the
representation gap between the Q-Former output and the NLLB
text encoder output and, consequently, the input of the NLLB
text decoder. The second step involves using the NLLB decoder
as the teacher training the student Q-Former. This step removes
the remaining representation gap between the Q-Former’s out-
put and the decoder’s input. We refer to the first step as knowl-
edge distillation (KD) and the second as negative-log-likelihood
(NLL) training. Both steps use multilingual transcribed speech
data for training. We detail the training data and the two steps
below.

Training Data: We collect the multilingual transcribed
speech corpora from CommonVoice-v16.1 (CoVo) [22], Vox-
Populi (VP) [23], and Multilingual Speech (MLS) [24] datasets.
From CoVo, we collect transcribed speech in 96 languages that
intersect with the languages supported by Whisper*. VP has
data in 16 languages: English (en), German (de), French (fr),
Spanish (es), Polish (pl), Italian (it), Romanian (ro), Hungarian
(hu), Czech (cs), Dutch (nl), Finnish (fi), Croatian (hr), Slo-
vak (sk), Slovene (sl), Estonian (et), and Lithuanian (It). MLS
has data in eight languages: en, es, it, pl, Portuguese (pt), nl,
de, fr. The data distribution across languages is highly imbal-
anced. We follow [15] (Eq. 3) to up/down-sample the data per-
language. The total multilingual transcribed speech data used
for training is about 12k hours. We exclude the 44k hours of
transcribed English data from the MLS corpus to avoid overfit-
ting the model to the English language.

Knowledge Distillation: This step trains the Q-Former on
the task of speech-to-text retrieval. Given a tuple (x,y), where
x is a speech waveform and y its corresponding transcript, the
combination of the speech encoder and Q-Former transforms
z € R¥ into a set of embeddings Q € R?%¢, where ¢ is the
number of queries. At the same time, the NLLB text encoder

4https://github.com/openai/whisper/blob/main/whisper/tokenizf:r.py#L10



transforms the corresponding transcript y into a set of embed-
dings T' € R™*<, where m is the number of tokens in the tran-
script y. Note that the number of queries q is fixed, while the
number m of tokens is variable. Using () and T', we compute
two KD losses: fine-grained and global. The fine-grained loss
is computed as follows:

Q@ + L2Norm(Proj(Q)), T + L2Norm(Proj(T)), (1)
LEine = Z (1 — max;er Q[i] - T[4]) )

= lal - ZifmaxjemQ[z‘] -Tj), 3)

q

score

where Q[i] € R? is the ™ query embedding, T'[j] is the j®
token embedding, Proj transforms the embeddings in () and
T via a linear projection followed by Tanh non-linearity, and
L2Norm normalizes the input embeddings by their L2 norm.
Therefore, the dot product Q[i] - T'[4] gives the cosine simi-
larity between Q[¢] and T'[j]. The fine-grained KD loss where
each query embedding is compared to each token embedding,
and the max-association (or the precision score) which is opti-
mized over are inspired by Colbert’s [25] text query-document
retrieval model (See Fig. 3 in [25] for a pictorial illustration of
the fine-grained loss).

To compute the global loss, we first average the embeddings
in sets @ and T to get single embeddings ¢ € R? and ¢t € R,
The global KD loss is then computed as follows:

q < L2Norm(Proj(q)), t < L2Norm(Proj(t)), (4)
Leioba = 1 —q -, (5)

where Lgioba 18 the cosine distance between ¢ and ¢. The
L2Norm and Proj layers perform the same operations as in
the fine-grained KD loss. The final KD loss is computed as:
Lxp = B * (Lciobal + LFine), where  is a scaling factor. Since
the computation of the global and fine-grained losses involve
cosine similarities, the magnitude of the KD loss can be quite
small, which could lead to small magnitude gradient updates,
leading to inefficient training. We upscale the loss by a factor
of B > 1. The scaling factor is a hyper-parameter. An appro-
priate value can be found early in training by monitoring the
training dynamics (loss scale, loss value, gradient norm). We
found 8 = 10 to work well for us, leading to a stable training
process.

During training, all the parameters of the Q-Former are
tuned. In contrast, the parameters of the text encoder are frozen,
which allows for an efficient training process since the text em-
beddings can be extracted offline, obviating the need to load the
large NLLB text encoder during training. We freeze the speech
encoder’s pre-trained parameters, insert adapter layers, and fine-
tune the adapter layer parameters during training. We use
adapter layers of the form proposed in [26]. Two adapters are
inserted in each speech encoder’s layer, one after self-attention
and the other after the feed-forward module.

Negative Log-Likelihood Training: This step trains the
Q-Former from the previous step to generate text transcription
y corresponding to a speech waveform x by conditioning the
NLLB decoder on the output embeddings ) of the Q-Former.
The parameters of the Q-Former are tuned to optimize the neg-
ative log-likelihood given below:

LNLL = — Z logp(yn|y1:n—1, Q) (6)

n=1

where m is the number of tokens in the transcript y and @ the
set of query embeddings. The NLLB transformer decoder esti-
mates the conditional probability of each token y, conditioned
on the previous tokens in the sequence and the query embed-
ding set . During training, the previous tokens y1.,—1 are the
ground-truth tokens (teacher-forcing), while during inference,
the model is conditioned on the tokens it generates. During
NLL training, the NLLB text decoder remains frozen. For the
Q-Former and speech encoder, we insert adapters and only fine-
tune those parameters. For the speech encoder, new adapters
are inserted in sequence with the adapters used in the KD step.

3. Experiments

Evaluation Protocol: We use the Europarl-ST [27] benchmark
for evaluating ZeroST. The set of spoken languages in Europarl-
ST is X = {en, fr, de, it, es, pt, pl, ro, nl}. Each spoken lan-
guage L € X is paired with its text translations in the other
languages X _ . Thus, the total translation tasks are 72. We re-
port an evaluation score for all L € X. The evaluation score is
computed for a language L by averaging the BLEU-4 scores for
the eight translation tasks L — L', L’ € X_,. Table 1 presents
the main results of our work. To understand the results, we first
provide details about the terminologies used in Table 1.

Training Details: Most of the results in Table 1 are ob-
tained with the ZeroST framework trained using VoxPopuli
(VP) multilingual transcribed speech corpora. We combine VP,
MLS, and CoVo corpora (detailed in Section 2.2), referred to as
Big, to get our best ZeroST results. All the models are trained
on 8 A100 GPUs for 100k iterations except those that use Big
data for training, which are trained on 64 GPUs for 400k itera-
tions. The batch size is approximately 2.6 hours of transcribed
speech, or 2.5 minutes per GPU. We use the Adam optimizer
with a learning rate of le-4. Following [19], we use a three-
phase learning rate scheduler with the setting [0.1, 0.4, 0.5],
i.e., the learning rate is warmed up to le-4 during the first 10%
of the training iterations, remains constant for the next 40%, and
decays for the remaining 50%. Both the KD and NLL learning
steps share the same optimization settings.

Q-Formers: We compare different Q-Former architec-
tures with varying degrees of complexity: 1) Q-Simple: a
Q-Former with no transformer layers. The queries are di-
rectly applied to the output of the speech encoder as follows:
Q = softmax(WKT)V, where W € R?*¢*? K ¢ R"*9,
and V = K. W are the learnable queries, K is the output of
the pre-trained speech encoder, and @ € R?°°*? is the out-
put of the Q-Former. 2) Q-Lite: a bi-directional transformer
decoder with four layers, an embedding size of 768, four atten-
tion heads in each layer, and a feed-forward layer dimension of
3072. 3) Q-NLLB: the same architecture as the NLLB decoder
but with bi-directional self-attention. The self-attention module
of Q-NLLB is initialized with the self-attention of the NLLB
encoder.

Baselines and Toplines: The light-gray rows at the top
of Table 1 present the baseline results, which use either NLL
or KD loss for training. Our work uses the 2-step learn-
ing process described in Section 2.2. The dark-gray rows at
the bottom present the toplines. The Whisper-NLLB-cascade
model transcribes speech waveforms using Whisper-large-V3,
which the NLLB model translates to text in the target language.
The NLLB-topline uses the ground-truth text transcript for the
speech utterances in the Europarl-ST benchmark and translates
them into the desired target language using the NLLB model.
The best our ZeroST framework can do is match this perfor-



Table 1: Translation results (BLEU-4) on Europarl-ST. Results for each language are averaged over eight translation tasks correspond-
ing to the other eight languages as translation targets. The light-gray rows are the baselines, and dark-gray rows the toplines.

Sys. # Data Encoder Q-Former Loss en fr de it es pt pl o nl Avg.
1 VP MMS Q-Simple NLL 169 145 87 139 145 90 95 133 103 123
2 VP MMS Q-Simple KD 2.3 1.8 2.1 3.5 1.9 14 09 22 1.6 1.9
3 VP MMS Q-Simple KD—NLL 21.7 189 144 173 18.1 99 163 183 149 16.6
4 VP MMS Q-Lite KD—NLL 23.6 210 153 192 202 98 17.1 202 170 182
5 VP MMS Q-NLLB KD—NLL 251 232 179 215 213 108 194 231 195 202
6 Big MMS Q-NLLB KD—NLL 309 238 184 212 219 228 20.6 21.1 193 222
7 Big  Whisper Q-NLLB KD—NLL 315 242 179 204 226 232 229 238 192 228
8 Whisper-NLLB-cascade 279 221 177 199 208 213 21.7 249 189 217
9 NLLB-Topline 334 249 193 234 237 236 242 262 205 243

mance. We draw the following insights from the results pre-
sented in Table 1.

1) Is NLL or KD training alone sufficient for ZeroST?
According to Table 1, neither is. Keeping the training data,
speech encoder, and Q-Former architecture fixed, we observe
that the proposed 2-step learning process (row 3) outperforms
the NLL-only baseline (row 1) by 4.3 BLEU points and KD-
only baseline (row 2) by 14.7 BLEU points, implying that our
2-step sequential learning process is crucial for ZeroST.

2) Comparing different Q-Formers: We observe in Ta-
ble 1 that Q-NLLB (row 5) outperforms Q-Simple (row 3)
by 3.6 BLEU points and Q-Lite (row 4) by 2 BLEU points.
Nonetheless, it is remarkable that Q-Simple, being such low
complexity, achieves quite decent performance. Q-NLLB en-
joys improved translation performance across the board for all
source languages.

3) Impact of training data size: Using Big data improves
over VP training data by a couple of BLEU points, as seen in
the Avg. results of row 6 vs. row 5 in Table 1. The average
performance on the eight translation tasks pt— X _,; improves
dramatically with the change in training data. This is due to
VP training data not having transcribed speech for pt language.
This exposes a limitation of our ZeroST framework: it cannot
generalize to unseen source spoken languages.

4) Comparing speech encoders: We observe that using the
Whisper speech encoder instead of MMS leads to slightly better
overall translation performance (22.8 vs. 22.2 Avg. BLEU-4).
This is expected given Whisper’s larger size.

5) Comparison with toplines: Our final results (row 7)
are better than the Whisper-NLLB-cascade model and a couple
of points worse than the NLLB-topline. Our model performs
better than cascade on all translation tasks except for ro—X_,
translation tasks where the results are worse (23.8 vs. 24.9). Our
model uses in-domain (w.r.t. Europar-ST benchmark) VoxPop-
uli data for training, which could explain away this result. Fu-
ture work should test the out-of-domain transfer capabilities of
the proposed ZeroST model.

Generating text translations in target languages unseen
during training: In this experiment, we train the ZeroST model
on transcribed speech in en, fr, de, it, and es languages in the
VoxPopuli corpora. During inference, we use ZeroST model to
perform the following 15 translation tasks: X ={en, fr, de, it,
es}—Y ={pl, ro, nl}. Note that the speech and text in lan-
guages in X are seen during training, while languages in Y
are unseen during ZeroST model training. We are translating
speech in X to text in Y. In this scenario, the ZeroST model

Table 2: Impact of the number of queries on ZeroST perfor-
mance. We report average BLEU-4 on Europarl-ST.

#Queries 16 64 128 256 512
BLEU4 89 11.1 142 166 169

achieves an average BLEU-4 score of 13.5 on the 15 transla-
tion tasks. This is comparable with the 14.1 average BLEU-4
achieved by the ZeroST model trained on transcribed speech in
all the languages in the VoxPopuli transcribed speech corpora,
including languages in Y. We hypothesize that our model can
generate text translations in unseen target languages due to the
complete freezing of the NLLB text decoder during the second
step (NLL training) of our proposed ZeroST learning process.

Impact of Varying The Number of Queries: Table 2 ab-
lates over the number of queries fed to the Q-Former. We use
the same setting as row 3 in Table 1. We observe diminishing
returns as we increase the number of queries.

4. Conclusions

This work presents a promising approach for zero-shot speech-
to-text translation. Inspired by recent works on combining uni-
modal foundation models for multimodal tasks such as BLIP-
2 [12], we propose the ZeroST model, which connects Whis-
per, a pre-trained multilingual speech foundation model, with
No-Language-Left-Behind (NLLB), a transformer-based mul-
tilingual text-to-text translation model. We bridge the gap be-
tween the above-mentioned foundation models using a Query
Transformer and train it using a proposed two-step learning
process that uses NLLB as the teacher. Zero-shot translation
results on Europarl-ST verify our claim that zero-shot multi-
lingual speech-to-text translation is possible using only multi-
lingual transcribed speech data. We achieve better results than
a strong cascade and are comparable to the top line. Future
work could explore the following issues. Although a prelimi-
nary analysis of our model’s capability to translate speech into
text in languages not seen during the model training showed en-
couraging results, a more thorough treatment is required to draw
a definite conclusion. Another issue is that our model could
only translate speech included in the multilingual transcribed
speech corpora used to train it. Currently, this is a limitation of
our model.
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