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Abstract
Sound event detection is the task of recognizing sounds and
determining their extent (onset/offset times) within an audio
clip. Existing systems commonly predict sound presence poste-
riors in short time frames. Then, thresholding produces binary
frame-level presence decisions, with the extent of individual
events determined by merging presence in consecutive frames.
In this paper, we show that frame-level thresholding deteriorates
event extent prediction by coupling it with the system’s sound
presence confidence. We propose to decouple the prediction of
event extent and confidence by introducing sound event bound-
ing boxes (SEBBs), which format each sound event prediction
as a combination of a class type, extent, and overall confidence.
We also propose a change-detection-based algorithm to convert
frame-level posteriors into SEBBs. We find the algorithm sig-
nificantly improves the performance of DCASE 2023 Challenge
systems, boosting the state of the art from .644 to .686 PSDS1.
Index Terms: sound event detection, polyphonic sound detec-
tion, post processing, change detection

1. Introduction
Automatically recognizing and processing sounds in diverse en-
vironments is a highly desired technology for many applica-
tions, such as wildlife monitoring, autonomous driving, and
surveillance. Different sound recognition tasks focus on parsing
acoustic scenes at different levels of detail. In particular, audio
tagging [1] and sound event detection (SED) [1, 2] tasks aim
at exhaustively inventorying the sounds in a scene. SED differs
from audio tagging by requiring identification of the temporal
extent of sound events on top of their event class. In mathe-
matical terms, it asks to detect the events ej (j = 1, . . . , J) ex-
pressed as triplets (cj , ton,j , toff,j) with cj the event class label,
and ton,j (resp. toff,j) the event’s onset (resp. offset) time.

While a few event-level models such as those proposed
in [3, 4] directly output event triplet predictions êj =
(ĉj , t̂on,j , t̂off,j) , the large majority of SED systems rely on
frame-level class presence detection models. As such, thresh-
olding of the presence confidence cannot directly output event
predictions, and post-processing is needed to consolidate frame-
level class presence predictions into event predictions [2]. In
that respect, current state-of-the-art models [5–8] overwhelm-
ingly compute event predictions as blocks of consecutive frame-
level class presence predictions (i.e., confidences falling above
the aforementioned threshold). As traditionally understood in
detection tasks, the threshold then controls the minimum pres-
ence confidence triggering an event detection in a binary fash-
ion. As such, appropriate threshold value(s) can be chosen de-
pending on application requirements, with, for example, some
applications requiring high recall and others high precision.
Crucially, the current approach means varying the threshold
also affects the event predictions in non-trivial and, we argue,
detrimental ways. For example, additional frame-level detec-
tions due to a lower threshold can change the detected on-
set/offset times of a predicted event, or even merge multiple
predicted events into a single one. This, in turn, substantially

diminishes the interpretability of current evaluation procedures.
Here, we show this behavior to be substantially sub-

optimal. As a remedy, we propose a new structure for SED
systems to explicitly decouple the prediction mechanisms for
onset/offset times and event presence, by introducing the sound
event bounding box (SEBB) output format. Motivated by
bounding box predictions in image object detection [9], the
SEBB format corresponds to a series of event candidates where
event class, onset time, and offset time predictions are comple-
mented by a scalar presence confidence. Then, predicted events
become a series of SEBBs whose presence confidences exceed
a (now event-level) confidence threshold. Crucially, this thresh-
old now intuitively controls only whether a SEBB is predicted
as an event, without affecting its onset/offset times, and elim-
inates the undesirable behaviors observed with the current ap-
proach due to coupling of extent prediction with prediction con-
fidence. Note that adding an event-level presence confidence
to an event with fixed boundaries and class label to obtain a
SEBB substantially differs from previous approaches separat-
ing boundary detection from class label prediction without con-
sidering prediction confidence at all [10].

SEBBs can be predicted in various ways, including in an
end-to-end manner. However, we acknowledge that one reason
for the enduring popularity of frame-level models is that multi-
ple instance learning (MIL) techniques [11–13] allow for train-
ing without ground-truth onset and offset times (i.e., weakly
labeled training), while end-to-end prediction usually requires
strongly labeled training data [3]. In that context, we also
propose a post-processing algorithm to convert the frame-level
presence confidence scores into SEBBs for any frame-level sys-
tem. In it, conversion relies primarily on a change-detection ap-
proach. Note that change-/slope-based algorithms can be found
in prior post-processing signal chains for SED in [14]. How-
ever, these would perform SED solely based on change/slope
without considering absolute confidence at all and did not ulti-
mately improve performance. In contrast, we find that deploy-
ing our proposed post-processing, on top of unlocking the con-
ceptual benefits of SEBBs, substantially improves performance.
In particular, our post-processing boosts performance of all 13
considered systems from the recent DCASE 2023 Challenge
Task 4a [15] and establishes a new state of the art. Source code
is publicly available1.

2. SED with Sound Event Bounding Boxes
2.1. Preliminaries
As stated earlier, SED systems commonly consist of a frame-
level multi-label classifier followed by a post-processing to
output predicted events. In mathematical terms, the classifier
corresponds to the operation Y = f(X), with f denoting
a prediction model, X = [x0, . . . ,xN−1] a sequence of in-
put feature vectors xn (e.g., log-mel spectrogram frames), and
Y = [y0, . . . ,yN−1] a sequence of frame-level class probabil-
ity vectors yn, with n the frame index. yn,c ∈ [0, 1] then rep-

1https://github.com/merlresearch/sebbs
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Figure 1: Example of detection with different frame-level
thresholds and comparison with ground-truth events.

resents the predicted confidence of sound class c being present
in frame n. Note that, in practice, input and output sequence
lengths may differ, for example when f is a convolutional neu-
ral network with striding and/or pooling. For conciseness, we
assume same sequence lengths with no loss of generality.

Y is then fed to post-processing. It may be first (optionally)
altered, e.g., by median filtering yn,c in times. Ultimately, event
predictions are obtained through a frame-level thresholding op-
eration, turning yn,c into a binary zn,c = 1[yn,c>λc] (with λc

a class-dependent threshold), followed by a merging operation
where each block of consecutive zn,c = 1 becomes a single
detected event êj of sound class c. The detected onset (resp.
offset) time then corresponds to the beginning (resp. end) of the
first (resp. last) frame of that block.

For applications seeking for meaningful connected event
predictions, event-based evaluation is employed, which is re-
cently favored by benchmarks and challenges. For given sets of
predicted and ground truth events, counts of true positive (TP),
false positive (FP), and false negative (FN) events are obtained,
with two main approaches currently in use. Collar-based eval-
uation [16] makes determinations based on whether the onset
and offset times of a predicted event match the onset and offset
times of a ground-truth event of the same class up to a maxi-
mal allowed divergence. Intersection-based evaluation [17, 18]
is based instead on the intersection of predicted events with
ground-truth events.

Notably, as threshold selection criteria vary widely de-
pending on the target application, the community currently re-
lies on threshold-independent metrics which aggregate perfor-
mance over various thresholds λc. For example, the recent
DCASE Task 4 challenges used polyphonic sound detection
score (PSDS) [17, 19], which is computed as the normalized
area under the PSD-ROC curve, i.e., the average of class-level
ROC curves from intersection-based TP/FP/FN results, plus a
penalty on inter-class standard deviation.

Crucially, a known problem resulting from the aforemen-
tioned conversion of event predictions centered around frame-
level confidence thresholding is that, typically, it leads to
TP/FP/FN results for which the ROC curve is no longer mono-
tonic, unlike what is expected in traditional classification. As
a workaround monotonicity is restored by only taking the (ora-
cle) best-case operating points into account [17], but it results in
artificially inflated scores and limits the intuitive interpretation
of the metric as a performance score.
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Figure 2: Examples of SEBBs with event-level decision thresh-
old and comparison with ground-truth events.

2.2. Effects of Frame-level Thresholding
In this section, we show a practical illustration of the impact
of frame-level thresholding on event boundary detection, and
its detrimental effect on intersection-based evaluation. For this,
we consider the example in Fig. 1 as representative of the frame-
level presence confidence output for a single sound class found
in existing SED systems. We then see how a lower frame-level
threshold, while triggering more individual event detections,
also has a non-trivial impact on event boundary predictions.

For example, we consider a typical intersection-based eval-
uation based on the ground-truth events. We use a required in-
tersection rate of ρDTC = ρGTC = 0.7 for both the detection
tolerance criterion (DTC) and ground-truth intersection crite-
rion (GTC), i.e., predictions must intersect with a ground-truth
event by at least 70% to not be FP and ground-truth events must
be covered by non-FP detections by at least 70% to be TP [20].

Then, we can see that, when gradually lowering the thresh-
old down from 1, we will first get a prediction corresponding to
the first ground-truth event, but with an underestimated extent,
leading to FN. When lowering the threshold further, that match-
ing prediction remains, but its predicted extent grows longer
to the point where it yields TP. However, when lowering the
threshold even further, the predicted extent will ultimately grow
overestimated yielding now both FN and FP, even as we might
get a TP in predicting the second ground-truth event. TPs turn-
ing back to FNs (i.e., having the true positive rate decrease)
when the threshold decreases is different from standard binary
classification tasks and ultimately makes ROC curves decrease
again after some point, breaking their monotonic properties. As
we can see, this is ultimately because the threshold that detects
the correct extent depends on the geometry of the frame-level
scores (e.g., the overall peak heights in the case of Fig. 1).
Crucially, we see that no threshold could get both ground-truth
events right at the same time in our example.

This demonstrates how frame-level thresholding is sub-
optimal for event detection due to the event-level entanglement
of both boundary and confidence information in the frame-level
scores. Therefore, we propose to decouple extent and confi-
dence prediction as presented in the next section.

2.3. Sound Event Bounding Boxes

To solve above issues, we propose the concept of SEBBs as
new SED system output format. In mathematical terms, we de-
fine SEBBs as quadruples b̂j = (ĉj , t̂on,j , t̂off,j , yj) which intu-
itively represent sound event candidates defined by sound class
ĉj , a fixed extent given by onset time t̂on,j and offset time t̂off,j ,
plus an overall presence confidence score yj . Fig. 2 shows a
graphical representation of SEBBs for our earlier example in
Fig. 1. The key idea is that the temporal extent of sound event
candidates should be determined independently from the event
candidate confidence score. An event-level thresholding can
then be employed to control a system’s sensitivity without af-
fecting the temporal extents of event predictions. In particular,
even if the decision threshold is lowered far below a SEBB’s



confidence score, the temporal extent will not change. This
ensures not to disturb high-confidence event detections when
using low decision thresholds, such as in applications aiming
for a high recall. With SEBBs, monotonically-increasing ROC
curves are thus guaranteed again, and sound event candidates
of high and low confidence, as in the above example, may be
jointly detected correctly.

3. SEBBs from Frame-level Outputs
Now, as already stated, the vast majority of existing systems
outputs frame-level multi-label presence confidence scores. As
such, we now present a few post-processing approaches to en-
able conversion of their output to SEBBs.
Threshold-based SEBBs: A simple approach to generate
SEBB predictions is akin to the threshold-based process illus-
trated in Fig. 1. Here too, we use median filtering plus frame-
level thresholding followed by merging. But, instead of inter-
preting the results as event predictions, we use the resulting
set of ĉj , t̂on,j , t̂off,j together with yj , computed as the aver-
age over frame-level presence confidence yn,cj between t̂on,j

and t̂off,j , as predicted tSEBB. The purpose of the frame-level
thresholds λc,ext and median filter lengths hence is the detection
of the events’ extents and they are set through joint tuning on
a validation set (as is commonly done for any frame-level post-
processing of Y [21,22]). A second threshold (now event-level)
would be used at inference to turn tSEBBs into predicted events.
However, Fig. 1, where the two events cannot be detected with
the same threshold, hints at how tSEBBs could still lead to poor
detection performance in typical scenarios.
Change-detection-based SEBBs: Alternatively, we propose a
change-detection-based algorithm. We first compute “delta”
(i.e., change) scores by filtering yn,c with an ideal step filter.
As different systems use different frame lengths, we perform
the filtering in continuous time, interpolating yn,c as framewise
constant. For filter length τc (in seconds), a delta score corre-
sponds to the difference between the average of yn,c in the next
τc/2 and the previous τc/2 seconds. Now, local maxima (resp.
minima) of the delta scores become tentative onsets (resp. off-
sets). Tentative events (resp. gaps) are formed between each
tentative onset (resp. offset) and the next tentative offset (resp.
onset). Fig. 3 shows an example of frame-level scores in the
upper plot, with corresponding deltas and tentative onsets (lo-
cal maxima) and offsets (local minima) in the lower plot.

Then, as some tentative gaps may be due to only small spu-
rious variations of yn,c, we employ the following merging strat-
egy. For every tentative gap, we compare its lowest yn,c with
the highest yn,c in the tentative events immediately preceding
and following it. If the comparisons fall under a predefined
merge threshold γc, the tentative offset and onset around the gap
are removed (i.e., the preceding and following tentative events
and the gap between them are merged into the same event). We
test γc both as threshold on the difference (i.e., absolute thresh-
old) and ratio (i.e., relative threshold) between scores. Finally,
we form a predicted cSEBB of class c from each remaining on-
set as t̂on, the following remaining offset as t̂off, and the average
of yn,c between t̂on and t̂off as y. The upper plot in Fig. 3 shows
cSEBBs obtained from tentative onset/offsets (lower plot) us-
ing a relative γ = 3 (i.e., checking if neighboring tentative
events’ maxima fall below 3 times a gap’s mimimum). The
class-dependent filter length τc and threshold γc (either abso-
lute or relative) are hyperparameters to tune on a validation set.
Hybrid SEBBs: We further propose a hybrid of the two pre-
vious approaches, where we predict a set of hSEBBs as fol-
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Figure 3: Example of frame-level scores with deltas/change val-
ues from which proposed cSEBBs’ on-/offset times are inferred.

lows. We first predict tSEBBs and select those above a certain
confidence λc,hyb. These are then complemented by cSEBBs,
discarding any cSEBB that overlaps with selected tSEBBs.
Here, the predicted cSEBBs may find additional low-confidence
SEBBs. The following (class-wise) hyperparameters are to be
tuned on a validation set: median filter lengths and λc,ext for
tSEBB prediction, {τc, γc} for cSEBB prediction, and λc,hyb.

4. Experiments
We evaluate our proposed methods on DCASE 2023 Challenge
Task 4a submissions [23] which target SED in domestic envi-
ronments using the DESED dataset [24]. A system submission
comprises three series of timestamped frame-level scores for the
evaluation set generated corresponding to three (independent)
system training runs. Additionally, if a proposed system in-
cluded any frame-level post-processing, participants were asked
to also provide “raw” frame-level scores before post-processing.

We run our evaluations on the public portion of the evalu-
ation set for which ground-truth annotations are publicly avail-
able. To not apply our methods on top of other post-processing
schemes, we only consider teams that provided raw scores, i.e.,
13 teams (counting the baseline). For each team, we only
report the system that performed best in terms of the chal-
lenge PSDS1 metric, i.e., Kim-2 [6], Chen-2 [25], Xiao-4 [26],
Wenxin-6 [27], Li-6 [28], Cheimariotis-1 [29], Guan-3 [30],
Liu-NSYSU-7 [31], Baseline-2 [32], Wang-1 [33], Lee-1 [34],
Liu-SRCN-4 [35], and Barahona-2 [22].

As evaluation metrics, we use two metrics from the chal-
lenge, i.e., 1) PSDS1, i.e., PSDS with ρDTC = ρGTC = 0.7 and
an inter-class standard-deviation penalty weight of αST = 1,
and 2) collar-based F1-score [16], henceforth simply referred
to as F1, with a 200ms onset and max(200ms, 20% of ground
truth event length) offset collar. We are not considering the
PSDS2 metric, as it is more tuned as an audio tagging metric
than an SED metric [36].

As previously mentioned, PSDS considers only best-case
decision thresholds, i.e., thresholds leading to less TPs at more
FPs than another threshold are discarded from the ROC curves.
Whether an operating point is best-base or not, however, can
only be determined by evaluation w.r.t. ground truth. This
is then in square contradiction with any practical scenario
where this oracle information would be, of course, inaccessible.
Therefore, when using legacy event prediction (i.e., frame-level
thresholding followed by merging), we also report non-oracle
PSDS (noPSDS), i.e., PSDS without best-case selection, that is,
the normalized area under the (possibly non-monotonic) PSD-
ROC. In order to simply limit the descent of the PSD-ROC,
however, we pre-tune minimum thresholds λc,noPSDS, for each
class c, which give the maximal number of TPs (#TP) on a val-
idation dataset (i.e., below which #TP only decreases).

For each system, we report performance using legacy event
prediction in conjunction with the original submission post-
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processing (orig) and common median filter post-processing
(medfilt), and for SEBB-level thresholding in conjunction
with our three proposed post-processing methods which output
tSEBBs, cSEBBs, and hSEBBs, respectively. For each system
and event class, the following hyper-parameters are to be tuned
on a validation set:

• orig: λc,noPSDS,
• medfilt: median filter length, λc,noPSDS,
• tSEBBs, cSEBBs, hSEBBs: see lists in Sec. 3,

plus, for each method, a decision threshold λc,F for F1

evaluation. Different hyperparameter sets are tuned for PSDS
and F1 evaluation, respectively. Optimal thresholds can be
efficiently tuned using sed scores eval [19]. Median filter
lengths are chosen out of {0 s (no filter), 0.2 s, . . . , 2 s}.
(τc, γc) is chosen out of {0.32 s, 0.48 s, 0.64 s} ×
{.15 abs., .2 abs., .3 abs., 1.5 rel., 2 rel., 3 rel.}. Hyperpa-
rameters are tuned to maximize the respective metric with
the following exception. For hSEBBs, for simplicity, we do
not tune all parameters. Instead, we adopt tSEBB-related
parameters from stand-alone tSEBBs and cSEBB-related
parameters from standalone cSEBBs and optimize only λc,hyb.

Without access to outputs on the challenge’s validation set,
we instead report noPSDS1 (using λc,noPSDS for legacy event
prediction) and F1 for a 5-fold cross-validation on the evalu-
ation set outputs, where predictions for each fold are gener-
ated using hyper-parameters tuned on the four other folds, in
Fig. 4. For each condition, we show the mean, lowest and high-
est score over the three provided runs. For legacy event pre-
diction, we also show the (higher) PSDS1 using a lighter color.
Interestingly, we see that most systems would already perform
better with legacy event prediction if they just traded their cur-
rent post-processing for a straightforward class-specific median
filter post-processing. PSDS1 performance deteriorates with
tSEBBs, which suggests that indeed a fixed threshold (λc,ext)
does not correctly predict the extents of events that have dif-
ferent detection confidences. For F1-score, which evaluates a
single operating point, it however is clearly beneficial to have
different extent detection and event-level confidence thresholds.
For the more sophisticated cSEBBs and hSEBBs, they overall

substantially outperform the other methods. cSEBBs improves
over median filtering for all systems but Wang [33], achieving
an average gain of 4.1%pt for PSDS1 and 3.4%pt for F1.
They boost the winning system’s PSDS1 from .644 to .703, and
F1-score from .688 to .734 setting the state of the art on this par-
ticular setup. At the same time, hSEBBs outscores median fil-
tering for all systems, albeit only improving over cSEBBs for a
select few. That hSEBBs deteriorate performance over cSEBBs
for most systems can be explained by poorer generalization of
the increased number of hyper-parameters.

In Fig. 5, we further see the expected benefits of cSEBBs
on the Kim-2 system, when comparing the corresponding PSD-
ROC curve with curves for the legacy event prediction with me-
dian filter post-processing. First, it can be seen how the oracle
modification of PSDS distorts the intuition behind the AUC-
like component of the PSDS, substantially diverging from the
non-oracle curve, which is partially mitigated by the addition
of λc,noPSDS. Further we can see that the inflated oracle modi-
fication still fails to close the gap with the cSEBBs’ PSD-ROC
curve, ending up lower in every operating range.

Finally, to evaluate our method in the proper challenge
setting, i.e., tuning hyperparameters on validation set output
scores, we contacted participants and asked whether they could
share these2. We received raw validation scores from Xiao [26],
Li [28], Barahona [22], and the baseline [32], and post-
processed validation scores from Kim [6]. We then optimized
hyperparameters on that data before scoring on the full evalua-
tion set. Note that only having post-processed validation scores
for Kim means a mismatch between validation (with original
post-processing added) and evaluation (without). Our method
again significantly improves performance for all systems and
we achieve new challenge state-of-the-art performances of .686
PSDS (by Kim [6]) and .706 F1 (by Xiao [26]), with Kim’s
performance likely hurt by the validation/evaluation mismatch.

5. Conclusions
In this work, we demonstrated how the commonly used frame-
level thresholding for SED results in a harmful coupling of
event extent and confidence prediction. As solution, we intro-
duced sound event bounding boxes (SEBBs) as a new general
SED output format, which also overcomes the ill-definition of
recent event-based evaluation metrics. We further proposed a
change-detection-based algorithm to infer SEBBs from frame-
level model outputs. Our experiments showed that our pro-
posed method allows for substantially improved performance
for a large range of systems and sets a new state of the art on
the DCASE 2023 Challenge Task 4a benchmark.

2We would like to thank all teams who responded to our request.
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