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Abstract
In this paper, we consider the problem of reference tracking in uncertain nonlinear systems. A
neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep
encoder network learns the nonlinearity from data, and a state-space component captures the
temporal relationship. This transforms the nonlinear system into a linear system in a latent
space, enabling the application of model predictive control (MPC) to deter- mine effective
control actions. Our objective is to design the optimal controller using limited data from the
target system (the system of interest). To this end, we employ an implicit model-agnostic
meta-learning (iMAML) framework that leverages information from source systems (systems
that share similarities with the target system) to expedite training in the target system and
enhance its control performance. The framework consists of two phases: the (offine) meta-
training phase learns a aggregated NSSM using data from source systems, and the (online)
meta-inference phase quickly adapts this aggregated model to the target system using only a
few data points and few online training iterations, based on local loss function gradients. The
iMAML algorithm exploits the implicit function theorem to exactly compute the gradient
during training, without relying on the entire optimization path. By focusing solely on the
optimal solution, rather than the path, we can meta-train with less storage complexity and
fewer approximations than other contemporary meta-learning algorithms. We demonstrate
through numerical examples that our proposed method can yield accurate predictive models
by adaptation, resulting in a downstream MPC that outperforms several baselines.
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MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast
Adaptation of Neural Predictive Models
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Abstract— In this paper, we consider the problem of
reference tracking in uncertain nonlinear systems. A neural
State-Space Model (NSSM) is used to approximate the
nonlinear system, where a deep encoder network learns the
nonlinearity from data, and a state-space component captures
the temporal relationship. This transforms the nonlinear
system into a linear system in a latent space, enabling the
application of model predictive control (MPC) to deter-
mine effective control actions. Our objective is to design
the optimal controller using limited data from the target
system (the system of interest). To this end, we employ an
implicit model-agnostic meta-learning (iMAML) framework
that leverages information from source systems (systems that
share similarities with the target system) to expedite training
in the target system and enhance its control performance.
The framework consists of two phases: the (offine) meta-
training phase learns a aggregated NSSM using data from
source systems, and the (online) meta-inference phase quickly
adapts this aggregated model to the target system using only
a few data points and few online training iterations, based on
local loss function gradients. The iMAML algorithm exploits
the implicit function theorem to exactly compute the gradient
during training, without relying on the entire optimization
path. By focusing solely on the optimal solution, rather than
the path, we can meta-train with less storage complexity and
fewer approximations than other contemporary meta-learning
algorithms. We demonstrate through numerical examples that
our proposed method can yield accurate predictive models by
adaptation, resulting in a downstream MPC that outperforms
several baselines.

I. Introduction
Optimal control for unknown nonlinear systems has

been a long-standing challenge in various applications
such as robotics, manufacturing systems, and so on [?],
[?], [?]. Different learning-based approaches have been
explored, such as reinforcement learning, adaptive dy-
namic programming, and stochastic optimization-based
control [?], [?], [?]. Recently, the neural state-space
model (NSSM) has gained popularity as an effective
tool for tackling nonlinear control problems [?], [?],
[?]. This model enhances traditional state-space models
by employing neural networks to capture complex and
nonlinear relationships within the system. Specifically,
the neural network component empowers the model to
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learn from data and transform the original state-space
into a latent space where the dynamics are reasonably
approximated by a linear system [?]. This architecture
is grounded in Koopman operator theory, demonstrating
that any nonlinear system can be lifted to an infinite-
dimensional linear system in a latent space [?]. For the
sake of tractable computations, the latent state of NSSMs
is chosen to be of finite size [?].

Although NSSMs show good performance in approxi-
mating nonlinear systems, their training usually requires
a large dataset. In situations where data is scarce,
constructing an accurate model and developing an effi-
cient learning-based controller becomes challenging. This
difficulty often arises when collecting data from the
system of interest, referred to as the target system,
is arduous or expensive. In response to this challenge,
recent efforts, while not specifically within the domain
of NSSMs, aim to leverage data collected from source
systems that share similarities with the target system
[?], [?], [?]. As an example, the target system could be
a physical system, while the source system may be a
numerical model or a digital twin of the target system, or
a system with modified physical parameters that is easily
accessible, allowing for the collection of large amounts
of data. The objective is to use this shared dataset to
pre-train a model, then fine-tune it on the target system
with limited data.

In this paper, we extend the approach of leveraging
knowledge acquired from similar systems to expedite
training of the target system in the context of NSSM.
Different from existing works [?], [?] that use a transfer
learning framework, we propose a method by using
meta-learning. The distinction between transfer learning
and meta-learning is elucidated in [?], and differences
in empirical performance between the two classes of
methods have been highlighted in [?].

Meta-learning has recently gained widespread appli-
cation in control and robotics, addressing challenges
such as system identification, parameter estimation, and
adaptive control [?], [?], [?], [?], [?]. In most of these
works, model-agnostic meta-learning (MAML) based
solutions are developed, which involves solving a bilevel
optimization problem in the meta-training stage. The
inner loop of MAML involves calculating and propa-
gating derivatives of the training loss function along
the full optimization path (which is the same as the
number of inner-loop updates/steps). The outer loop
then accumulates information from these inner-loop up-



dates and computes an outer-loop gradient direction. By
repeating these two loops, the MAML learner is expected
to asymptotically converge to a set of neural weights from
which rapid adaptation is possible to any task within the
distribution of training tasks. Choosing a large number of
inner-loop steps, while useful to understand good outer-
loop directions, incurs high memory complexity, and is
not practical for a large number of inner-loop adaptation
steps. Therefore, existing approaches typically propose
approximations to obtain a more efficient solution or
to allow for a large number of inner-loop steps. Un-
fortunately, these approximations are sometimes over-
simplifications or valid for specific activation functions
(e.g., first-order MAML exploits ReLU properties), and
thus, can harm quality. One particular approximation
that utilizes the implicit function theorem is called
implicit MAML (iMAML), that enables computing the
asymptotic inner-loop gradient efficiently [?]. By doing
this, the meta-learner can update the outer-loop based on
directions obtained by solving the inner-loop over a large
number of iterations without requiring high memory, as
the method is agnostic to the path taken in the inner-
loop and only uses the final gradient direction. As a
result, better adaptation performance can be expected.

In this paper, we solve the optimal tracking prob-
lem in unknown nonlinear systems by leveraging the
iMAML algorithm for system identification, and using
this identified predictive model within a receding horizon
framework. This is summarized herein:

(i) To efficiently utilize limited samples from the
target system, we propose a meta-learning framework
that customizes iMAML for adapting neural predictive
models. The framework pre-trains an aggregated model
from source systems, and then fine-tunes it with a
small target dataset and few adaptation steps. (ii) We
incorporate the adapted models into MPC, determining
optimal inputs for the target system. (iii) Numerical
examples show that our method outperforms models
trained solely by MAML or with only target system data,
along with other baselines.

Organization: Section II introduces the problem of
interest. In Section III, we propose the meta-learning-
based MPC to solve the problem by training the NSSM
with data from source systems. The performance of our
algorithm is evaluated through numerical examples in
Section IV. Finally, Section V concludes the paper.

II. Problem Formulation
We consider a family of parameterized discrete-time

nonlinear systems of the form
xt+1 = f(xt, ut, θf ),

yt = g(xt, ut, θg),
(1)

where x ∈ Rn and y ∈ Rm are respectively system
state and output. Moreover, u ∈ C ⊆ Rp is the input
with C being a compact, convex set. Both f and g are
unknown nonlinear functions, and θ := [θf ; θg] ∈ Rw

denotes a vector of unknown parameters. Despite the
unknown dynamics, our objective is to design a controller
to asymptotically track some reference signal ȳ in the
sense that

lim
t→∞

yt = ȳt. (2)

Since we aim to solve the problem by using a meta-
learning framework, we assume that the target system
under consideration is similar to some systems, from
which we have archival data.

A. Neural State-Space Model (NSSM)
For the unknown system described by (1), we construct

a neural state-space model (NSSM) that approximates
the dynamics of the target system (the system of inter-
est) parameterized by θ = θ∗. Based on the NSSM, the
optimal controller can be designed using a model-based
approach. The true value of θ∗ is unknown, but it is
drawn from a distribution

θ∗ ∼ Θ. (3)

The distribution Θ is often informed by domain experi-
ence, e.g., a particular parameter may have some inter-
pretation from physics that defines a range of admissible
values, and one may sample from a uniform distribution
over this range. Therefore, it is not impractical to assume
we know Θ, but it is not necessarily for our proposed
method: we instead assume that Θ can be reliably
sampled from even though its distributional form is
unknown.

Let U(θ∗, T ∗) and Y (θ∗, T ∗) represent the input and
output trajectories generated from the target system over
a horizon T ∗ and construct a target dataset

Dtarget := {U(θ∗, T ∗), Y (θ∗, T ∗)}. (4)

Using this dataset, one can train an NSSM of the form

zt = fenc(Ut−H+1:t, Yt−H+1:t), (5a)
zt+1 = Azzt +Bzut+1, (5b)
ŷt = Czzt. (5c)

where z ∈ Rnz is the latent state learned by the encoder
network fenc(·) from historical input and output data:
Ut−H+1:t := {ut−H+1, uu−H+2, · · · , ut} ⊆ Dtarget,

Yt−H+1:t := {yt−H+1, yt−H+2, · · · , yt} ⊆ Dtarget.
(6)

Here, the latent state dimension nz ∈ N and window
length H ∈ N are user-defined parameters; these are
standard hyperparameters in classical system identifica-
tion as well. Also, ŷt ∈ Rm is the predicted output, which
we require to be close to the true output yt after NSSM
training [?].

Note that the NSSM (5) consists of two compo-
nents: the deep latent encoder fenc in (5a) captures
the nonlinearity of the system, while the state-space
component in (5b)–(5c) models temporal dependencies in
the system. In practical implementations, fenc is trained



from standard deep learning. On the other hand, the
state transition in (5b) and (5c) can be modeled by a
recurrent neural network (RNN). The RNN layer takes u
and z as the current input and hidden state, respectively,
and outputs the next prediction ŷ.

Training (5) involves optimizing the weights of the
encoder network fenc(·), and the elements of the linear
decoders Az, Bz, Cz and Dz; let ω be the set of these pa-
rameters. The prediction performance of (5) is evaluated
as follows.

1) We first construct a dataset D from Dtarget by
collecting trajectories of length H + T :

Ut−H+1:t+T := {ut−H+1, uu−H+2, · · · , ut+T },
Yt−H+1:t+T := {yt−H+1, yt−H+2, · · · , yt+T }.

2) With Ut−H+1:t and Yt−H+1:t, we then obtain the
latent state zt using (5a).

3) For a prediction horizon of T and with input
Ut+1:t+T , let us recursively compute

Ŷt+1:t+T := {ŷt+1, ŷt+2, · · · , ŷt+T }

from (5b) and (5c).
4) The performance of the NSSM is evaluated through

the following loss function

ℓSSM =
1

T
||Yt+1:t+T − Ŷt+1:t+T ||2.

Obviously, ℓSSM is determined by both the dataset and
the parameters of (5). To make it clearer, we explicitly
define ℓSSM(D;ω) as the loss function evaluated on the
dataset D and the parameter ω.
B. NSSM-enabled MPC

Once trained, the NSSM can be used for predictive
control tasks, such as within an MPC framework. To
leverage this model to calculate the optimal input for
the reference tracking, we rewrite (5b) and (5c) in a
compact form

st+1 = Ast +But+1, (7)

where

st+1 :=

[
zt+1

ŷt+1

]
, A :=

[
Az 0
CzAz 0

]
, B :=

[
Bz
CzBz

]
.

With this linearized model, we propose to track the
reference based on model predictive control (MPC).
Notice that the choice of the controller is not limiting for
the approach. Here we focus on MPC as it is a suitable
approach for trajectory tracking under constraints, as
demonstrated in ( [?]). It solves the following trajectory
tracking problem:

min
u

ỹTt+N |t · P · ỹt+N |t

+

N−1∑
k=0

(ỹTt+k|t ·Q · ỹt+k|t +∆uTt+k|t ·R ·∆ut+k|t)

s.t. (5) and ut+k|t ∈ C, k = 0, . . . , N − 1,
(8)

where for k = 0, . . . , N − 1, we define
ỹt+k|t ≜ ŷt+k|t − ȳt+k,

∆ut+k|t ≜ ut+k+1|t − ut+k|t.
Moreover, Q ≥ 0 and R > 0 are design parameters kept
fixed, and P is the solution to the discrete-time algebraic
Ricatti equation

P = AT
(
P − PB

(
R+BTPB

)−1
BTP

)
A+Q.

Note that in (5), the nonlinearity is just used to
initialize an otherwise linear prediction model. Hence
the MPC optimization problem is convex and computa-
tionally tractable. Also notice that the formulation (8) is
not unique. Other formulations (with different terminal
costs, add output constraints, etc.) can also be used here.

The MPC finds the optimal controller that minimizes
the cost function in (8), thereby directing the predicted
output ŷ towards the reference signal ȳ. When the NSSM
accurately captures the nonlinear dynamics in (1), we
achieve the reference tracking as claimed in (2).

C. Meta-learning framework
Collecting data is often expensive in many appli-

cations. Therefore, Dtarget is typically of limited size.
Training with limited data can lead to poor prediction
performance of NSSMs, which can adversely affect pre-
dictive control performance. To address this challenge,
we propose a meta-learning framework. The framework
is designed to acquire an NSSM, usually offline, that
leverages data from multiple source systems that share
similarities with the target system.

For instance, the source system could be a numerical
model or a digital twin of the target system, and
is easily accessible. It could also be a system with
modified physical parameters (e.g., different load, friction
parameters, etc.) This aggregated model enables quick
online adaptation to the target system through few-shot
learning, requiring only a small number of data points.

As another motivating example, suppose that we suc-
cessfully control some manufacturing process governed
by a nonlinear system, and have access to data from
this system. However, the manufacturing requirements
change, which corresponds to a change in the physical
parameters in the system, and the controller performance
needs to be adjusted. By using meta-learning, we propose
a method that achieves this adjustment using very few
actual measurements from the new system (the target
system), by shifting the data requirements to multiple
previously observed systems (the source systems).

Assume that we have access to a dataset containing
input and output trajectories generated by Ns different
source systems in the form of (1), where the k-th system
is parameterized by some vector θk sampled from the
distribution Θ. It is important to know that θk need not
to be known. We represent the source dataset as

Dsource = {(U(θk, T k), Y (θk, T k))}Ns

k=1 := {Dk}Ns

k=1, (9)
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Fig. 1: Information flow in the meta-training phase.

where T k is the length of trajectory produced by the
k-th system, and θk ∼ Θ for each k ∈ {1, · · · , Ns}. Our
objective is to learn an aggregated NSSM by leveraging
the source data Dsource. This aggregated model should
have the ability to be quickly adapted to other systems
only using small datasets and without explicitly estimat-
ing θ. Later, we discuss how to update the dataset by
incorporating the trajectories produced by MPC on the
source systems.

III. Meta-Learning-Based MPC Design
We tailor the meta-learning algorithm iMAML [?] to

address the problem of reference tracking on the target
system. The framework consists of two phases: the meta-
training phase learns the aggregated NSSM using Dsource,
while the meta-inference phase adapts this model to the
target system using Dtarget.

A. Bi-level optimization problem in meta-learning
The phase of meta-training involves two loops: the

outer-loop updates the parameters of the NSSM based
on the performance across multiple source systems and
the inner-loop adapts the model to individual source
systems. This enables the meta-learning algorithm to
learn from multiple systems and generalize well to new
datasets.

Specifically, as shown in Fig. 1, the outer loop provides
an aggregated representation ω of the NSSM (5). In
each iteration of the outer loop, we sample a batch of
trajectories {Db}Bk=1 from the source dataset Dsource.
Then the inner-loop trains individual weights ωb using
the aggregated representation and the source data. After
this, the outer loop updates the aggregated represen-
tation ω using these individual values. The process is
repeated until convergence.

For each Db, we partition it into a training set Dbtr
and a testing set Dbtest. The training set is utilized to
adapt the aggregated representation ω and produce the
task-specific parameter ωb, tailored to the system (1)
parameterized by θb. To be specific, within the context of
iMAML, the inner-loop solves the following optimization
problem:

ωb(ω) := argmin
ψ

ℓSSM(Dbtr;ψ) +
γ

2
||ψ − ω||2. (10)

Here, ω is the weight of the aggregated NSSM, and the
regularization term ||ψ−ω||2 encourages the finding of an
optimal solution within a (ideally, small) neighborhood
of ω, and γ > 0 controls the regularization strength.
As we will shown later in Sections III-B and III-D,
this regularization enables us to express the outer-loop
gradient term in closed-form by exploiting the implicit
function theorem. By doing so, the gradient can be
calculated exactly, without relying on the inner-loop
optimization path but solely on the optimal solution. As
a result, there is no need to store the full optimization
path or approximate the gradient, as required in MAML
[?]. This approach reduces memory consumption and
enhances predictive performance, compared to MAML
whose memory complexity is high for a large number of
inner-loop steps.

The testing set Dbtest is employed in the outer loop to
update the aggregated representation ω. This is achieved
by evaluating the prediction performance of the NSSM
across multiple systems, as defined below

min
ω

1

B

B∑
b=1

ℓSSM(Dbtest;ω
b(ω)). (11)

As shown in (10), ωb(ω) is the optimal task-specific
parameter adapted from ω. Therefore, the objective of
the outer loop is to learn a set of parameters ω that can
produce good task-specific parameters after adaptation.
For simplicity, we will denote ωb(ω) as ωb in the rest of
this paper.

B. Approximation solutions to the bi-level optimization
problem

To efficiently solve the bi-level optimization problem
(10) and (11), the solution of (11) can be approached
using the gradient decent algorithm:

ω ← ω − βout
1

B

B∑
b=1

∇ωℓSSM(Dbtest;ω
b), (12)

where βout denotes the learning rate for the outer loop.
Considering (10), ωb also depends on ω. Therefore, by
applying the chain rule, we expand the gradient term in
(12) as

∇ωℓSSM(Dbtest;ω
b) =

dωb

dω
· P b. (13)

Here,
P b := ∇ψℓSSM(Dbtest;ψ)|ψ=ωb ,

which is the value of ∇ψℓSSM(Dbtest;ψ) evaluated at ψ =
ωb. Since P b can be easily obtained via back propagation
on the NSSM, we focus on calculating dωb

dω .
Recall that ωb is obtained by solving the inner

optimization problem (10), typically through iterative
algorithms like gradient descent. Thus, one approach to
compute dωb

dω is propagating derivatives throughout the
iterative process in the inner-loop. As this requires the
full path of optimization to be stored in the memory, the



approach becomes intractable if the number of iterative
steps is large, or if the inner-loop procedure is non-
differentiable. To address this challenge, the following
lemma introduces an alternate method to calculate this
gradient, which does not rely on the optimization path,
but only on the optimal solution ωb.

Lemma 1 ([?]): Define

Qb := I +
1

γ
∇2
ψℓSSM(Dbtr;ψ)|ψ=ωb , (14)

where ∇2
ψℓSSM(Dbtr;ψ)|ψ=ωb is value of the Hessian

matrix ∇2
ψℓSSM(Dbtr;ψ) evaluated at ψ = ωb. If Qb is

invertible, then
dωb

dω
= (Qb)−1. (15)

Combining (13) and (15), we obtain

∇ωℓSSM(Dbtest;ω
b) = (Qb)−1P b. (16)

As Qb solely depends on ωb, Lemma 1 offers a solution
for computing dωb

dω with reduced memory requirements.
Nevertheless, obtaining ωb, the exact solution to the
inner problem, involves solving (10) until convergence,
a task often impractical in practice. Therefore, in this
paper, we resort to employing the gradient descent
algorithm with a finite number of steps to obtain an
approximate solution.

On the other hand, calculating the inverse of Qb can
also be expensive, especially for large NSSMs. In order to
tackle this issue, we notice that (Qb)−1P b is the solution
to the following problem:

min
ϕ

ϕTQbϕ− ϕTP b. (17)

Therefore, in practice, we can also approximate
(Qb)−1P b by solving (17) with a finite number of itera-
tions, e.g., update the solution by using a few gradient
steps. By doing so, one avoids the need to explicitly
compute the matrix inverse.

Finally, in order to ensure the compatibility with
MPC, we update the source dataset online. After adap-
tation in each inner loop, we determine the optimal
input ub∗ by solving the MPC problem (8) using the
NSSM parameterized by ωb. To balance exploration and
exploitation, we let

ub = ub∗ + ub0, (18)

where ub0 is a random variable drawn from a Gaussian
distribution, i.e., ub0 ∼ N (0,Σb). Injecting ub into the
system (1) (parameterized by θb) yields an output yb.
We then update Dsource by incorporating the most
recent trajectory (ub, yb). The complete meta-training
algorithm is summarized in Algorithm 1.

C. Meta-inference
After the meta-learning phase, we acquire the ag-

gregated NSSM parameterized by ω∞. The subsequent
meta-inference phase adapts this aggregated model to ac-
curately capture the characteristics of the target system

Algorithm 1 Meta-training phase
Input: ω ← randomly initialize the parameters of the NSSM
Input: Dsource ← initial source dataset
Input: Regularization strength γ and learning rate βout

while not converge do ▷ outer-loop
Sample batch {Db}Bb=1 from Dsource
for b = 1 : B do ▷ inner-loop

Partition Db into Db
tr and Db

test
ωb ← solving (10) by gradient descent
gb ← solving (17) by gradient descent
ub ← the new input computed by (8) and (18) with
the NSSM parameterized by ωb

yb ← simulating the system (1) using ub with θ = θb

Update Dsource by adding (ub, yb)
end for
ω ← ω − βout

1
B

∑B
b=1 g

b

end while
Output: ω∞ ← parameters obtained after meta-training

phase

and achieve the optimal tracking.

Algorithm 2 Meta-inference phase with tracking MPC
Input: ω∞ ← parameters obtained after meta-training phase
Input: Dtarget ← initial target dataset
Input: γ

ω∗ ← solving (19) by gradient descent ▷ adaptation
while not done do ▷ reference tracking

u∗ ← the optimal solution of (8) based on the NSSM
parameterized by ω∗

Inject u∗ to the target system
end while

Algorithm 2 outlines the meta-inference process; note
that no outer-loop is involved in this phase. We only
perform an adaptation step similar to (10) to derive the
specific NSSM for the target system by using the limited
dataset Dtarget. This is expressed as

ω∗ := argmin
ψ

ℓSSM(Dtarget;ψ) +
γ

2
||ψ − ω∞||2. (19)

In practice, we approximate the optimal solution using
only a few gradient steps. This corresponds to very few
“trials” to correctly adapt the parameters.

Now, with this NSSM tailored for the target system,
i.e., the NSSM parameterized with ω∗, we can achieve the
reference tracking by finding the optimal input through
MPC (8).

D. Comparison with MAML

Algorithm 1 is developed based on the iMAML algo-
rithm [?]. Alternatively, one could also consider here the
MAML algorithm [?]. Unlike (10), the inner loop of the
MAML-based NSSM approximates the solution of

ωb := argmin
ψ

ℓSSM(Dbtr;ψ). (20)



Namely, setting γ in (10) as 0. In practice, the algorithm
performs the adaptation through the gradient descent:
ωb0 = ω,

ωbm = ωbm−1 − βin ∇ωb
m−1

ℓSSM(Dbtr;ω
b
m−1), i = 1, · · · ,M,

ωb = ωbM ,
(21)

where M is the number of inner-loop iterations and
βin is the inner-loop learning rate. The outer-loop
of MAML aims to solve the same problem as (11).
However, since a different cost function is optimized in
(20), dωb

dω cannot be directly calculated as in (15). The
exact calculation involves propagating derivatives along
the optimization path, which is not memory-efficient in
practice. To tackle this, existing approaches typically
resort to approximating (12) in the outer loop update
as:

ω ← ω − βout
1

B

B∑
b=1

∇ωbℓSSM(Dbtest;ω
b), (22)

where it is assumed that

∇ωℓSSM(Dbtest;ω
b) ≈ ∇ωbℓSSM(Dbtest;ω

b). (23)

This approximation results in a tractable solution since
∇ωbℓSSM(Dbtest;ω

b) can be readily obtained. However,
(23) may harm prediction performance of the NSSMs.
In contrast, by leveraging the iMAML, our proposed
algorithm can calculate the gradient without relying on
the optimization path, see (16). Therefore, there is no
need to store the full optimization path or approximate
the gradient as required in MAML. Consequently, the
proposed approach reduces memory consumption and
enhances control performance. In Section IV, we will
compare the performance of our algorithm and the
MAML-based one through numerical examples.

IV. Simulation
In this section, we illustrate the performance of our

meta-learned MPC through some numerical examples.

A. Van der Pol oscillators
We first consider a family of van der Pol oscillators.

The dynamics of each oscillator is given by
ẋ1 = x2, ẋ2 = θx2

(
1− x21

)
− x1 + u,

y = x,
(24)

where θ is the unknown damping ratio. By using meta-
learning, we want the approach to work for various
different damping ratios and to adapt given the data
of several of them. The source and target systems are
generated by sampling θ from a Gaussian distribution
θ ∼ N (0, 1).

We select the dimension of the latent state z as
nz = 5. The encoder fenc is formed by a neural network
comprising one input layer, one hidden layer, and one
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Fig. 2: Comparison of the prediction performance in
the meta-training phase. The lines and shaded regions
respectively represent the mean and standard deviation
across 10 runs.

output layer, with each layer containing 128 neurons and
activated by rectified linear units (ReLUs). Notice that
we can afford to use a shallow network here due to the
explicit incorporation of the adaptation mechanism into
the meta-training process. However, if we were required
to learn a aggregated model for the entire distribution
Θ, we would need more depth and a larger-dimensional
latent vector. The matrices in the SSM Az, Bz and Cz,
are randomly initialized. The experiments are repeated
for 10 different random seeds.

First, we evaluate the prediction performance of the
NSSM during the meta-training phase. We compare
the iMAML-based Algorithm 1, with the MAML-based
approach as outlined in Section III-D.

The comparison is depicted in Fig. 2, where the x-
axis refers to the number of outer loop updates, that
is, (12) and (22) respectively in the two algorithms. In
each outer loop, we sample a batch of B = 16 datasets
from Dsource. Moreover, the performance is evaluated
by taking the logarithm of 1/B

∑B
b=1 ℓSSM(Dbtest;ω

b),
showing the prediction performance of the NSSMs. It
is observed that Algorithm 1 outperforms the MAML-
based approach throughout the training stage since it
computes the derivative dωb

dω more accurately and thus
requires less iterations for the same loss, as discussed
in Section III-D. Therefore, it results in a smaller
approximation error of the NSSM.

To evaluate the tracking performance of the proposed
algorithm on the target system, we compare against
a few approaches, all of which have the same NSSM
architecture but are initialized differently:

1) iMAML: The parameters of the NSSM are set with
those obtained from the meta-training phase of the
iMAML-based algorithm, that is, ω∞ output by
Algorithm 1.

2) MAML: The parameters of the NSSM are set with
those obtained from the meta-training phase of the
MAML-based algorithm as outlined in Section III-



D. While Fig. 2 shows that iMAML yields less
prediction errors over MAML during the meta-
training phase, we would like to investigate whether
this leads to a better control performance on the
target system.

3) Supervised learning: Since there is no meta-training
phase, the parameters are chosen randomly. This
comparison with Supervised learning highlights
whether meta-learning can improve our performance
by leveraging the knowledge from source systems.

Starting from these different initial parameters, we train
the NSSMs using data from the target system Dtarget,
which only contains 300 data points. Specifically, for
iMAML, this refers to run the adaptation step in
Algorithm 2. On the other hand, iMAML and supervised
learning perform the following update

ω∗
m = ω∗

m−1 − βin ∇ω∗
m−1

ℓSSM
(
Dtarget;ω

∗
m−1

)
, (25)

with ω∗
0 being the parameters initialized for the NSSMs.

It is evident from Fig. 3 that meta-learning expedites
the training of NSSMs by using data from similar
systems. Moreover, Fig. 5 shows the tracking perfor-
mance of different algorithms. Here, we aim to track a
circle (centered at the origin with radius 2) by running
MPC on the NSSMs trained for 0, 100, and 3000
steps, respectively. From the first column of the figure,
we conclude that after the meta-training phase, both
iMAML and MAML produce good aggregated models
that can capture dynamics of the target system to a
certain extent. The performance is further improved
after the adaptation steps using target data Dtarget.
However, since supervised learning does not benefit from
the similar systems, it performs poorly compared with
using meta-learning.

Another observation from comparing iMAML and
MAML in Fig. 3 and Fig. 5 is that iMAML tends to
exhibit faster convergence and better tracking perfor-
mance, especially in the initial stages of meta-inference.
The enhancement is particularly striking when com-
paring iMAML and MAML tracking after 10 and 100
steps. This is because that iMAML exhibits superior
performance with lower loss during the meta-training
phase, as evidenced by Fig. 2. Consequently, it starts
with better initial parameters, facilitating more effective
adaptation to the target system.

B. Pendulum
We also test the proposed algorithm on the benchmark

Pendulum Gym Environment [?]. The environment con-
sists of a pendulum that is free to swing in a vertical
plane under the influence of gravity and is controlled
by applying a torque to the end point of the pendulum,
see Fig. 4. The goal is to keep the pendulum upright,
with the least amount of applied torque. The state
x = [θ; θ̇] consists of the angle and angular velocity of
the pendulum, while the input is the torque τ and the
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Fig. 3: Comparison of the prediction performance on the
target system.

Fig. 4: The Pendulum Gym Environment.

output is θ. We collect the input and output data that
are contaminated by random noises.

We construct the source systems by sampling pendu-
lum masses of varying weights and then evaluate on five
target tasks involving pendulums of different mass. Due
to the space limits, we omit parameters in Algorithm 1
and 2. Fig. 6 shows the prediction performance of
NSSM along the meta-training phase. When this phase
converges, we apply the aggregated model on target
systems. For all target systems, the control error, defined
as the deviation of the angle from the center, i.e., |θ|,
decreases to below 10−4 after 100 adaptation steps.
That means, our algorithms are robust to noise and
successfully stablize the pendulum by using few samples
on target systems. Therefore, meta learning is useful to
pre-train a reasonable NSSM that can be adapted to
system changes and quickly finds proper controllers.

V. Conclusion
This paper considers the problem of reference tracking

in an unknown nonlinear system by using an NSSM.
It introduces an iMAML-based MPC algorithm, which
comprises two phases. In the meta-training phase, data
from source systems is leveraged to pre-train the NSSM,
while in the meta-inference phase, this model is quickly
adapted to the target system using only a small amount
of data. This approach addresses the issue of limited
dataset availability for the target system, enabling the
development of a precise model that facilitates optimal
tracking even with a small dataset. Numerical examples
demonstrate the superior performance of the proposed
algorithm compared to several baselines. As a future
work, we are planning experiments on physical bench-
mark problems with a view towards transitioning to
manufacturing processes.



(a) The iMAML-based MPC (Algorithm 2).

(b) The MAML-based MPC.

(c) The supervised learning-based MPC.

Fig. 5: Comparison of the tracking performance on the target system, where the three columns show the performance
of different algorithms by using the NSSMs adapted after 10, 100, and 3000 steps, respectively. The lines and shaded
regions respectively represent the mean and standard deviation across 10 runs.
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Fig. 6: The prediction performance of NSSM on the
pendulum.
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