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Control Co-Design for Electric Vehicles with Driving Cycle Synthesis
Encoding Road Traffic and Driver Characteristics

Seho Park, Yebin Wang, Hongtao Qiao, Yusuke Sakamoto, Bingnan Wang, and Dehong Liu

Abstract— This paper employs the control co-design
paradigm to determine optimal motor size and optimal Heating
Ventilation Air Conditioning (HVAC) control for system-level
optimal performance of electric vehicle. Our work is motivated
by the realization that whether an electric vehicle design and
its control strategy best fit consumer depends on who operates
it, where and how it is operated. To this end, we first propose
a novel method to synthesize a customer-specific driving cycle
which encodes traffic information and driver characteristics,
effectively addressing where and by whom the electric vehicle
is operated; then conduct physics-based model reduction and
data-driven modeling for motor sizing and HVAC control
design; and apply established control co-design approaches to
jointly optimize the motor size and HVAC power control for a
given driving cycle, addressing how it is operated. The proposed
method is validated by performing electric motor design and
open-loop HVAC control in numerical simulation, showcasing
that the control co-design practice leads to an appropriate
combination of motor size and HVAC control and more efficient
operation for the given customer-specific driving cycle.

I. INTRODUCTION

Plant and controller designs for a system are often carried
out separately: design parameters for the plant are optimized
first and then followed by designing an optimal controller
for the given plant to achieve optimal performance [1], [2].
This sequential procedure may not capture the system-level
optimality since the optimal plant parameters and optimal
control parameters are generally coupled with each other [3].
Specifically, the optimal control parameter is subject to
the system dynamics and constraints, affected by the plant
parameters while the optimal plant parameter is dependent
on the control parameters. Hence, optimal design for the
plant and controller should be considered simultaneously for
system-level performance optimization [4]–[6].

Another consideration for optimal plant and controller
design is disturbance (including reference) that the system
has to deal with. System feasibility and performance are
influenced by the disturbance, and thus the plant and con-
troller should be designed to operate the system successfully
and obtain optimal performance under disturbances. For the
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optimization of electrified vehicle efficiency, one critical
disturbance is the driving cycle [7]. Generally, representative
driving cycles such as UDDS and US06 have been adopted
to evaluate the plant and controller design [8], [9] but some-
times they do not reflect real-world driving cycles involving
road traffic demand as well as driver’s characteristics [10].

For real-world driving cycles, naturalistic driving cycle
synthesis has been developed with statistical features [11],
[12]. However, these methods require experiment data and
data processing to deal with missed and noisy data [13].
Additionally, general driving cycles describe velocity profiles
from the macroscopic perspective such as traffic flow. These
may not be matched with the practical situations as it does
not involve driver characteristics, which can compromise the
feasibility and performance of the systems designed with
plant and controller on the driving cycles neglecting driver
characteristics. Driver modeling with microscopic traffic flow
models [14] have been studied to describe driver character-
istics but their application to vehicle design and control has
not been extensively discussed.

Previous studies have employed a control co-design frame-
work with approximately scaled models to obtain optimal
design and control [15]–[18]. With the overly-simplified
models, plant design parameter space can be easily con-
structed albeit along with compromised system feasibility
and performance by underestimating physics (e.g., efficiency
map). Work [17] aims to improve energy economy of electric
vehicle by exploiting the design freedom in sizes of dual
motors and control freedom in the torque-split ratio between
motors as well as the velocity profile. Work [18] determines
motor sizes, transmission ratios as well as torque-allocation
strategy among two motors. However the motor size is
characterized by its rated power and the efficiency map is
assumed constant in [17], [18].

This paper applies a control co-design framework to find
the optimal design of an electric motor and the optimal
Heating Ventilation Air Conditioning (HVAC) control for
energy economy of electric vehicles. Our contributions are:
1) deriving a reduced-order model (implying motor efficiency
map) and constraints of an electric motor, which is differen-
tiable w.r.t. the design parameters and thus allows efficient
design optimization; 2) following a physics- and data-driven
modeling to establish the HVAC power consumption model;
3) proposing a novel method to synthesize a driver-specific
real-world driving cycle to reflect driver characteristics as
well as road traffic situations in a simulation environment



using SUMO [19] and OpenStreetMap [20], thus mitigating
experiment data requirements and making procedures effi-
cient; 4) employing established approaches to co-design mo-
tor size and HVAC control of electric vehicle; 5) performing
numerical simulation to validate the proposed method.

The remainder of this paper is organized as follows.
Section II introduces the control co-design problem. Sec-
tion III describes the driving cycle synthesis procedure with
driver characteristics and presents electric vehicle model and
control co-design schemes. Section IV shows the proposed
method results via numerical simulation. Section V provides
concluding remarks.

II. CONTROL CO-DESIGN PROBLEM
AND NESTED APPROACH

The joint optimization of control and design parameters
for system-level optimization is called control co-design. It
typically admits a cost function in the form of

J(xp, u) = Jp(xp) + Jc(xp, u) , (1)

where xp and u are system design parameters and con-
trol inputs, respectively, and Jp, Jc =

∫ tf
0

L(xp, u(t))dt
are costs for design optimization and control optimization,
respectively. Given (1), the control co-design problem can
be formulated as

minimize
xp,u

J(xp, u) , (2a)

subject to ż(t) = f(z(t), u(t), d(t);xp) , (2b)
c(xp, z(t), u(t)) ≤ 0 , (2c)

h(xp) = 0 , (2d)
g(xp) ≤ 0 , (2e)

where z and d are system states and disturbances, respec-
tively, and u(t) is the control inputs at time t. By applying
the Pontryagin’s Maximum Principle, one can derive the
necessary optimality conditions for (1) and appreciate the
interdependence between design optimization and control
optimization [3], which entails the control co-design.

To obtain the optimal solution of (2), it should be solved
over both xp and u simultaneously. However, this formula-
tion demands huge computational complexity. Alternatively,
iterative [21], [22] and nested frameworks [6] are often
used to solve the problem by decomposing the control co-
design problem into two subproblems: design optimization
and control optimization. Since the nested framework can
handle the coupling between design and control optimization
more, it is adopted in this study.

The nested approach consists of an outer loop and an inner
loop. The outer loop, given control u∗, optimizes design xp:

minimize
xp

J(xp, u
∗) , (3a)

subject to u∗(t) is given by the inner loop (4) , (3b)
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Fig. 1: The area of interest in Boston for driving cycle
synthesis.

h(xp) = 0 , (3c)
g(xp) ≤ 0 . (3d)

and the inner loop optimizes control u with given design x∗
p:

minimize
u

J(x∗
p, u) , (4a)

subject to x∗
p is given by the outer loop (3) , (4b)

ż(t) = f(z(t), u(t), d(t);x∗
p) , (4c)

c(x∗
p, z(t), u(t)) ≤ 0 . (4d)

The nested framework is iteratively implemented until the
optimization problem converges to the optimal value.

III. CONTROL CO-DESIGN FOR ELECTRIC VEHICLES

This section presents a method to synthesize a driving
cycle which effectively encodes traffic information and driver
characteristics, the vehicle model dynamics accounted for
motor sizing and HVAC control co-design, and the sequential
and nested approaches to solve the proposed control co-
design of motor size and HVAC control.

A. Driving Cycle Synthesis

Driving cycles are location-specific, i.e., depending on
road types (e.g., urban and highway) and traffic situations
(e.g., traffic lights and the number of vehicles). Generally,
representative driving cycles for urban and highway roads
(e.g., UDDS and US06) have been widely employed for
vehicle design and control validation purposes since they
can imply some properties of typical roads. Nevertheless,
the representative driving cycles do not adequately capture
real-world driving cycles of a particular driver such as daily
driving schedules and short/long commute driving schedules.
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Fig. 2: Driving cycles of the same route in the area of interest
with different traffic demands.

For real-world driving cycle synthesis, we use a traffic
simulator (SUMO) [19] with OpenStreetMap [20], which
can reflect the traffic situations in an area of interest. It
can generate a specific area map with traffic situations (e.g.,
traffic lights, vehicle types, and traffic demands). For a case
study, the Boston area shown in Fig. 1 is considered as
the area of interest and the driving cycles shown in Fig. 2
are generated to represent a commute scenario from the
Departure to the Arrival on the map. It includes traffic lights
and several traffic demands of passenger vehicles, buses,
trains, bicycles, and pedestrians. The driving cycles in Fig. 2
show driving cycles for the same route in Fig. 1 w.r.t. light,
normal, and heavy traffic demands. As the traffic demand
increases, the trip duration and stopping period get longer.

There are two options for driving cycle synthesis with
SUMO and OpenStreetMap. First, users can generate traffic
demands using SUMO with the extracted information on the
area of interest such as how many lanes on the road, the num-
ber of traffic lights, and the duration of traffic light signals by
OpenStreetMap. However, this approach is computationally
demanding and appropriate for small networks and specific
traffic demands.

Second, SUMO supports an algorithm that can generate
random traffic demands on the map. The traffic demands
(how many vehicles are generated per hour on the map
and their routes are randomly defined) can be adjusted by
“Counter” parameter in the SUMO application. This is more
appropriate for large networks and users can generate their
interesting traffic demands in the area of interest. By using
the traffic control interface supported [23] by SUMO, several
signals (e.g., vehicle velocity, acceleration, and the number
of vehicles on the network) can be obtained with MATLAB
or Python. The second approach is adopted in this study due
to its simplicity and scalability.

B. Driver Model

In addition to driving cycles, drivers have different driving
styles, for example, cautious and aggressive driving styles
based on the driver characteristics, which is expected to
impact the motor size and HVAC control strategy. The driver
characteristics can be described with a car-following sce-
nario, representing how quickly the driver tries to accelerate
and decelerate following the preceding vehicle. We modeled

TABLE I: Vehicle parameters

Description Value
Vehicle Mass 1080 kg

Aerodynamic Drag Coefficient 0.35
Frontal Area 2.37 m2

Rolling Resistance Coefficient 0.015
Final Gear Ratio 6.06

Motor Speed Range 0 – 8000 rpm
Motor Torque Range -180 N·m – 180 N·m

the driver characteristics with the optimal velocity model
(OVM) [14], which can be described as

dx

dt
= v,

dv

dt
= α (Vopt(∆x(t))− v(t))) ,

Vopt(∆x(t)) = vmax(tanh(β(xpre(t)− x(t))− γ) + 1),

(5)

where Vopt is a function mapping the relative distance to
velocity, α is the driver sensitivity. β and γ are the slope
and the intercept of tanh function. ∆x(t), xpre(t), x(t), and
v(t) are relative distance to the preceding vehicle, preceding
vehicle location, ego vehicle location, and vehicle velocity,
respectively. One can generate xpre(t) from the driving
cycles shown in Fig. 2 and feed it into (5) with certain values
of α, β and γ to generate the driver-specific driving cycle
v(t). The driving cycle v(t), encoding traffic information and
driver characteristics, will be used to direct the following co-
design of motor size and HVAC control strategy.

C. Electric Vehicle Model and HVAC Control

A Mitsubishi innovative electric vehicle (MiEV) is con-
sidered as a benchmark model for this study. The vehicle
parameters are described in Table I. An interior permanent
synchronous motor is used for the propulsion of electric
vehicle. It is well-known that detailed motor design, involv-
ing finite element analysis of electromagnetics, mechanics
and thermal dynamics, is highly complicated and time-
consuming. For simplicity, we assume the presence of a
reference motor with a fixed 2D geometry of its cross-section
and shaft length as shown in Fig. 14 in Appendix.

We propose to represent a new motor design by parameter
vector xp := [kr, kk]

⊤, which scales the radius and shaft of a
pre-selected reference motor by kr and kl, respectively. The
reference motor has the electrical model parameters (Φm0,
Ld0, Lq0, R0, khyst0, keddy0,Mmotor0), denoting the perma-
nent magnet flux, d-axis inductance, q-axis inductance, stator
winding resistance, hysteresis loss coefficient, eddy current
loss coefficient, and motor mass, respectively. Given a scaled
motor design xp, the electrical model parameters of the
scaled motor can be updated based on those of the reference
motor as follows

Φm = krklΦm0 , Ld = klLd0 Lq = klLq0 ,

khyst = k2rklkhyst0 , keddy = k2rklkeddy0,

Mmotor = k2rklMmotor0, R =
R0

kr
.

(6)
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Fig. 3: Control-oriented HVAC power consumption map.

The detailed derivation of formulas (6) can be found in
Appendix. The physics-based modeling in Appendix allows
us to establish analytically mappings from design parameters
to key metrics of motor such as weight, torque capacity,
losses, and efficiency.

The HVAC control objective is to regulate the cabin tem-
perature within the defined range and minimize the battery
energy consumption consisting of propulsive motor power,
HVAC power and battery losses. The cabin temperature
dynamics are formulated as

Mcabcclnt
dTcab

dt
= −ṁclntcclnt(Tcab − Tclnt)

−K(Tcab − Tamb) +Qrad +Qpsgr +Qloss,
(7)

where Tcab, Tamb, and Tclnt are cabin, coolant, and ambient
temperatures, respectively. Mcab, cclnt, ṁclnt, Qrad, Qpsgr, and
Qloss are cabin air mass, air specific heat, air flow rate, solar
radiation, passenger heat generation, and motor power loss
respectively. K is the ambient heat transfer coefficient, which
is a function of vehicle speed. In order to derive the HVAC
power consumption model, we first assume the HVAC system
operates at steady-state and derive a reduced-order HVAC
system model in the form of nonlinear algebraic equations,
and then generate the optimal power consumption dataset for
different operation conditions characterized by (Tcab, Tclnt,
Tamb, v). Since the reduced-order model has multiple control
variables: compressor speed, cabin fan speed and radiator fan
speed, we determine the optimal HVAC power consumption
by optimization for a given operation point. Finally, given
the dataset of PHVAC and the respective operation conditions
(Tcab, Tclnt, Tamb, v), via polynomial approximation, we ob-
tain the map from (Tcab, Tclnt, Tamb, v) to HVAC power as
PHVAC = fHVAC(Tcab, Tclnt, Tamb, v). Fig. 3 shows snapshots
of fHVAC(Tcab, Tclnt, Tamb, v) for illustration purpose.

D. Sequential Approach

The optimal motor design and controller synthesis for
a given driving cycle of time t ∈ [0, tf ] are performed
sequentially. The former is obtained by minimizing motor

loss while satisfying motor physical constraints as follows

minimize
xp,um

∫ tf

0

Pmotor,loss(v, um;xp)dt, (8a)

subject to v̇ = fveh(v, τmotor;xp), (8b)

τmotor =
3p

2
(Φm + (Ld − Lq)id)iq, (8c)

(Lqiq)
2 + (Φm + Ldid)

2 ≤
(
Vmax

pω

)2

, (8d)

i2d + i2q ≤ i2max, (8e)

0.2 ≤ xp ≤ 5, (8f)

where um(t) := [id(t), iq(t)]
⊤ denotes motor control to

meet the propulsive demand, v and fveh(v, τmotor;xp) are
the vehicle speed and longitudinal dynamics, respectively,
id, iq , p, imax, and Vmax are d-axis current, q-axis current,
the number of pole pairs, and maximum current, maximum
voltage, respectively; and ω is the motor speed. Pmotor,loss is
motor loss and can be modeled as Pmotor,loss = Pcopper,loss +
Physt,loss + Peddy,loss. Specifically, Pcopper,loss, Physt,loss, and
Peddy,loss denote copper loss, hysteresis loss, and eddy loss,
respectively and are given by

Pcopper,loss =
3

2
R(i2d + i2q),

Physt,loss = khystΦ
pω

2π
, Peddy,loss = keddyΦ

(pω
2π

)2

,

Φ =
√

(Lqiq)2 + (Φm + Ldid)2.

(9)

The motor speed ω is linearly proportional to the vehicle
speed v with the ratio regulated by the gearbox.

With the obtained motor design by solving (8), controller
synthesis problem is formulated as follows

minimize
u

∫ tf

0

Pbatt(z, u;x
∗
p)dt, (10a)

subject to ż = fdyn(z, u;x
∗
p) , (10b)

x∗
p is given by the design optimization (8), (10c)

Tcab,min ≤ Tcab ≤ Tcab,max, (10d)
Tclnt,min ≤ Tclnt ≤ Tclnt,max, (10e)

where z := [v, Tcab]
⊤ is system state, fdyn := [(8b), (7)]⊤

system dynamics, and u := Tclnt is control input. Pbatt
is battery power composed of motor power (Pmotor =
τmotorω + Pmotor,loss), HVAC power fHVAC(Tcab, Tclnt, Tamb,
v), and battery loss given by I2battRbatt where Ibatt =
(Pmotor + PHVAC)/Vbatt is the battery terminal current
and Rbatt is the battery internal resistance. Here Vbatt is
the battery terminal voltage. Tcab,min, Tcab,max, Tclnt,min, and
Tclnt,max denote minimum and maximum temperatures of
cabin and coolant, respectively.

Remark 1: Given um as a solution of (8), motor power
Pmotor is fixed and can be eliminated. The cost function of
controller synthesis problem can be simplified to fHVAC(Tcab,
Tclnt, Tamb, v) + I2battRbatt.
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Fig. 5: Torque demand trajectories of Driving Cycle A for
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For optimal control performance, dynamic programming
(DP) is applied to controller design. DP is generally used as
a benchmark for ideally obtainable performance.

E. Nested Approach

1) Outer Loop of Nested Framework–Design Optimiza-
tion: Motor sizing for a given driving cycle is stated as

minimize
xp,um

∫ tf

0

Pbatt(z, um, u∗;xp)dt,

subject to ż = fdyn(z, um, u∗;xp),

u∗(t) is given by the inner loop (12),
(8b)–(8f), (10d)–(10e),

(11)

where u∗ is the optimal HVAC control trajectory given by
the inner loop (12). Here, the design optimization problem
is formulated to minimize the battery energy consumption
Pbatt with respect to design parameter xp and motor control
um. The rationale to include um in the motor sizing problem
is 1) to enforce the satisfaction of longitudinal dynamics for
any new motor; 2) to ensure that all models and constraints
in the resultant motor sizing problem are analytical and thus
can be readily implemented in CasADi [24].

Remark 2: If following the traditional nested approach,
the temperature constraints in (11) should not be imposed.
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Fig. 6: Heat load disturbance trajectory to the vehicle cabin.

TABLE II: Optimized motor design of different drivers with
control co-design approaches

Driver Cautious Normal Aggressive

Base
kr 1
kl 1

Mass 50 kg

Sequential
kr 0.6 0.7 0.7
kl 4.5 4.6 4.7

Mass 81 kg 112.7 kg 115.15 kg

Nested
kr 0.4 0.5 0.5
kl 5 5 5

Mass 40 kg 62.5 kg 62.5 kg

Here, we introduce them to ensure that the given HVAC
control u∗ remains feasible for new motor design.

2) Inner Loop of Nested Framework–Control Optimiza-
tion: The control optimization is formulated as follows

minimize
u

∫ tf

0

Pbatt(z, u
∗
m, u;x∗

p)dt ,

subject to ż = fdyn(z, u
∗
m, u;x∗

p) ,

x∗
p is given by the outer loop (11) ,

(10d) − (10e),

(12)

Here, the optimal control trajectory is obtained and then
given to the outer loop of nested framework. The outer loop
and inner loop are iterated until convergence.

IV. SIMULATION

To validate the proposed approach, we examine the motor
design and HVAC control on Driving Cycle A (the real-world
driving cycle with normal traffic demand in Fig. 2) with
three drivers (cautious, normal, and aggressive). Using (5),
three different driving cycles for three drivers on Driving
Cycle A are generated as shown in Fig. 4. The aggressive
driver frequently and aggressively accelerates and decelerates
in order to follow the preceding vehicle while the cautious
driver drives more smoothly than the aggressive driver.
The normal driver accelerates and decelerates between the
aggressive driver and the cautious driver.

Fig. 5 shows torque demand trajectories for different driver
characteristics and heat load disturbance to the cabin is
shown in Fig. 6. The aggressive driver uses higher torque
demand than normal and cautious drivers, which might not
be realized with motors designed for normal and cautious
drivers. Additionally, different torque demands entail more or
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Fig. 9: HVAC power of different drivers with the base motor
design

less efficient motor operations. Therefore, the vehicle should
be designed considering the maximum motor torque and
motor efficiency for drivability and energy saving.

In addition to the reference (base) motor which has a mass
50 kg, we obtain 6 motors through sequential and nested
control co-design approaches for cautious, normal, and ag-
gressive drivers as described in Table II. The sequential
approach minimizes motor loss (8) while the nested approach
minimizes total battery energy consumption while satisfying
control constraints. The motors from the sequential approach,
despite achieving less motor loss, are heavier than those
from the nested approach. Furthermore, heavier motors are
required for aggressive drivers because they operate motors
in high-torque regions. The nested approach results in less
total battery energy consumption by reducing motor mass in
each driver characteristic.

Figs. 7-9 show the control design results of different
drivers with the base motor. The aggressive driver consumes
the most energy because the motor operations occur in less
efficient areas compared to the other drivers, which makes
cabin temperature increase and HVAC power consume more.
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Fig. 10: Cabin temperature of the aggressive driver with three
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Fig. 11: Coolant temperature of the aggressive driver with
three different motor designs
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Fig. 12: HVAC power of the aggressive driver with three
different motor designs

During the period t ∈ [170, 220]s, HVAC control strategy
for aggressive driver cranks up earlier than both normal and
cautious drivers, way ahead of heat load spike by disturbance
and motor loss. This is because the aggressive driver tends
to have higher propulsive power demand, which requires the
control strategy reshape the HVAC power to suppress the
peak power demand on the battery.

The control design results of aggressive driver with the
base motor, the motor optimized by sequential approach (se-
quential motor), and the motor optimized by nested approach
(nested motor) are shown in Figs. 10-12. Compared to the
base motor, control strategies of the sequential and nested
motors reduce HVAC energy consumption by minimizing the
cooling load resulted from motor loss with the more efficient
motors. During the period t ∈ [190, 280]s and t ∈ [370,
480]s, the HVAC control strategy for base motor uses more
HVAC power to cool down the cabin. Although the HVAC
control strategy for the sequential motor reduces HVAC
power compared to the nested motor by using the motor
optimized for less motor loss, it consumes more battery
energy in driving the vehicle due to the increased vehicle
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Fig. 13: Normalized battery energy consumption of different
drivers with different motor designs

mass by its motor weight.

Fig. 13 describes the energy consumption of all 9 cases
arising from 3 different motors and 3 different drivers. It
shows that the control co-design performance improves in a
more aggressive driver, which can be attributed to a more
aggressive driver having more degree of freedom in motor
operation to be optimized by motor design parameters and
the coupling between design parameter and control strategy.
The nested approach outperforms the sequential approach in
achieving system-level optimality.

V. CONCLUSIONS

This research investigated the control co-design problem to
tailor an electric vehicle for a driving cycle which encodes
road traffic and driver characteristics. By employing real-
world and driver-specific driving cycles, the resultant design
and controller can be validated under realistic situations
and tuned to suit customer’s needs. A real-world driving
cycle was synthesized in a simulation environment, which
can efficiently generate road traffic information in areas of
interest. Physics-based motor modeling was conducted to
analytically capture the impact of motor size on system
efficiency; and physics-based and data-driven modeling was
performed to capture the coupling between vehicle state
and HVAC power consumption. Finally, the sequential and
nested co-design approaches were implemented for different
driver characteristics and results were compared. Future work
include battery design as well as investigate motion planning
of electric vehicles for control co-design.

APPENDIX
SCALED MOTOR MODELING

Consider scaling the motor radius and length as shown in
Fig. 14. Here, r0 and l0 are outer radius and axial length of
the reference motor, respectively; kr and kl are the scaling
factors in radius and length, respectively; r and l are the
radius and length of the scaled motor, respectively. Next
we investigate how each of these scaling factors works by
examining the solution to the following Poisson’s equation:

∆A = −µ0J − µ0∇×M , (13)

where ∆ is the Laplace operator, J is the current density,
µ0 is the air permeability, A denotes the magnetic vector

Fig. 14: Schematics of reference/scaled motors.

potential, and ∇× is the curl operator. Let x0 denote the
coordinate of the reference motor. Given current density
J0(x0) and magnetization distribution M0(x0), the Pois-
son’s equation for the reference motor is written as follows

∆x0A0(x0) = −µ0J0(x0)− µ0∇x0 ×M0(x0), (14)

where ∇x0
means differential by the reference coordinate.

1) Radius scaling factor kr: We would like to know how
the solution A to (13) changes along with kr. Let x be
the coordinate of the scaled motor: x = krx0. Poisson’s
equation for the scaled motor admits the same form of (14)
with x0 being replaced by x:

∆xA(x) = −µ0J(x)− µ0∇x ×M(x), (15)

where ∇x is the differential by the scaled coordinate. We
assume the vector potential A and current density J are also
linearly scaled by scaling factors kA and kJ , i.e.,

A(x) = kAA0(x0) (16a)
J(x) = kJJ0(x0) (16b)
M(x) = M0(x0). (16c)

The magnetization M is an invariant independent of scaling,
because M is actually equivalent to remanent flux density
Br of the magnet, and Br values of most practical magnets
are around 1.3-1.4 Tesla, regardless of the magnet size. So,
practically, M cannot be tuned.

For differential of M , the relationship between the refer-
ence space and the scaled space is as follows.

∇x ×M(x) =
∂x0

∂x
∇x0

×M0(x0) =
1

kr
∇x0

×M0(x0)

(17)
Similarly, the differential of A is given by

∆xA(x) =
kA

kr
2∆x0A0(x0) (18)

Substituting (16b), (17), and (18) into (15), we have

kA

kr
2∆x0

A0(x0) = −µ0kJJ0(x0)− µ0
1

kr
∇x0

×M0(x0),

which is mathematically equivalent to (14), when the follow-
ing conditions are fulfilled:

kA = kr, kJ = k−1
r . (19)



From (19) and (16a), the magnetic field is computed by
curl of A, as follows:

B(x) = ∇x ×A(x) =
∂x0

∂x
∇x0

× (kAA0(x0))

=
1

kr
∇x0

× (kAA0(x0))∇x0
×A0(x0) = B0(x0), (20)

where B0 and B are the flux densities on the reference
and scaled motor, respectively. By (20), it is shown that
the reference motor and the scaled motor have the same
flux density at the corresponding position, which means the
magnetic saturation levels of both motors are the same.

From (19), since there is no differential of J in Poisson’s
equation, J is simply scaled by a factor of 1

kr
. Hence, if

scaling the motor size and hoping to keep the same flux
density distribution, we should supply a current density by a
factor of 1

kr
. Since the current I is a product of the current

density J and the coil area S where the coil area is scaled by
kr

2, the scaling for the current I is: I = krI0. That means,
if with kr, to keep the same flux density distribution, we
should scale the current by a factor of kr.

Flux linkage F is the product of B and the area that
the flux crosses. Since the area is a product of radius and
length, the flux linkage is linearly proportional to kr. Iron
loss is linearly proportional to the iron volume, so iron loss
is linearly proportional to kr

2.

2) Length scaling factor kl: When we ignore the axial
edge effect of the motor, the field is homogeneous to the axial
direction. So, A,M ,J , and B are independent of motor
length. Hence, the flux linkage and iron loss are linearly
proportional to kl.

In summary, assume the reference motor has the flux
linkages Fd0(id, iq) and Fq0(id, iq) in d-axis and q-axis,
respectively. The aforementioned derivation allows us to
establish the flux linkage of the scaled motor as follows:

Fd(id, iq) = krklFd0(
id
kr

,
iq
kr

), Fq(id, iq) = krklFq0(
id
kr

,
iq
kr

).

The inductance in d-axis and q-axis can be readily derived

Ld =
∂Fd(id, iq)

∂id
= klLd0, Lq =

∂Fq(id, iq)

∂iq
= klLq0.
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