
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Power System Modeling for Identification and Control
Applications using Modelica and OpenIPSL

Vanfretti, Luigi; Laughman, Christopher R.

TR2024-112 August 22, 2024

Abstract
The open-access Modelica language offers unique modeling features that enable power system
modeling for identification and control applications. In this paper, we illustrate how the
language can be used for these purposes leveraging the Modelica-based OpenIPSL library.
With the goal of expanding the application of the language in system identification and
control applications, the paper provides open-source models of different networks that can be
re-utilized by the control community. Although the models in this paper target specific power
system dynamic phenomena, that is, local low-frequency oscillation monitoring and control,
they can easily be extended to address other power system dynamic issues.

Conference on Control Technology and Applications (CCTA) 2024

c© 2024 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Power System Modeling for Identification and Control Applications
using Modelica and OpenIPSL

Luigi Vanfretti† and Christopher R. Laughman‡

Abstract— The open-access Modelica language offers unique
modeling features that enable power system modeling for iden-
tification and control applications. In this paper, we illustrate
how the language can be used for these purposes leveraging the
Modelica-based OpenIPSL library. With the goal of expanding
the application of the language in system identification and
control applications, the paper provides open-source models
of different networks that can be re-utilized by the control
community. Although the models in this paper target specific
power system dynamic phenomena, that is, local low-frequency
oscillation monitoring and control, they can easily be extended
to address other power system dynamic issues.

Modelica, OpenIPSL, Power Systems, Power Grid, Iden-
tification, Oscillation Monitoring, PSS

I. INTRODUCTION

Power systems represent complex critical infrastructure
for which both physics- and data-based models are crucial
for planning and operation. The operation of these systems
involves monitoring tasks that exploit system identification
techniques, and planning involves control design tasks on
different spatio-temporal scales (as shown in Fig. 1). A loose
taxonomy of the phenomena categorizes different system
dynamics as electromagnetic transients (EMT) at the sub-
millisecond range, electromechanical transients (TS) within
the millisecond to tens of minutes range, and quasi-steady
state (QSS) for phenomena lasting minutes to hours. The
challenging nature of these monitoring, planning, and control
problems has resulted in a wide range of modeling and
simulation efforts dating back to the 1970s [1]. These efforts
initially produced software related to specific time scales
and system size [2], [3], which have been extended over the
course of the intervening years to domain-specific software
tools [4], [5].

New opportunities related to the integration of electronic-
based renewable energy sources into existing power systems
have motivated the adoption of object-oriented modeling
languages and tools to exploit the advances that these
languages and environments offer beyond domain-specific
tools [6], [7]. Unlike the domain-specific tools of the power
system community, this approach requires the means to
automatically and symbolically manipulate heterogeneous
equation systems of differential algebraic equations (DAEs).
One of the results of these efforts to expand system modeling
to heterogeneous systems has been the development of the
open standard Modelica language, which enables the use

†LV is with the ECSE Department, Rensselaer Polytechnic Institute, Troy,
NY, USA. vanfrl@rpi.edu

‡CR is with Mitsubishi Electric Research Laboratories (MERL), Cam-
bridge, MA, USA.laughman@merl.com

Lightning

10−7 10−6 10−5 10−4 10−3 0.01 0.1 1 10 100 103 104

Switching

Sub-synch. Resonance

Transient Stability

Long-Term
Dynamics

Daily Load
Following

Electromagnetic Transients Electromechanical Transients Quasi-Steady State Dynamics

Time (s)

EMT TS QSS

Transformer Energization

Fig. 1. Power system phenomena across multiple time-scales.

of modern modeling concepts while providing interoper-
ability among multiple software tools. These capabilities
make Modelica attractive for modeling power systems, with
substantial benefits over domain-specific and general-purpose
computing tools [8].

The use of Modelica for power system modeling was first
reported in 2000 [9], which showed the possibilities of using
Modelica to address the phenomena of the power system on
all time scales in Fig. 1 and prompted a host of follow-up
efforts. Winkler [10] surveyed open source libraries available
up to 2017 covering both EMT and TS (see Fig. 1), while
more recent industrial and academic efforts have included
libraries and tools from RTE [11], as well as the MSEMT
library for EMT modeling [12] and the TransiEnt library
for integrating multiple energy domains, such as gas net-
works, with the grid [13].

In this paper, we present the use of a library for TS (also
known as “phasor” modeling1) called OpenIPSL [14] to
demonstrate how the Modelica language and the OpenIPSL
library can be used for power system modeling to assist
system identification and control applications. We provide
sample models that can be reused and extended for the appli-
cation of identification and control methods, and demonstrate
the use of these methods on an example motivated by recent
literature [15], [16]. Ultimately, we hope to expand the
application of the Modelica language and the OpenIPSL
library within the fields of system identification and control
as a powerful alternative to domain-specific power system
tools.

Notation and Resources: In this paper, the typewriter
font is used to reference the syntax of the Modelica language
within the text. It is also used to define the names of
Modelica libraries, models, and variables that employ the
dot notation. For example, the dot notation for the parameter
grid.line.R indicates a model grid that contains a
transmission line model instance line with a value for the
resistance parameter named R. We also make frequent ref-

1Although OpenIPSL is designed for phasor modeling, it can also cover
EMT and QSS dynamics (see Fig. 1) with extensions. For example, it can
include EMT behavior [17] and long-term dynamics [18].



erence to a few key common Modelica resources, including
the Modelica Standard Library (MSL) [19] and the Modelica
language specification (MSPEC) [20].

II. MODELING

A. Phasors

AC power grids operate at synchronous frequencies, typ-
ically at a nominal value 50 or 60 Hz, by maintaining
the frequency seen by the power generator’s voltages and
currents. The time scales in Fig. 1 thus characterize dynamics
that are excited around this frequency. This is achieved in
conventional synchronous generator-based power plants by
controlling the rotor speed of the generator, while renewable
energy sources modulate the electronic power converter that
connects them to the grid [6].

The voltage (Ṽe(t)) and current (Ĩe(t)) signals in an AC
power system can be represented via Euler’s equations as{

Ṽe =
√
2VRMSe

jωnt+θ = Ṽ
√
2ejωnt

Ĩe =
√
2IRMSe

jωnt+θ+ϕ = Ĩ
√
2ejωnt,

(1)

where ωn = 2πfn with fn is the nominal frequency of the
grid, θ is a phase displacement between the voltage wave and
a reference, ϕ is a phase displacement between voltage and
current waves, and Ṽ = VRMSe

jθ and Ĩ = IRMSe
jθ+ϕ are

the voltage and current phasors, respectively, where RMS
indicates the root mean squared quantities.

By grouping the term jωnt that describes the synchronous
frequency of the grid into a phasor representation, each
electrical quantity can be represented by its RMS magnitude
and the phase angle. This allows us to model the voltage and
current at any node of the network as

Ṽ = vr + jvi, and Ĩ = ir + jii. (2)

where vr, vi, ir and ii are the electrical quantities that will
be used to define the basic interface used to couple different
components in OpenIPSL.

B. Overview of the OpenIPSL Library

OpenIPSL is an open source, tool-agnostic Modelica li-
brary for phasor-based modeling and simulation for dynamic
analysis of power systems. It is also capable of modeling dis-
tribution networks with unbalanced three-phase phasors [21]
without requiring the use of cosimulation, as is the case for
many domain-specific tools. In addition, if facilitates multi-
time-scale modeling by integrating the EMT and TS models
[17].

The main structure of the OpenIPSL library is shown in
Fig. 2 (A). It is a Modelica package, which is concep-
tually organized like a directory to provide encapsulation
and a high-level structure. While a variety of sub-packages
are evident, the following are particularly relevant to this
discussion:

• OpenIPSL.Electrical includes models of devices
that are used to model an electrical power system. As
shown in 2(B), it includes models of electrical machines,

(B)

(A)

(C)

Fig. 2. OpenIPSL (v3.0.1-dev) Library Overview

loads, transmission lines, transformers, and regulators/-
control devices. Each of the sub-packages in Fig. 2
has its own sub-packages (e.g., Fig. 2(C)); for example,
Renewables includes other sub-packages that can be
used to model battery energy storage systems (BESS)
and other renewable energy sources [6].

• OpenIPSL.NonElectrical consists of specialized
blocks, functions,and models that are used by the models
of the Electrical package. It includes extensions
of MSL components as well as specialized components
that are necessary for the simulations to match those of
PSS/E [4], [22].

• OpenIPSL.Interfaces is the sub-package from
which all Electrical models inherit, including
connectors and an a partial model for a gen-
erator. The PwPin Modelica connector and its variants
define the physical phasor-based connector on which
the library is based. The Generator partial model is
an interface that can be used to build detailed power
generation units with internal components.

C. Types and Connectors

The basic connector PwPin is used to provide
an acausal interface between components of the
OpenIPSL.Electrical package, the implementation
of which is provided in Listing 1. This connector contains
voltages (vr and vi, Lines 1, 2) that must satisfy equality
constraints (e.g., KVL) across component boundaries, as
well as currents (ir and ii, Lines 4, 5) that must satisfy
sum-to-zero constraints (e.g., KCL) across component
boundaries. The flow prefix indicates the presence of
the sum-to-zero constraints to enable a Modelica tool to
automatically generate the corresponding equations when
connecting components. In addition, the types of these
variables (e.g., Types.PerUnit, SI.Voltage, Real)
are specified using physics-based units to enable unit
checking by Modelica tools for model correctness.

Listing 1. Excerpt of the PwPin Connector in OpenIPSL.
1 connector PwPin
2 Types.PerUnit Real vr "Real part, voltage";
3 Types.PerUnit Real vi "Imaginary part, voltage";
4 flow Real ir(start=Modelica.Constants.eps) "Real part

, current";
5 flow Real ii(start=Modelica.Constants.eps) "

Imaginary part, current";
6 end PwPin;

The instantiation of these variables also allows the specifi-
cation of variable attributes, such as start. These attributes
often provide valuable information that solver can use to
improve the numerics of a particular problem. For example,



the start attribute can provide an initial guess to assist
in the initialization of the DAEs resulting from a compiled
model. Similarly, the nominal attribute can be used by
Modelica tools to apply appropriate variable scaling, thus
enabling the tool to determine tolerances that aid in avoiding
round-off or truncation errors. The use of such attributes
has significantly improved issues with the initialization and
simulation of OpenIPSL models.

D. Object-Oriented Component Models

The PwPin connector is instantiated by all the power
device models within the OpenIPSL.Electrical pack-
age to enable the interconnection of electrical compo-
nents. We next present a synchronous generator model
Electrical.Machines.PSAT.Order2 that includes
both algebraic and differential equations from the library
to illustrate how object-oriented modeling is used to build
component models. Several other models that have been
validated against Siemens PTI PSSE® [4] are also available
in OpenIPSL [6], [22].

A classical electromechanical model for a synchronous
generator [23] was constructed neglecting electrical dy-
namics and making other simplifying assumptions, and its
implementation was verified against PSAT [24]. The model
is described by:{

δ̇ = Ωb(ω − 1)

ω̇ = (pm − pe −D(ω − 1))/M
(3)

where δ and ω are the machine’s rotor angle and speed, Ωb is
the base frequency in rad/s, pm the mechanical power, pe the
electrical power, D the damping coefficient, and M = 2H
where H is a lumped inertia of the turbine-generation system
in sec. The electrical power output pe is defined as:

pe = (vq + raiq)iq + (vd + raid)id (4)

where the subscripts dq denote the dq-axis voltages and
currents, and ra is the armature resistance. The dq voltages
and currents arise from the application of Park’s “two-
reaction theory”, which can be found in [23], and are linked
to the power network at a bus by

vd = v sin(δ − θ) and vq = v cos(δ − θ) (5)

where v and θ are the bus voltage magnitude and angle at
the bus. Finally, The dq-voltages and currents are related by{

0 = vq + raiq − e′q + x′
did

0 = vd + raid − x′
d

(6)

where e′q is constant, i.e., it neglects the electrical dynamics,
and x′

d is the d-axis transient reactance of the machine.
One commonly used design pattern in Modelica makes

extensive use of inheritance for model creation, as in this
simple model of a synchronous machine. We first define a
base model pfComponent that defines a set of parameters
common to all components derived from power flow data,
such as bus voltages or initial real and reactive power
injections. The model baseMachine, an excerpt of which

is shown in Listing 2, extends pfComponent with an
acausal set of equations relating the terminal voltage and
power, as well as the mechanical equations (see Lines 12-14
in Listing 2), which are common to many detailed machine
models [23]. We can see the use of inheritance in Lines 2-4,
which extend pfComponent and instantiate the connector
PwPin to enable connections between the machine and other
electrical components. Lines 9-10 & 17-18 are then used
to relate the connector variables to the model equations.
After declaring the parameters of (3)-(6), these equations
are implemented on Lines 12-20, where the terms including
S SBtoMB and I MBtoSB are used to change the base
per unit value from machine to system base. Note that pm
is provided as an input to the model by instantiating the
RealInput MSL block named pm in Line 7.
Listing 2. Excerpt of the .PSAT.BaseClasses.baseMachine
model.

1 partial model baseMachine
2 extends OpenIPSL.Electrical.Essentials.pfComponent

(...);
3 OpenIPSL.Interfaces.PwPin p(vr(start=vr0),vi(start=

vi0), ir(start=ir0),ii(start=ii0));
4 parameter Types.Time M "Mechanical starting time, 2H

[Ws/VA]";
5 ...
6 Modelica.Blocks.Interfaces.RealInput vf "Field

voltage [pu]";
7 Modelica.Blocks.Interfaces.RealInput pm(start=pm00) "

Mechanical power [pu]";
8 equation
9 v = sqrt(p.vrˆ2 + p.viˆ2);

10 anglev = atan2(p.vi, p.vr);
11 der(delta) = w_b*(w - 1);
12 if D > Modelica.Constants.eps then
13 der(w) = (pm*S_SBtoMB - pe - D*(w - 1))/M;
14 else
15 der(w) = (pm*S_SBtoMB - pe)/M;
16 end if;
17 [p.ir; p.ii] = -[sin(delta), cos(delta); -cos(delta),

sin(delta)]*[id; iq]*I_MBtoSB;
18 [p.vr; p.vi] = [sin(delta), cos(delta); -cos(delta),

sin(delta)]*[vd; vq]*V_MBtoSB;
19 ...
20 pe = (vq + ra*iq)*iq + (vd + ra*id)*id;
21 end baseMachine;

Listing 3. Excerpt of *.Electrical.Machines.PSAT.Order2
1 model Order2 "Second Order Synchronous Machine ..."
2 extends BaseClasses.baseMachine(vf(start=vf00), xq0=

x1d);
3 protected
4 parameter Real K=1/(raˆ2 + x1dˆ2) "scaling const.";
5 parameter Real c1=ra*K "scaled ra";
6 parameter Real c2=x1d*K "scaled x’d";
7 parameter Real c3=x1d*K "scaled x’d";
8 parameter Types.PerUnit vf00=V_MBtoSB*(vq0 + ra*iq0 +

x1d*id0) "Initial value (SB)";
9 equation

10 id = -c1*vd - c3*vq + vf_MB*c3;
11 iq = c2*vd - c1*vq + vf_MB*c1;
12 vf0 = vf00;
13 end Order2;

While the baseMachine model implements most of the
equations for the machine, Equation (6) is not implemented
because there are alternate formulations of the electrical
dynamics of the machine, e.g., adding dq circuits and effects
of speed variation on fluxes [23], [24]. We can therefore



1 2

transf

line_1

line_2

System Base: 2220 MVA

Frequency: 60 Hz

System Data

line_3

B1 B2 B3

B4

pf.l…

load

pf

inf

fault

uPm

uPSS

uvs

uPload

Outputs

Input

Inputs

Input

Line Trip

G1

line_4

Vt P Q

w delta AVRin AVRout

(A)

(B)
grid

pulse

period=0.1 s

0.0

zero

Fig. 3. Example1.Base.Systems.gridIO a SMIB Power System
Model with I/O Interfaces: (a) model with I/O and (b) model used as a
block.

extend the baseMachine model to a set of complete
machine models, each of which implements a different model
of the electrical dynamics, which avoids the repetition (and
concomitant errors) of the equations that each variant has in
common. For example, we extend baseMachine in the
Order2 of Listing 3 in Line 2 to add Equation (6), as
shown in Lines 10-11. The base model is also modified
with start values e′q (named vf, see Line 2), as well as
computed parameters in Lines 4-8 that simplify the symbolic
implementation of Equation (6).

E. System Model Composition

One of the key advantages of Modelica is that complex
system-level models can be easily constructed by hierarchi-
cally connecting a set of component models. We demonstrate
this process by building a system model that includes a gen-
erator unit, loads, and a power network to study the effect of
faults on system dynamics. These models are available in the
Github repository https://github.com/ALSETLab/
CCTA-OpenIPSL, within the Example1 package.

The network model is based upon a partial model
in Example1.Base.Networks.Base that comprises
buses B1-B4, transmission lines line 1-line 3, the trans-
former transf and the System Data component, see
Fig. 3. As was the case in the machine model, different
subsequent system model variants can be built by extending
and modifing this partial base model. In this example, we
first extend the base model twice by adding the remaining
components in Figure 3 except for G1; this base model is
named Example1.Base.Networks.BasePFnFault.

The generator unit model itself is constructed by connect-
ing all the components required to model a specific power
generator, i.e., the synchronous machine and its different
regulators, as shown in Fig. 4. It is used in Fig. 3 as an
instance called G1. It has three main components labeled red
in Fig. 4, a power system stabilizer (PSS) that is a specialized
controller that needs to be designed to help provide damping;
an excitation control system (ECS) whose purpose is to
regulate the terminal voltage of the generator; and finally,

vf

pm

vf0

pm0

d…

w

v

machine
P

Q

Order VI

v

vs

vfAVRTyp…

vf0

pss

-
intoPSS

k=-1

gain…

k=-1

gain_…

-
pm_fdbck

-
feedbackAVR

k=-1

gain_…

feedbackAVR.y

fdbkAVR

AVR.y

vfAVR

pwPin
uPSS

upm

uvsAVR
AVRout

AVRin

ECS

SM
PSS

Inputs

Outputs

Fig. 4. Example1.Base.Plants.GenIO generator unit model with
IO interfaces.

the synchronous generator (SM), which is a 4th-order model
instantiated as machine.

The system model in Figure 3 can be constructed with the
assembled network and generator unit models by extending
the BasePFnFault and instantiating the gridIO model,
as shown in Listing 4 (Lines 4-5). A set of inputs and outputs
is defined to linearize the model with the desired input/output
causality, e.g., defining the input for a probing signal in
Fig. 3 uvs corresponding to uvsAVR in Fig. 4. In Line 3 an
interface that defines outputs is instantiated and is linked to
the output of each component in Lines 7-9. For example, the
generator’s speed G1.machine.w is linked to the interface
w in Line 7; similar interface equations are also defined for
the other variables of the generator unit.

Listing 4. Linking output variables to the RealOutput interfaces.
1 model gridIO
2 "Power grid model with input/output interfaces ..."
3 extends Example1.Interfaces.

OutputsInterfaceWEfdAndAVRout;
4 extends Base.Networks.BasePFnFault(..., Plants.GenIO

G1(P_0=pf.machines.PG1, ...);
5 ... (additional instantiations follow)
6 equation
7 w = G1.machine.w;
8 delta = G1.machine.delta;
9 AVRin = G1.feedbackAVR.y;

10 ... (additional connect statements follow)
11 end

III. SIMULATION AND LINEAR ANALYSIS

Simulation and linearization are among the most common
uses for system models because of the opportunities they
offer for analysis for system design and operation, for
example, in control design [25], as existing domain-specific
tools [26] generally cannot linearize power system models
or require a deep understanding of the underlying source
code to obtain useful results [27], the symbolic aspects of
Modelica models provide significant advantages for these
tasks. In particular, symbolic transformations can be used to
readily transform the models between different sets of inputs
and outputs, and numerical errors due to finite differences
during the linearization of nonlinear models can be mitigated
or eliminated. The symbolic underpinnings of the Modelica
language also enables automatic derivation of linear models
from exactly the same model used for nonlinear time-domain
simulation to extract arbitrary state-space representations of
power system models at any operating condition and point
in time, which is not possible with domain-specific tools.



du dy

y0

y Vt
Q
P
w
delta
AVRin
AVRout

1 s s

Continuous

sampleClock

multiplex4_2

demultiplex2_7

addy[ny]

+
+1

+1

y0
_i

ni
tia

l[n
y]

k=
y0

stateSpace

A B
C D

1

0.0

PSSchange

0.0

Pmchange

Ploadchange

startTime=30.5 s

0.0

AVRchange

Fig. 5. Example1.Analysis.LinearAnalysis.LinearModel
General configured for simulation of a step response on Ploadchange.

Fig. 6. Comparison of model responses under a load disturbance at at
t=30.5 sec. Top: 0-40 sec., Bottom: 30-40 sec.The linear model is obtained
by simulating the nonlinear-model until t=30.5 sec and linearizing it at that
time.

Moreover, the behavior of the resulting linear models
can be directly compared to that of the nonlinear models
to assess the quality of the linearization, as models are
available in the MSL that allow state-space models to be
automatically loaded and simulated for such comparisons.
As an example of this workflow, we configure the models in
Example1.Analysis.LinearAnalysis to simulate
two changes: 1) a large disturbance that removes line 4
at t=0.5 sec and 2) a large load increase, modeled with a
pulse at t=30.5 sec. The first change effectively modifies
the linearized system state space matrices of the system
obtained from the original model including line 4, necessi-
tating linearization both before and after the line is removed.
Comparison of the outputs of the linear and nonlinear models
during the transient load after the second change allows
the quality of the linear model to be assessed against the
non-linear models. We illustrate the output of the linear
model and the nonlinear model at t = 30.5 s in Fig.6 to
demonstrate the ability to easily carry out such studies and
use the linearized model as the ground truth in Section IV.

The Modelica language and its associated tools also pro-
vide a set of specific attributes designed to improve the
numerical performance of nonlinear simulations. As consis-
tent start values are required to solve a set of DAEs, the
start variable attribute allows the model creator to provide
important information that can be used to initialize the
models, from which a Modelica tool can calculate consistent
values for all other system variables. OpenIPSL has been
specifically designed to allow the user to provide readily-
available data to calculate the starting values inside each of
the components by using a Modelica record template that
is mapped to each of the components of the model, so that
start values can be automatically calculated from the power
flow solution data [28].

The solvers provided in Modelica tools also provide im-

portant flexibility and advanced capabilities to simulate large
and numerically stiff systems of equations that represent
power systems. While most domain-specific tools are limited
to specific solvers that use fixed time steps and, as such,
are practically limited to simulations of a few minutes,
the variable-step solvers in Modelica tools can use modern
variable-step ODE/DAE solvers [29] and take advantage of
sparsity to bypass such restrictions. Together with advances
in multi-core parallelization [30], this has led to major
improvements in simulation performance of Modelica tools;
for power systems, [29] shows that Modelica tools are
competitive, even outperforming power system simulators in
certain scenarios. These capabilities allow to perform simu-
lations with exogenous time-series inputs from experimental
data and stochastic processes, with reproducible models of
noise with pseudo-random numbers for uniform, normal,
truncated, and band-limited noise. The use of exogenous
inputs is valuable for system identification purposes [15],
while stochastic modeling for power systems has proven to
be useful for the design of control and protection schemes
for the resynchronization of islanded grids, as shown in [31].
Such capabilities are not available in conventional power
system tools.

IV. IDENTIFICATION AND CONTROL USE CASES

A. Preliminaries

Identification and control methods are instrumental in
addressing the dynamic performance issues faced by power
systems. We illustrate how Modelica and the OpenIPSL
can be used to design methods targeting such issues by
focusing on local oscillation monitoring and damping en-
hancement [25] for power plants.

One countermeasure to deal with such oscillations and
“wide-area” behavior such as inter-area modes [32] equips
different power plants with a so-called power system stabi-
lizer (PSS). PSSs are placed before the voltage control loop
(i.e., the excitation control system (ECS)) in synchronous
machines. This allows the ECS and the generator to be
exploited to increase the damping from the plant and ensure
the stability of the connection to the grid. However, these
damping controllers must be well tuned to maintain adequate
damping and may lead to major grid stability problems
without calibration [33]. The PSS structure (a transfer func-
tion) is fixed and the value of its parameters must be set
through design studies before being implemented in the field.
The need to maintain validated models represents a major
challenge, as seen recently in the European interconnected
system [33]. We thus consider the power system as a digital
twin of the grid where experiments can be conducted.

In practice, this approach is attractive because the increase
in the availability of power system measurement devices,
e.g., phasor measurement units (PMU), allows oscillation
monitoring [34]. Although “wide area” dynamics have been
the main focus, it can also be beneficial to monitor and
potentially minimize local dynamics such as those recently
observed in [35]. In [15]) a data-based PSS redesign method
was recently proposed. In this work, we extend the approach



PSS

ωref

u(t)+

r(t)
+

−

ECS Efd(t)
Generator Grid

+

−

ω(t)

Vt(t)

ω(t) = G0(s)u(t) + v(t)

e(t)

Fig. 7. Block Diagram of a Power Plant’s Electrical Generator Equipped
with a PSS Interconnected with a Power Grid.

to consider multiple operating points (MOPs) under “ambient
conditions”. Such methods can be very attractive to plant
owners and operators in monitoring and maintaining satis-
factory damping performance levels at all times and under
all operating conditions.

B. Problem Statement

The identification and control problem to be solved is
specified by using the diagram in Fig. 7. This illustrates
a power plant similar to that modeled in Fig. 4, which is
connected to a power grid. In Fig. 7, the PSS derives a damp-
ing signal u(t), which is applied to the ECS that modulates
Efd, the machine field winding voltage, to damp oscillations
while also controlling the terminal voltage magnitude Vt(t).
Observe that the impact of any changes in the power grid
will be reflected in Vt(t) and ω(t). Meanwhile, the signal
v(t) represents the influence of random load changes e(t)
on ω(t). Finally, the signal r(t) will be applied to identify a
data-based model of the power system defined by

ω(t) = G0(s)u(t) + v(t) , u(t) = −K(s)ω(t) + r(t) (7)

where K(s) is the continuous-time transfer function (TF) of
the PSS controller, and with ω(t).

In (7), G0(s) represents the dynamics of the power system
between u(t) and ω(t) and therefore embeds the dynamics
of the ECS, generator and the grid. At each operating point,
it is assumed that these dynamics can be represented by a
linear TF G0(s). Note that the disturbance of the process v(t)
represents the effect of random load changes on ω(t) and
is considered filtered white noise. Using (7), the following
expression of ω(t) in closed loop is:

ω(t) = T0(s)r(t) +M0(s)v(t), (8)

where
T0(s) = G0(s) / (1 +K(s)G0(s)), (9)

M0(s) = 1 / (1 +K(s)G0(s)). (10)

These definitions allow us to summarize the following three
sub-problems (see details of each of these in [15]):

P1. Oscillation monitoring aims to evaluate the damping
ability of the PSS controller, i.e., the plants ξmin for the
local mode. This requires verifying that all the complex
poles of the closed-loop system (8) have a damping
coefficient greater than a given threshold ξreq.

P2. If the estimated ξmin (and its uncertainty interval) are
deemed not satisfactory (smaller than ξreq), a model of
G0 is obtained using a probing signal r(t) to redesign
the PSS. This gives the model T̂ of T0, which is used

to calculate ξmin(T̂ ) and to verify whether a controller
update is really necessary.

P3. If the damping is deemed insufficient. The PSS con-
troller is redesigned using a model Ĝ of G0.

Observe that for redesign using (9), this model can be
deduced from T̂ via:

Ĝ(z) =
T̂ (z)

1−K(z)T̂ (z)
(11)

where K(z) is the discrete-time version of the current PSS
controller K(s). This gives Ĝ, a model of the open-loop
system G0.

C. Modeling, Simulation and Linearization Scenarios

The system model in Fig. 3 is an updated and improved
version of the model used in [15], where the P1-P3 are solved
in the case where the grid undergoes a disturbance (i.e. loss
of line 4). Expanding on that previous work, in this paper,
we extend the proposed approach to consider MOPs under
ambient conditions for a more complex power system shown
in Fig. 8 that was first proposed in [32].

The model in Fig. 8 was developed to solve the identifi-
cation and control problems defined above and is provided
within the Example2 package. Due to space constraints, a
detailed modeling description is omitted here; however, it is
worth noting that it follows the approach used in developing
Example1 in Fig. 3.

To simulate MOPs, i.e., different dispatch points at which
the plant is operated, the required power output of the plant
is varied by ramping uPm

(t) (see the red dashed square
in Fig. 8), while at the same time increasing the power
demand through eLoad9(t). The simulation scenarios shown
in Fig. 9 are designed so that as the power dispatch (and
load) is increased, the system’s damping will reduce, and vice
versa, while at the same time exciting the system’s dynamics
through random load changes.

The power plant operates at P ≈ 7.00 per unit (p.u.,
100 MVA base) at tA = 0 min. and transitions to a
new OP at tα = 7.5 min. As the system moves to dif-
ferent OPs, the power system approaches equilibrium at
tα,β,γ,δ,ψ = [7.5, 25.0, 40.0, 55.0, 67.5] where the power
dispatch is Pα,β,γ,δ,ψ = [7.83, 8.29, 8.02, 7.73]. The model is
linearized at each of these operating points using the features
described in Section III and the data collected from the
simulations at each of these equilibria is used to determine
the damping according to P1 in Section IV-B. Meanwhile, to
solve P2, r(t) is applied in the periods tB−C = [12.5, 17.5],
tD−E = [27.5, 32.5], tF−G = [42.5, 47.5] and tH−I =
[57.5, 62.5]. Finally, the PSS redesign that is carried out
to solve P3, will take place in tKx

, if necessary, where
x = 0, 1, ..., 4 and K0 is the original PSS design.

D. System Identification for Oscillation Monitoring

Oscillation monitoring (P1) requires the determination of
a time series model of M0(s)v(t) in (8) using discrete-time
data ω[n] collected during “ambient” OPs. The discrete-time
sequence ω[n] can indeed be modeled as ω[n] = H0(z)e[n]



bus1

bus2

bus3

bus4

bus5 bus6 bus7 bus8 bus9 bus10 bus11

g1

g2

g3

g4

Line6_7Line5_6

Line7_8_1

Line7_8_2 Line8_9_2

Line8_9_1

Line9_10 Line10_11

PF_results.…

Load7

PF_results.l…

Load9

Line5_1

Line5_2

Line5_3

Line5_4

Fig. 8. Two-Area Four-Machine Klein-Rogers-Kundur Power System Model.

0 10 20 30 40 50 60
7

7.5
8

P
(t

) 
- 

p.
u.

0 10 20 30 40 50 60
0
2
4

"
!

(t
) 

- 
p.

u. #10-4

0 10 20 30 40 50 60
Time (min)

-0.01

0

0.01

r(
t)

Fig. 9. Simulation of the Model in Fig. 8 under Ambient Conditions and
Multiple Operating Points

where H0(z) is a discrete-time monic, stable, inversely stable
transfer function and e[n] a white noise.

Using the discrete-time data ω[n], we can identify an
ARMA model Ĥ(z) of H0 (and an estimate of the variance
of e[n]). Thus, the performance of the existing PSS design
K can be evaluated. Next, we inspect the damping of the
complex poles of Ĥ and determine the minimal value of their
damping, i.e., ξmin(Ĥ) which is an estimate of ξmin of the
loop (7). Furthermore, we can also determine an uncertainty
interval around this estimate (see [34] for details). Using the
data collected from ω[n] between t =[7.5,12.5] min., Ĥ was
estimated as shown in Fig. 10, where it is compared to the
true H0 (red) obtained from the linearized model. Ĥ was
obtained using an ARMA model structure from MATLAB’s
System Identification Toolbox by setting the armax function
with na=nc=8. Ĥ gives a fit of 87.74%, which is excellent
considering the low model order of 8 used compared to
the higher order of H0 which contains 52 states. More
importantly, Ĥ contains the dominant oscillation’s frequency,
7.7 rad/sec (≈1.22 Hz), which exists in H0. Using a higher-
order model does not give better results, as there are several
modes that are not observable by ω(t) in any case (see [36]).
The damping and its confidence interval are:

ξmin(Ĥ) = 0.0564 and IĤ = {0.0, 0.0876}.

The true value is ξtrue=0.0591 and what it is obtained from
Equation ξmin(Ĥ) is ≈ 0.5 % lower, while the true value is
contained within the upper bound of IĤ . This indicates that
the damping is insufficient for a desired ξreq=15%.

Having found that the damping is not adequate, we pro-
ceed to solve P2. The probing signal r(t) (a multisine) is
applied. Data for ω[n] and r[n] from t =[12.5,17.5] min
are collected to estimate T̂ using a Box-Jenkins model with
parameters nb=nc=nd=nf=6 and nk=0, achieving a fit of
89.84%. The estimated model Ĝ obtained from (11) using
T̂ and K0 and is shown in Fig. 11 compared to the true

Frequency (rad/sec)

10-3 10-2 10-1 100 101

-140

-130

-120

-110

-100

M
a
g
n
it

u
d
e
 (

d
B

)

Fig. 10. H0 and Ĥ estimated from ω[n] t=[7.5,12.5] min.

10-3 10-2 10-1 100 101

-60

-50

-40

-30

-20

-10

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (rad/sec)

Fig. 11. G0 and Ĝ estimated from T̂ and K0 for t=[12.5,17.5] min

G0, where it can be seen that Ĝ matches G0 (especially at
7.7 rad/sec).

E. Control Re-Design for Oscillation Damping

Using Ĝ identified above (see Fig. 11), we proceed to
solve P3, which provides a new PSS design. Applying
the method proposed in [15] gives a new controller K1

with parameters kw,1=49.6273 and tw,1=0.3801 sec. Before
applying this design, the new damping that could be achieved
with it computed from

ξmin(K1, Ĝ) = 0.3230 & Inew,1 = {0.2741, 0.3305},

which are larger than ξreq=15.00%. We consequently decided
to apply the new PSS design at t=20 min., as it provides a
damping of 32.30% with bounds larger than ξreq.

The original PSS parameters, K0, are now replaced by the
new controller K1. While the controller operates under ambi-
ent conditions, it is possible to use ambient data to verify the
performance of K1, that is, to verify that ξmin (K1, G0) is
satisfactory. This can be achieved by solving P1 again using
data from t=[1200-1350]. We thus use an ARMA model
with na=nc=8 to estimate ĤK1 using blind identification
which gives ĤK1 shown in Fig. 12. In Fig. 12, ĤK1 is
compared with H0,K1

, Ĥ0,K0
and H0,K0

(which are also
shown in Fig. 10). Comparing Ĥ0,K0 with ĤK1 reveals
that the designed controller effectively removed the peak at
7.7 rad/sec (≈1.22 Hz) by providing substantial damping.

As can be observed in Fig. 12, the mode in ω = 7.7 rad/s
(which is the result of interactions between the power plants
g1 and g2) is no longer the one with the smallest damping.
The mode with the smallest damping is a lower frequency
mode at ≈2.4 rad/sec. This is the so-called inter-area mode
(see [32]). The model ĤK1 can be used to see that this mode
has a damping equal to 24.74%, i.e., ξmin(ĤK1

) = 24.74%.



100 101
-120

-110

-100

-90

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (rad/sec)

Fig. 12. Assessment of the application of Knew = K1

This confirms that K1 has a sufficient damping capacity at
the new operating point. Further analysis of the performance
of the redesigned controller at the other operating points is
omitted here and is provided in [16].

V. CONCLUSION

This paper has illustrated how power system models can
be developed using Modelica and OpenIPSL in system
identification and control applications. In the particular iden-
tification and control methods presented here, the models
were used as a digital twin of a power system in which
probing experiments were performed to perform oscillation
monitoring and damping control redesign. This is useful
because there are limited opportunities to perform probing
experiments in actual power grids and, more importantly,
where the “ground truth” (e.g., the precise damping values) is
unknown. This in turn helps the development process of data-
driven applications, making them ready for later stages, such
as in ex situ testing in laboratory facilities where Modelica
models can be reused [37].

ACKNOWLEDGEMENT

The authors thank the contributors to OpenIPSL and the
support of the funding bodies that have facilitated its devel-
opment, which are listed in http://openipsl.org, and
without whom the library would not exist. The contributions
of X. Bombois in the development of the methods described
in [15] are duly recognized.

REFERENCES

[1] A. Isaacs, “Simulation technology: The evolution of the power system
network,” IEEE Pwr. Energy Mag., vol. 15, no. 4, pp. 88–102, 2017.

[2] K. Prabhashankar and W. Janischewsyj, “Digital simulation of multi-
machine power systems for stability studies,” IEEE Trans. Power App.
Syst., vol. PAS-87, no. 1, pp. 73–80, Jan. 1968.

[3] H. W. Dommel, “Digital computer solution of electromagnetic tran-
sients in single-and multiphase networks,” IEEE Trans. Power App.
Syst., vol. PAS-88, no. 4, pp. 388–399, Dec. 1969

[4] “PSS®E 34.2.0 Model Library,” Siemens PTI, Schenectady, NY, 2017.
[5] J. Mahseredjian et al.,, “Electromagnetic Transients Simulation Pro-

gram: A unified simulation environment for power system engineers,”
in IEEE Electrification Mag, vol. 11, no. 4, pp. 69-78, Dec. 2023.

[6] F. Fachini et al., “Modeling and Validation of Renewable Energy
Sources in the OpenIPSL Modelica Library,” in 47th Annual Conf.
of the IEEE Industrial Electronics Soc., Toronto, ON, Canada, 2021,
pp. 1-6.

[7] J.D. Lara et al., “PowerSystems.jl — A power system data manage-
ment package for large scale modeling,” SoftwareX, Volume 15, 2021,
100747, ISSN 2352-7110.

[8] L. Vanfretti et al., “Unambiguous power system dynamic modeling
and simulation using modelica tools,” 2013 IEEE PES GM, Vancouver,
BC, Canada, 2013, pp. 1-5, doi: 10.1109/PESMG.2013.6672476.

[9] B. Bachmann and H. Wiesmann, “Advanced Modeling of Electromag-
netic Transients in Power Systems,” in Modelica Workshop 2000 Proc.,
Oct. 23, 2000, pp. 93–97.

[10] D. Winkler, “Electrical Power System Modelling in Modelica - Com-
paring Open-source Library Options”, in Proceedings of the 58th Conf.
on Simulation and Modelling, 2017, vol. 138, pp. 263–270.

[11] A. Guironnet et al., “Towards an Open-Source Solution using Mod-
elica for Time-Domain Simulation of Power Systems”, in 2018 IEEE
PES ISGT Conf. Europe, 2018.

[12] A. Masoom et al., “MSEMT: An Advanced Modelica Library for
Power System Electromagnetic Transient Studies,” in IEEE Trans.
Power Deliv., vol. 37, no. 4, pp. 2453-2463, Aug. 2022.

[13] A. Senkel et al., “Status of the TransiEnt Library: Transient Simulation
of Complex Integrated Energy Systems,” in Proc. of 14th Model-
ica Conf. 2021, Linköping, Sweden, September 20-24, 2021. DOI:
10.3384/ecp21181187

[14] Marcelo de Castro et al., “Version [OpenIPSL 2.0.0] - [iTesla Power
Systems Library (iPSL): A Modelica library for phasor time-domain
simulations]”, SoftwareX, Volume 21, 2023, ISSN 2352-7110.

[15] X. Bombois and L. Vanfretti, “Performance monitoring and redesign
of power system stabilizers based on system identification techniques,”
Sustainable Energy, Grids and Networks, Volume 38, 2024, 101278,
ISSN 2352-4677.

[16] L. Vanfretti and X. Bombois, “Power System Oscillation Monitoring
and Damping Control Re-Design under Ambient Conditions and
Multiple Operating Points,” in Proc. 20th IFAC Symposium on System
Identification, Boston, MA, USA, July 17-19, 2024.

[17] M. de Castro and L. Vanfretti, “Multi Time-Scale Modeling of a
STATCOM and Power Grid for Stability Studies using Modelica,”
2022 OSMSES, Aachen, Germany, 2022, pp. 1-7.

[18] M. Aguilera et al., “Coalesced Gas Turbine and Power System Model-
ing and Simulation using Modelica,” American Modelica Conf. 2018,
pp. 93-102, October 9-10, Cambridge, MA. doi: 10.3384/ecp1815493

[19] Modelica Association, “Modelica Standard Library v4.0.0, 2020-06-
04, Available online: http://tinyurl.com/mslv4 , Accessed:
Feb. 18, 2024.

[20] Modelica Association, “Modelica Language Spec. v3.6.0, 2023-03-09,
Available online: http://tinyurl.com/mspc36 , Accessed: 18.
Feb. 2024.

[21] M. de Castro et al, “A Fundamental Time-Domain and Linearized
Eigenvalue Analysis of Coalesced Power Transmission and Unbal-
anced Distribution Grids using Modelica and the OpenIPSL,” in
Proc. 13th Intl. Modelica Conf., Regensburg, Germany, 2019. doi:
10.3384/ecp19157617.

[22] G. Laera et al., “Guidelines and Use Cases for Power System
Dynamics Modeling and Model Verification using Modelica,” Amer-
ican Modelica Conf. 2022, October 26-28, Dallas, Texas. doi:
10.3384/ECP21186146.

[23] F. Milano, Power System Modeling and Scripting. Springer-Verlag,
Berlin, Heidelberg, 2010.

[24] F. Milano, “An open source power system analysis toolbox,” in IEEE
Trans. on Power Systems, vol. 20, no. 3, pp. 1199-1206, Aug. 2005,
doi: 10.1109/TPWRS.2005.851911.

[25] G. Rogers, “The effect of power system stabilizers on system perfor-
mance,” in Proc. 1999 IEEE Power Eng. Soc. Summer Meeting (Cat.
No.99CH36364), Edmonton, AB, Canada, 1999, pp. 110-115 vol.1.

[26] N. Nikolaev et al., “PSS/E Based Power System Stabilizer
Tuning Tool,” 2020 21st Intl. Symposium on Electrical
Apparatus & Tech., Bourgas, Bulgaria, 2020, pp. 1-6, doi:
10.1109/SIELA49118.2020.9167137.

[27] W. Li et al., “Development and Implementation of Hydro Turbine
and Governor Models in a Free and Open Source Software Package,”
Simulation Modelling Practice and Theory, vol. 24, pp. 84-102, 2012.

[28] S.A. Dorado-Rojas et al., “Power Flow Record Structures to Initialize
OpenIPSL Phasor Time-Domain Simulations with Python,” in Pro-
ceedings of the 14th Intl. Modelica Conf., 2021, pp. 147–154.

[29] Erik Henningsson et al., “DAE Solvers for Large-Scale Hybrid
Models”, Proceedings of the 13th Intl. Modelica Conf., Regensburg,
Germany, March 4–6, 2019, ISSN 1650-3740.

[30] H. Elmqvist et al, “Parallel Model Execution on Many Cores,” in
Proc. 10th Intl. Modelica Conf., March 10-12, 2014, Lund, Sweden,
doi: 10.3384/ecp14096363

[31] B. Mukherjee et al., “A PMU-Based Control Scheme for Islanded
Operation and Re-synchronization of DER,” Intl. Journal of Electrical
Power Energy Systems, Volume 133, 2021, 107217, ISSN 0142-0615.

[32] M. Klein et al, “A fundamental study of inter-area oscillations in power
systems,” in IEEE Trans. on Power Syst., vol. 6, no. 3, pp. 914-921,
Aug. 1991.

[33] ENTSO-E Sub-Group System Dynamics and Protection, “Analysis of
CE Inter-Area Oscillations of 1st December 2016,” ENTSO-E, 2017,
Available online: https://tinyurl.com/ENTSOE2016

[34] V. S. Perić et al, “Optimal Signal Selection for Power System Ambient
Mode Estimation Using a Prediction Error Criterion,” in IEEE Trans.
Power Syst., vol. 31, no. 4, pp. 2621-2633, 2016.

[35] C. Mishra et al., ”Analysis of STATCOM Oscillations using Ambient
Synchrophasor Data in Dominion Energy,” 2022 IEEE PES ISGT
Conf., New Orleans, LA, USA, 2022, pp. 1-5.

[36] L. Vanfretti and J. H. Chow, “Analysis of power system oscillations for
developing synchrophasor data applications,” 2010 IREP Symposium
Bulk Power System Dynamics and Control - VIII, Rio de Janeiro,
Brazil, 2010, pp. 1-17, doi: 10.1109/IREP.2010.5563289.

[37] M. de Castro et al., “Real-Time Prototyping of Optimal Ex-
periment Design in Power Systems using Modelica and FMI,”
2022 IEEE PES GM, Denver, CO, USA, 2022, pp. 1-5, doi:
10.1109/PESGM48719.2022.9916801.


	Title Page
	page 2

	Power System Modeling for Identification and Control Applications Using Modelica and OpenIPSL
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


