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Abstract

As artificial intelligence gains new capabilities, it
becomes important to evaluate it on real-world
tasks. In particular, the fields of robotics and re-
inforcement learning (RL) are lacking in standard-
ized benchmarking tasks on real hardware. To
facilitate reproducibility and stimulate algorithmic
advancements, we held an Al Olympics competi-
tion at IJCAI 2023 conference based on the double
pendulum system in the RealAIGym project where
the participants were asked to develop a controller
for the swing up and stabilization task. This paper
presents the methods and results from the top par-
ticipating teams and provides insights into the real-
world performance of RL algorithms with respect
to a baseline time-varying LQR controller.

1 Introduction

Benchmarks and competitions have proven extremely suc-
cessful in computer vision and machine learning for driv-
ing algorithmic innovation [Deng et al., 2009]. In robotics,
a number of simulated benchmarking environments gained
popularity for evaluating learning algorithms [Brockman et
al., 2016; James et al., 2020; Mittal et al., 2023; Al-Hafez et
al., 2023]. However, only a handful of real-robot standard-
ized environments are reliable, easy to simulate, and cheap
to reproduce. Importantly, different environments have dif-
ferent focus, e.g., locomotion [Grimminger er al., 2020; Feng
et al., 2023], finger-based manipulation [Funk ez al., 2021;
Giirtler e al., 2023], etc. Our Real AIGym project [Wiebe et
al., 2022b]" offers a suite of canonical underactuated systems

"https://dfki-ric-underactuated-lab.github.io/real-ai- gym/

Figure 1: Left: Double pendulum hardware, top right: Acrobot, bot-
tom right: Pendubot with active motors colored in red.

(simple pendulum [Wiebe et al., 2022a], AcroMonk [Javadi
et al., 2023], hopper [Soni et al., 2023]) for benchmark-
ing learning and control algorithms for athletic intelligence
on real hardware with a user-friendly Python API. By open-
sourcing both the software and the hardware, we aim to es-
tablish a real-world equivalent to the well-known OpenAl
Gym [Brockman et al., 2016].

The “Al Olympics with RealAIGym” competition®® is
based on a Double Pendulum system (see Fig. 1) in the Re-
alAIGym project. The Double Pendulum [Wiebe et al., 2023]
can operate in two modes: Pendubot when the actuator in
the shoulder joint is active but the elbow is passive, and Ac-
robot with passive shoulder and active elbow. The challenge
consists in performing a swing-up and stabilization from the
free-hanging position to the upright position. For scoring, the

Zhttps://ijcai-23.dfki-bremen.de/competitions/ai_olympics/
*https://youtu.be/eYDH1v1FqF8
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Acrobot and Pendubot tasks are treated as two separate tracks.

The competition was held in two phases. In the simula-
tion phase, the participants were provided model parameters,
a simulation environment, and the scoring metric to rank the
behaviors. The submitted controllers were evaluated with a
performance score and a robustness score. The performance
score, calculated in the simulation and in the hardware phase,
evaluates how well the swing-up is performed and is given
by a weighted sum of swing-up time, energy cost, maxi-
mum torque, integrated torque, torque cost, torque smooth-
ness and velocity cost and is multiplied with the swing-up
success rate. The robustness score evaluates the sensitivity
of the controllers to model inaccuracies, measurement noise,
torque noise, torque response, and time delay.

The teams who achieved high simulation and robustness
scores were advanced to the hardware phase, where they were
given up to 20h remote-access to a real double pendulum sys-
tem to train and test their controllers. The final controllers
were evaluated on the same PC using the performance score
over 10 consecutive executions to provide the final ranking.

2 Algorithms

In this section, three families of RL methods that participated
in the competition are presented, together with a baseline op-
timal control approach for comparison.

2.1 Model-based RL: MCPILCO

MC-PILCO (Monte Carlo - Probabilistic Inference for Learn-
ing COntrol) [Amadio et al., 2022] is a model-based policy
gradient algorithm that relies on Gaussian Processes (GPs) to
learn the system dynamics from data. Let x; and u; be, re-
spectively, the state and input of the system at step ¢. A cost
function ¢(a;) encodes the task to be accomplished. A policy
mg :  — u that depends on the parameters 6 selects the
inputs applied to the system. The objective is to find policy
parameters @ that minimize the cumulative expected cost:

J(0) =Y Ele(x,)]. )
t=0

MC-PILCO performs several successive attempts to solve
the desired task, also called trials. Each trial consists of three
main phases: (i) model learning, (ii) policy update, and (iii)
policy execution.

In the model learning step, previous experience is used to
derive a one-step-ahead stochastic model of the system dy-
namics using Gaussian Process Regression. The policy up-
date step aims at minimizing the cost in eq. (1) w.r.t. the pol-
icy parameters 6. The expectation in eq. (1) is approximated
based on the GP dynamics derived in (i) and Monte Carlo
simulation. Finally, in the last step, the current optimized
policy is applied to the system and the collected samples are
stored to update the model in the next trials. Examples of
MC-PILCO applications have been reported in [Amadio et
al., 2023] and [Turcato et al., 2023].

2.2 Model-free RL, Actor-Critic Methods: SAC

A potential solution in the field of model-free reinforce-
ment learning involves combining the Soft Actor Critic

(SAC) [Haarnoja er al., 2018] algorithm with the Linear
Quadratic Regulator (LQR). The SAC algorithm is utilized
to train a reinforcement learning (RL) agent for swing-up
tasks, while the LQR controller is responsible for stabilizing
the system at its highest position. The transition between the
SAC and LQR occurs on entering the Region of Attraction
(RoA) of the LQR controller, which is numerically approxi-
mated [Maywald er al., 2022]. A three-stage reward function
is designed to steer the agent into the LQR controller’s RoA,
facilitating the switch. The initial stage involves a quadratic
function that penalizes state errors and torque usage. Upon
the end-effector reaching a specific threshold line, an addi-
tional reward is introduced. Furthermore, a substantial reward
is granted when the state is within the LQR’s RoA.

2.3 Model-free RL, Value-based Methods: DQN

Deep Q-Network (DQN) [Mnih et al., 2015] is the seminal
algorithm in the field of Deep RL, which has demonstrated
that end-to-end controllers with high-dimensional observa-
tion spaces can be learned by trial and error. DQN is a value-
based method that learns the optimal action-value function
Q(x,u) such that the optimal action can be obtained by op-
timization over u. To learn ), DQN iteratively applies the
Bellman operator, which is a contraction mapping and hence
its successive application leads to a fixed point. The theory
guarantees that the fixed point of the Bellman operator is the
optimal action-value function corresponding to the optimal
policy, yielding the maximal reward / minimal cost.

DQN is known to work well in discrete action spaces.
Since the action space of Pendubot is 1-dimensional, we con-
sider discretizing it into 9 bins. A logarithmic discretization
centered around zero yields better performance in practice,
because the agent requires more actions around zero to con-
trol the pendulum close to the upright position. The same
rewards function as for the SAC algorithm is used for train-
ing DQN, and the LQR controller provided by RealAIGym is
employed to stabilize the Pendubot when it enters the RoA.

2.4 Model-based Optimal Control: TVLQR

An optimal control (OC) controller serves as a baseline for the
learning-based controllers in the competition. The controller
utilizes three versions of the linear quadratic regulator (LQR).
The basis is a trajectory (uf,x¢) computed with the trajec-
tory optimization technique iterative LQR (iLQR) [Li. and
Todorov., 2004] and a time-varying LQR (TVLQR) [Tedrake,
2022] is used to stabilize the system towards that trajectory
during the execution. This results in the control law at time ¢:

u(x) = uf — Ky(x; — x7) )

with the linear feedback matrix K;. The controller switches
to a LQR control once its RoA is entered.

3 Results

The results of the competition are listed in Table 1 and visual-
ized in Fig. 2. All data, figures and videos of the experiments
can be found online*. Swing-up attempts are evaluated based

“https://dfki-ric-underactuated-lab.github.io/real_ai_gym_
leaderboard/
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Figure 2: Results for all controllers on Acrobot and Pendubot in the three competition categories. The vertical axis is scaled in the units of the
corresponding criterion, e.g. seconds (s), Newton meters (Nm), successful percentage (%), etc. Note that in the *Simulation’ and *Hardware’
categories smaller values are better (except for successful attempts and the scores) while in the "Robustness’ category larger values are better.

Bars for controllers which did not compete in a category are left blank.

on the performance score (simulation and hardware) and the
robustness score (simulation) as introduced in section 1.

3.1 Acrobot

Two submitted controllers (MC-PILCO and SAC) passed the
simulation stage for the Acrobot swingup problem. MC-
PILCO achieved a high performance score (0.869), beat-
ing the optimal control baseline (0.8) and a mediocre ro-
bustness score (0.595). SAC’s performance score is a lit-
tle lower (0.811) while the robustness score is significantly
higher (0.82) and closer to the OC baseline (0.861). Despite
the high performance and robustness scores, the SAC team
did not succeed in transferring the controller to the real hard-
ware. A successful swing up was not achieved. The MC-
PILCO team, on the other hand, retrained their policy on the
real hardware and demonstrated a 100% success rate in the 10
evaluation trials resulting in a hardware score of 0.817 which
is only slightly lower than the OC baseline (0.821). MC-
PILCO’s mediocre robustness score indicates that a policy
trained with MC-PILCO has limits when exposed to dynam-
ics which have not been experienced during training. How-
ever, the notable performance of MC-PILCO on the real hard-
ware shows its applicability even for real dynamics when di-
rectly trained under these conditions.

3.2 Pendubot

On the Pendubot, MC-PILCO, SAC and DQN passed the
simulation stage of the competition. MC-PILCO scored the
highest in the simulation (MC-PILCO: 0.891, SAC: 0.876,
DQN: 0.815, TVLQR: 0.827) while SAC showed the high-
est robustness score only secondary to TVLQR (MC-PILCO:
0.852, SAC: 0.986, DQN: 0.226, TVLQR: 0.950). MC-
PILCO again was retrained on the real hardware and achieved

MC-PILCO SAC DQN TVLQR
Z  Sim. 0.869 0.811 - 0.8

2 Robust. 0.595 0820 - 0.861
£ HW 0.817 - - 0.821
g Sim. 0.891 0876 0.815 0.827
Z  Robust. 0.852 0.896 0.226  0.950
g HW 0.839 0298 0.547

Table 1: Final scores of the submitted controllers and the baseline
for simulation, robustness and hardware tests.

a 100% success rate with a hardware score of 0.839. SAC
achieved a 40% success rate and a hardware score of 0.298.
Note that the SAC policy was not retrained on the hardware
but only in a simulation with added noise. DQN could not be
successfully transferred to the real system. The OC baseline
has an 80% success rate and a 0.547 score.

4 Conclusion

We introduced a competition to evaluate the performance
and robustness of learning-based vs. optimal control ap-
proaches. From the first competition conduction, we con-
clude that learning-based approaches provide a strong alter-
native to model-based optimal control, being able to learn
from a few samples on the real system. The model-based
MC-PILCO outperformed the model-free methods SAC and
DQN, showing a more reliable performance on the real Pen-
dubot system than the baseline TVLQR method. We hope this
challenge inspires further research into control algorithms for
athletic intelligence; in particular, tackling generalization to
different initial conditions, robustness to perturbations and
handling of unmodelled dynamic effects.
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