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Abstract
An accurate magnetic model for electric motors is essential for high performance control
strategies. The magnetic model is typically acquired by massive experiments of measuring
magnetic flux data throughout the operating current range, and then applied in the control
process via a look-up table of measurements. Both the acquisition and the application pro-
cesses are time-consuming and not suitable for low-latency controls. To address this issue,
we propose a novel compressed sensing-based method to recover a high-fidelity flux map from
limited randomly sampled data points, and further infer an analytical magnetic model of
the recovered flux map. This analytical model can then be used to efficiently compute the
magnetic flux instead of looking up measurement data, given the stator current in the control
loop. The proposed approach is validated on data simulated by finite element analysis (FEA).
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Abstract—An accurate magnetic model for electric motors is
essential for high performance control strategies. The magnetic
model is typically acquired by massive experiments of measuring
magnetic flux data throughout the operating current range,
and then applied in the control process via a look-up table of
measurements. Both the acquisition and the application processes
are time-consuming and not suitable for low-latency controls. To
address this issue, we propose a novel compressed sensing-based
method to recover a high-fidelity flux map from limited randomly
sampled data points, and further infer an analytical magnetic
model of the recovered flux map. This analytical model can then
be used to efficiently compute the magnetic flux instead of looking
up measurement data, given the stator current in the control loop.
The proposed approach is validated on data simulated by finite
element analysis (FEA).

Index Terms—Compressed sensing, flux maps, spatial harmon-
ics, motor control

I. INTRODUCTION

Electric machines are increasingly used across various areas
such as factories, transportation systems, and home appliances,
etc. A variety of electric machines such as Interior Permanent
Magnet machine (IPM) and Synchronous reluctance machine
(SynRM), etc., have been deployed because of their high
efficiency. With the advent of data driven control and an
increasing demand for precise motor operation, more and more
sophisticated control strategies such as Maximum Torque per
Ampere (MTPA), Maximum Torque per Volts (MTPV), and
Model Predictive Control (MPC) have been proposed and
implemented [1], [2]. In these advanced control strategies, a
common critical element to ensure high control performance
is an accurate magnetic model in the control loop.

The magnetic model characterizes the magnetic flux as a
function of the stator current in a reference frame of choice
for 2D flux map and also as a function of the rotor angle
position for 3D flux map to capture spatial harmonics. For
instance, in the d − q reference frame, the magnetic model
for IPMs and SynRMs is highly nonlinear owing to saturation
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and cross-saturation effects [3]–[5]. Therefore, it is necessary
to capture the non-linearity in the magnetic model to achieve
good control performance. Moreover, spatial harmonics need
to be considered while inferring a magnetic model as they lead
to torque ripples [6], [7].

To identify the magnetic model, it is crucial to conduct
experiments to acquire the magnetic flux under different
currents. This is because experiments can acquire accurate
and robust flux map in general. Although a viable approach
to identifying the magnetic model is Finite Element Analysis
(FEA) [8], FEA-based identification is typically not readily
available to end users. Moreover, the FEA-based model needs
to be validated through experiments to guarantee its accuracy.

However, there are two major issues for experiment-based
flux map identification. First, it is very time-consuming to
collect enough data for an accurate flux model. Experimental
identification often requires conducting tests at sufficiently
dense (Id, Iq) grid-points to accurately capture flux variation
[9]. Such a grid should span the operating range of the
motor under test. For permanent magnet (PM) machines,
additional care must be taken to avoid demagnetization due
to overheat in experiments. To save testing time and to reduce
risks of demagnetization in case of PM machines, it is thus
desirable to reduce the number of tests conducted without
compromising the accuracy of the acquired flux map. Second,
the access speed of the flux map model is also critical for high
performance control. Identified magnetic models are typically
stored in a 2D or 3D look-up table. However, there is a trade-
off between the access speed and the flux accuracy. To achieve
an accurate flux value for a given stator current, all current-flux
points in the look-up table needs to be searched to find nearby
points of interest for interpolation. Both the searching process
and the interpolation process are time-consuming, especially
for low-latency control. Moreover, the calculation of flux map
derivatives, which is required for computing control inputs,
also impacts the latency of the control algorithms.

To address these issues, significant research efforts have
been dedicated towards developing analytical magnetic models



accounting for the nonlinear effects. For instance, Ortombina
et al. [10] proposed using Radial Basis Functions (RBFs)
to get a black box model for the flux maps. Bedetti et
al. [11] put forth a novel saturation function approach to
identify the magnetic model at stand-still using just three
constants. However, to capture the cross-saturation behavior,
these constants that characterize self saturation behavior need
to be adjusted at different test-points. Qu et al. [12] pro-
posed a polynomial model to capture the nonlinear effect,
treating the d, q-axis currents as a state variable and the
flux as independent variables. Hinkkanen et al. [13] utilized
the aforementioned polynomial model for self-commissioning
application. All the aforementioned approaches considered
saturation and cross-saturation but did not consider spatial
harmonics. It is necessary to model spatial harmonics to
mitigate torque ripples. Kano et al. [14] propose modeling the
flux map using a Fourier series in the electrical angle θ and
a polynomial basis in d, q-axis currents. However, to perform
numerical fitting, significant data points in d, q, θ dimensions
are required. Boesing et al. [15] also utilize Fourier series
to model the θ dependence but utilize look-up tables to store
Fourier coefficients to capture d, q flux variation.

This paper proposes a compressed sensing-based approach
to getting an analytical expression for 2D and 3D flux maps
from limited data samples. In this paper, 2D flux maps refer
to the forward maps that neglect any influence of spatial
harmonics, whereas 3D flux maps refer to forward maps that
model the flux as a function of (Id, Iq, θ). Compressed sensing
aims to recover a sparse representation in an appropriate basis
such as Fourier or wavelet basis, using limited samples of the
original signal. Under certain conditions on the signal and the
acquired samples, the original signal can be recovered with
high probability using fewer samples than mandated by the
Nyquist criterion [16], [17]. The main contributions of this
paper are twofold:

1) Use much fewer randomly sampled data points than that
required by Shannon-Nyquist sampling rate to build a
high-fidelity 2D and 3D flux map model;

2) Provide an analytical 3D magnetic model accounting for
spatial harmonics to avoid time-consuming process of
searching a look-up table and interpolating nearby data
points.

II. FLUX MAP ACQUISITION VIA COMPRESSED SENSING

A. Background

A variety of signals, particularly in the audio and image
domain are observed to be compressible. This implies that such
signals can be accurately represented by a few active modes in
an appropriate basis, such as Fourier basis, wavelet basis [18],
or other learned dictionaries [19]. Compressed sensing aims to
recover this sparse representation in an appropriate basis using
limited samples of the original signal. In fact, in recovering
sparse signals, it may be possible to relax the Shannon-Nyquist
sampling theorem and the sparse signal may be recovered with
high probability using fewer measurements than dictated by

the Nyquist rate [20]. Compressing techniques and compressed
sensing have been extensively applied for image and audio
processing.

Let x ∈ Rn be a compressible signal. There exists a basis
Ψ such that

x = Ψs, (1)

where s ∈ Rn is a vector whose coefficients are mostly zero
or close to zero. If s has at most K non-zero elements, x is
K-sparse. The measurements y ∈ Rp with (K < p << n) is
given by

y = Cx, (2)

where C ∈ Rp×n is the measurement matrix. Compressed
sensing seeks to find a sparse vector ŝ such that

ŝ = argmin
s
||s||0 subject to y = CΨs, (3)

where || · ||0 is the l0 norm referring to the cardinality of s.
The non-convex optimization in (3) may be relaxed to a l1-
minimization problem as

ŝ = argmin
s
||s||1 subject to y = CΨs, (4)

where || · ||1 is the l1 norm given by ||s||1 =
∑n

k=1 |sk| if
1) C is incoherent with respect to Ψ
2) Number of measurements p are sufficiently large p ≈
O
(
K log

(
n
K

))
[20].

In this paper, to satisfy the incoherence property, we use
random samples of the flux map. We also study the variation
of reconstruction error with the number of measurements.

An alternative formulation is given by

ŝ = argmins

1

2
||y − CΨs||2 + λ||s||1, (5)

where λ ≥ 0 is a regularizer weighing the importance of a
sparse solution. In this paper, the formulation presented in (5)
is used.

B. Compressibility of Flux Maps

In this subsection, we empirically demonstrate that q and
d axis flux maps are compressible in the Fourier domain. To
that end, we use readily available FEM data sets through SyR-
e (Synchronous Reluctance – evolution) [21].

Let ϕq(Id, Iq) and ϕd(Id, Iq) denote the q and d-axis flux
maps respectively. Let Φq and Φd denote the corresponding 2D
Fourier spectra. For the THOR (name of a PM-SyR machine
for light traction) data set chosen, we have a 31 × 31 data
grid in (Id, Iq) plane. Thus the Discrete Fourier Transform
(DFT) of this data set will have 31×31 entries. The DFT was
calculated using the Fast Fourier Transform (FFT) algorithm.
Figs. 1(a) and 1(b) illustrate the Fourier coefficients arranged
in decreasing order of magnitude for q, d-axis flux maps
respectively. From Figs. 1(a) and 1(b), it can be seen that the
magnitude of Fourier components decay rapidly in some order.
Figs. 1(c) and 1(d) compare the true and compressed maps
of ϕq . Figs. 1(e) and 1(f) compare the true and compressed
maps of ϕd. In both cases, the compressed maps are acquired



(a) q-axis Fourier coefficients ar-
ranged in descending order of
magnitude

(b) d-axis Fourier coefficients ar-
ranged in descending order of
magnitude

(c) True ϕq (d) ϕq with top 10% Fourier coef-
ficients

(e) True ϕd (f) ϕd with top 10% Fourier coef-
ficients

Fig. 1: Compressibility of d, q-axis flux maps THOR motor

by retaining 10% of the most dominant DFT components.
The Root Mean Squared Error (RMSE) in reconstructing the
flux maps with dominant 10% DFT components was found to
be 0.003 and 0.006 for the q and d axis respectively. From
Figs. 1(c), 1(d), 1(e), and 1(f) and the low RMSE, it can
be concluded that the flux maps in both d and q axes are
compressible in the Fourier domain. Since all motor flux maps
exhibit similar behavior, it can be empirically concluded that
the 2D flux maps are compressible in Fourier domain. The
number of non-zero elements of the DFT depends upon the
original DFT grid and the function variation with Id, Iq . A
similar argument can be made to conclude that the 3D flux
map is also compressible albeit requiring a higher number of
non-zero DFT entries.

C. Mathematical Preliminaries

In this subsection, we elaborate on the relation between the
flux maps and the formulation presented in (1)-(5) for the 3D
case. Let ϕ be the true unknown discrete flux map with di-
mensions N1, N2, N3 respectively. Let Φ be the corresponding
Fourier transform. Partial measurements of the flux map are
denoted by ϕp, while ϕzp denotes the map after zero-padding
ϕp at unmeasured values. We use the subscript u to denote a
matrix unrolled in column major-order into a 1-D vector. Let

ϕu = Ψs with Fourier basis Ψ and sparse vector of Fourier
coefficients s. Then the flux map reconstruction problem can
be formulated along (1)-(5)as

ŝ = argmins

1

2
||(ϕp)u − CΨs||2 + λ||s||1, (6)

where the entries of the measurement matrix C can be readily
seen as

C(a, b) =

{
1 if (ϕp)u[a] = ϕu[b].

0 otherwise

Once the sparse Fourier coefficients are achieved by solving
(6), the flux map can be reconstructed as

ϕ̂u = Ψŝ. (7)

To help in the construction of the Fourier basis matrix Ψ, we
first define the N ×N DFT matrix W for an N -sample 1D
signal as

WN [c, d] = W cd
N ,

where WN = e−
j2π
N . The corresponding inverse DFT matrix

is given by

W−1
N [g, h] =

1

N
W̄ gh

N ,

where W̄N = e
j2π
N . Now, the relationship between Φu and ϕu

can then be given as

Φu = (WN3
⊗WN2

⊗WN1
)ϕu, (8)

where WN3 ⊗WN2 is the kronecker product between two
matrices. Now the Fourier basis matrix Ψ can be inferred as
the inverse of the forward transformation in (8). Thus for the
3D case, we have

Ψ = W−1
N3
⊗W−1

N2
⊗W−1

N1
(9)

The Ψ matrix for the 2D case can be computed in a similar
fashion. It can be readily seen that Ψ−1 = (WN3

⊗WN2
⊗

WN1
). While (9) defines the Fourier basis matrix for math-

ematical completeness, in practice, the algorithm 1 uses FFT
and inverse FFT for efficient implementation.

D. Algorithm

In this subsection, the algorithm used to reconstruct the flux
map from limited random samples is explained. To solve the
optimization problem given in (6), a soft-thresholding based
iterative algorithm is used. First, partial measurements of the
flux map ϕp are zero-padded at unknown values to get the
zero-padded flux map ϕzp. The reconstructed flux map ϕ̂ is
then initialized as ϕzp. Next, the flux map is transformed into
the sparse Fourier domain using FFT. Soft-thresholding is then
applied in the Fourier domain. After applying inverse FFT,
data consistency is enforced to make sure the entries that
are measured are consistent across ϕp and ϕ̂. The iterative
algorithm runs until convergence, which is determined by ϵ, a
parameter chosen a priori.



Algorithm 1 Flux map reconstruction using CS
Input: ϕp, λ, ϵ
Procedure:

ϕzp ← ϕp ▷ Zero pad measured flux map
ϕ̂0 ← ϕzp ▷ Initialize reconstructed map
while ||ϕ̂i−ϕ̂i−1||

||ϕ̂i||
≥ ϵ do

(Φ̂i−1)u = Ψ−1(ϕ̂i−1)u ▷ To Fourier domain
(Φi)u ← S((Φ̂i−1)u, λ)
(ϕ̂i)u ← Ψ(Φi)u
if (ϕzp)u[j] == 0 then

(ϕ̂i)u[j]← (ϕ̂i−1)u[j]
else

(ϕ̂i)u[j]← (ϕzp)u[j] ▷ Enforce data consistency
end if

end while
Output: ϕ̂

S(u, λ) is a soft-thresholding function defined as

S(u, λ) =

{
0 if |u| ≤ λ
|u|−λ
|u| u if |u| > λ.

(10)

Here | · | computes the absolute value and the threshold λ
is the regularizing parameter used in (6). The threshold λ is
empirically tuned. To begin with, the threshold may be set to
5% of the maximum DFT coefficient of ϕzp.

III. RESULTS AND DISCUSSION

The proposed compressed sensing-based approach described
in section II is applied to reconstruct 2D and 3D flux maps
using FEM data.

A. 2D Flux Map reconstruction

The THOR and syreDefaultmotor datasets, available in Syre
in the PM orientation, are used as simulation data. The flux
map data for the THOR motor is available as a function of
{Id, Iq, θ} in a 31×31×180 grid respectively. The 2D flux map
is calculated by averaging along θ axis, given ϕq(Id, Iq) and
ϕd(Id, Iq) respectively. Thus this flux map consists of 961 data
points on a grid for Id from −66.11A to 66.11A and Iq from
0A to 66.11A. First, 40% of data points are randomly sampled
from the available flux map to get ϕqp(Iq, Id), ϕdp(Iq, Id).
In experimental flux map identification, this operation would
correspond to acquiring flux data at random Id, Iq grid-
points. The algorithm proposed in section II is then applied to
reconstruct the flux map at the missing grid points.

Figs. 2(a) and 2(c) depict the random samples across the
Id, Iq grid used to reconstruct the q and d-axis flux maps,
respectively. Figs. 2(b) and 2(d) show the corresponding
reconstructed flux maps. Comparing Fig. 1(c) with Fig. 2(b)
and Fig. 1(e) with Fig. 2(d), it can be concluded that the 2D
flux maps for the THOR motor can be recovered reasonably
well from 40% random samples. Figs. 2(e) and 2(f) showcase
the low reconstruction error between the true and reconstructed
flux map in the q and d axis respectively. For representation

purposes, a similar ϕ axis scale is used between Figs. 2(a),
2(e) and Figs. 2(d), 2(f) respectively.

Fig. 3 showcases the variation of the root mean squared
error (RMSE) between the true and reconstructed flux maps
as function of the percentage of data points used for recon-
struction. It is evident that the reconstruction RMSE decreases
with an increase in the percentage of data points used for
reconstruction. However, the marginal improvement in RMSE
diminishes with an increase in the percentage of data points
used for reconstruction. This trend is expected as an increase
in the number of known data points implies less missing
information and hence better identification. Since the flux
maps are sparse in Fourier domain, once the dominant Fourier
components have been identified, a further increase in the
number of data points provided would lead to identification
of less significant Fourier components implying diminishing
improvement in reconstruction error.

Finally, to demonstrate the generalizability of our method,
we repeat the analysis to reconstruct the q-axis flux map
on a different motor dataset. We use the syreDefaultMotor
dataset for this p. Fig. 4(a) showcase the random samples used
to reconstruct the q-axis flux map for the syreDefaultMotor.
Based on Figs. 4(b), 4(c), and 4(d), it is evident that the
proposed method generalizes well in reconstructing the flux
maps.

(a) Randomly sampled ϕq

data points
(b) Reconstructed ϕq using com-
pressed sensing

(c) Randomly sampled ϕd

data points.
(d) Reconstructed ϕd using com-
pressed sensing

(e) q-axis reconstruction error (f) d-axis reconstruction error

Fig. 2: q, d-axis flux map reconstruction using compressed
sensing on THOR dataset



Fig. 3: Reconstruction RMSE for ϕq, ϕd as a function of %
data points provided

(a) SyreDefault motor ran-
domly sampled ϕq data
points

(b) SyreDefault motor recon-
structed ϕq using compressed
sensing

(c) SyreDefault motor true ϕq (d) SyreDefault motor ϕq recon-
struction error

Fig. 4: q-axis flux map reconstruction using compressed sens-
ing on SyreDefault dataset

Thus in practice, the number of (Id, Iq) grid points at which
tests need to be conducted to acquire flux map is reduced
significantly.

B. 3D Flux Map reconstruction

Having demonstrated the effectiveness of the proposed
approach in reconstructing 2D flux maps, we apply it to re-
construct 3D flux maps and to acquire an analytical expression
for 3D flux maps. The THOR data-set is once again used
as simulation data. At every (Id, Iq) grid point, we use just
9 random samples over [0, 2π]. The algorithm proposed in
1 is then applied to reconstruct the 3D flux map. Fig. 5(a)
illustrates the true flux variation, the random samples used
and the reconstructed flux map variation in the q axis with
respect to θ at a fixed (Id, Iq) grid point. To highlight the
reconstruction using limited sampling, we also include linear

(a) Variation of ϕq with θ at Id = 39.7A, Iq = 17.6A

(b) Variation of ϕd with θ at Id = 39.7A, Iq = 17.6A

Fig. 5: q, d-axis flux variation with θ at a particular (Id, Iq)
grid-point

interpolation of 9 equi-spaced samples. Similarly, Fig. 5(b)
illustrates the aforementioned quantities for the d axis.

The RMSE between the true and CS reconstructed flux map
is found to be 0.0011 and 0.0009 for q, d axis respectively. The
RMSE between the true and linear interpolation flux map is
found to be 0.0053 and 0.0043 for q, d axis respectively. Thus
we can see that the CS reconstruction reduces the error by
approximately 5 times in both q, d axis. From Figs. 5(a),5(b)
and the low reconstruction RMSE, it can be concluded that the
spatial harmonic behavior at different values of (Id, Iq) can be
modelled using few 3D Fourier coefficients. The compressed
sensing based approach can be applied to reconstruct the 3D
flux map using few random samples along θ at each grid-point
(Id, Iq). It is also evident from Figs. 5(a) and 5(b) that linear
interpolation with the same number of equi-spaced random
samples does not capture the harmonic variation.

To acquire an analytical expression for the 3D flux map, we
leverage the fact that the maps are sparse in the Fourier domain
and simplify using the Fourier basis to represent the signal.
For ease of representation and to enable further simplification,
we utilize the unrolled representation of the inverse Fourier
transform instead of the one given in (9). We demonstrate the
procedure on the q-axis flux map; a similar procedure can
be adopted to acquire the analytical expression for the d-axis
flux map. Let Z be the matrix of Fourier coefficients for the q-



axis flux map. The analytical expression can be simply written
using the inverse Discrete Fourier transform expression as

ϕq(n1, n2, n3) =

N1−1∑
a=0

N2−1∑
b=0

N3−1∑
c=0

Z(a, b, c)

N1N2N3
·

e{2πj[
an1
N1

+
bn2
N2

+
cn3
N3

]}, (11)

where N1, N2, and N3 correspond to the size of {Id},{Iq},
and {θ}, respectively, and n1,n2, and n3 correspond to the
indices for the flux map under consideration, respectively.
Note that n1, n2, n3 are all integer numbers, corresponding to
discrete current and angle. In case of motor control, the d, q-
axis currents and the angle are real numbers. In this situation,
we simply replace the integer indices (n1, n2, n3) by real num-
bers (ñ1, ñ2, ñ3) corresponding to the real measurements. For
real parameters (Id, Iq, θ) with Id ∈ [−Idmax, Idmax], Iq ∈
[0, Iqmax], θ ∈ [0, θmax], ñ1, ñ2, ñ3 can be calculated as

ñ1 = (Id+Idmax)(N1−1)
2Idmax

,

ñ2 =
Iq(N2−1)
Iqmax

,

ñ3 = θ(N3−1)
θmax

.

(12)

Note that Z is a sparse matrix, meaning that most entries of
Z are zero. Leveraging this sparsity of Z and combining (11)
and (12), we can write the analytical magnetic flux model as

ϕ̃q(Id, Iq, θ) =
∑

Z(a,b,c)̸=0

Z(a, b, c)

N1N2N3
·

e
{2πj[ a(Id+Idmax)

2Idmax

N1−1
N1

+
bIq

Iqmax

N2−1
N2

+ cθ
θmax

N3−1
N3

]}
. (13)

Thus (13) provides a compact analytical function of flux
maps accounting for spatial harmonics, which can be utilized
to compute flux value efficiently in the control loop without
using a lookup table.

IV. CONCLUSION

In this paper, a novel compressed sensing based approach
was proposed to reconstruct 2D and 3D flux maps using a
small number of measurements of the map. Results using FEM
simulation data show that the entire 2D flux map could be
reconstructed with high accuracy using just 40% of data points.
Thus such an approach would reduce the number of grid points
that need to be tested while conducting experimental flux map
identification. Furthermore, analytical expressions of flux maps
are achieved by leveraging the sparsity of flux maps in Fourier
basis. Such analytical expressions would be particularly useful
in model-based control strategies such as MTPA and MPC, etc.
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and R. Bojoi, “Sensorless self-commissioning of synchronous reluctance
motors at standstill without rotor locking,” IEEE Transactions on Indus-
try Applications, vol. 53, no. 3, pp. 2120–2129, 2017.

[14] Y. Kano, K. Watanabe, T. Kosaka, and N. Matsui, “A novel approach for
circuit-field-coupled time-stepping electromagnetic analysis of saturated
interior PM motors,” IEEE Transactions on Industry Applications,
vol. 45, no. 4, pp. 1325–1333, 2009.

[15] M. Boesing, M. Niessen, T. Lange, and R. De Doncker, “Modeling spa-
tial harmonics and switching frequencies in PM synchronous machines
and their electromagnetic forces,” in 2012 XXth International Conference
on Electrical Machines, 2012, pp. 3001–3007.

[16] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[17] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
2006.

[18] E. Candes and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse problems, vol. 23, no. 3, p. 969, 2007.
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