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Abstract

Existing point cloud coding (PCC) methods based on graph signal processing (GSP) have
been proposed for dealing with the irregular structures of 3D points. GSP-based PCC can
achieve better rate-distortion performance against the typical tree-based PCC, whereas it
requires computational resources for searching hyperparameter sets for graph shift operators
and performing eigenvalue decomposition for each parameter set. This paper proposes a
novel PCC to reduce the time complexity without the degradation of rate- distortion perfor-
mance. Specifically, we leverage the properties of the parameterized graph shift operator to
realize 1) a reduction in the number of hyperparameters, and 2) a decomposition-free hyper-
parameter search. Evaluations using ShapeNet point cloud dataset show that the proposed
scheme achieves almost the same rate-distortion performance with significant reduction on
the computational cost compared to the existing graph-based PCCs.

ACM SIGCOMM 2024

© 2024 ACM. Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or
Publications Dept., ACM, Inc., fax +1 (212) 869-0481.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






Point Cloud Geometry Compression using Parameterized Graph
Fourier Transform

Hinata Kirihara
Osaka University
Suita, Osaka, Japan
kirihara hinata@ist.osaka-u.ac.jp

Toshiaki Koike-Akino
Mitsubishi Electric Research
Laboratories
Cambridge, MA, United States
koike@merl.com

ABSTRACT

Existing point cloud coding (PCC) methods based on graph signal
processing (GSP) have been proposed for dealing with the irreg-
ular structures of 3D points. GSP-based PCC can achieve better
rate-distortion performance against the typical tree-based PCC,
whereas it requires computational resources for searching hyperpa-
rameter sets for graph shift operators and performing eigenvalue
decomposition for each parameter set. This paper proposes a novel
PCC to reduce the time complexity without the degradation of rate-
distortion performance. Specifically, we leverage the properties of
the parameterized graph shift operator to realize 1) a reduction
in the number of hyperparameters, and 2) a decomposition-free
hyperparameter search. Evaluations using ShapeNet point cloud
dataset show that the proposed scheme achieves almost the same
rate-distortion performance with significant reduction on the com-
putational cost compared to the existing graph-based PCCs.
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1 INTRODUCTION

The miniaturization and cost reduction of cameras and 3D laser
scanners, such as those used in Light Detection and Ranging (Li-
DAR), alongside the emergence of Augmented Reality (AR) and
Mixed Reality (MR) devices, have significantly facilitated the acqui-
sition and utilization of 3D data. To further enhance the utilization
of 3D data across various applications, holographic-type communi-
cation [1], which allows high-quality 3D data communication with
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remote users, is being pursued in communication fields as a pivotal
next-generation technology.

Point clouds [10] have been highlighted in recent years as a
versatile 3D data format. A point cloud consists of numerous 3D
points, with each point comprising 3D coordinates and color com-
ponents. For the realization of holographic-type communication,
point cloud transmission poses significant challenges due to the
extensive traffic. Several coding methods have been proposed to
reduce the traffic, including tree-based [6, 8], graph-based [11, 12],
and 2D mapping-based [7, 9]. For example, geometry-based point
cloud coding (G-PCC) and point cloud library (PCL), which are the
typical tree-based methods, used a tree structure to compress the
3D geometry information. Graph-based coding methods, utilizing
Graph Signal Processing (GSP), can efficiently minimize redundant
information by applying Graph Fourier Transform (GFT) for 3D
coordinates and color components. This involves constructing a
graph signal where each 3D point is a vertex and the distances
between 3D points are edge weights. The GFT can be defined by
performing eigenvalue decomposition of the graph shift operator
based on the edge weights.

The recent studies reported the graph-based PCC yields better
rate-distortion performance compared to the tree-based coding
methods. However, the graph shift operator requires setting seven
parameters—derived from the adjacency matrix, the degree matrix,
and hyperparameters to obtain better rate-distortion performance.
The search space for these parameters is vast; with M potential
values per parameter, the total combinations are approximately
M. Moreover, eigenvalue decomposition for each parameter set
takes O(N?) time complexity in a point cloud with N 3D points,
leading to a total of O(N3M7”) computational cost required to find
the optimal parameter set.

To address these challenges, this paper introduces a new graph-
based PCC method that reduces the time complexity required for
finding a better graph shift operator. Specifically, the proposed
scheme realizes 1) parameter reduction that does not significantly
impact rate-distortion performance, and 2) hyperparameter search
without the need for additional eigenvalue decompositions by em-
ploying a similarity transformation for the graph shift operator.
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Evaluations show that the proposed scheme achieves better 3D
reconstruction quality under the same bandwidth constraints com-
pared to existing graph-based coding methods and reduces compu-
tational time, offering substantial improvements over techniques
that search all the potential hyperparameter sets.

2 GRAPH CONSTRUCTION FOR PCC

Graph structure-based PCC compresses point clouds by employing
a GFT for the point cloud. For this purpose, each point cloud is
modeled as a weighted, undirected graph signal G = (V,E W),
where V and & denote the vertex and edge sets of G, respectively.
The matrix W represents an adjacency matrix with positive weights,
where the element W; ; denotes the weight of the edge between
vertex i and vertex j. The degree matrix D is derived from the
adjacency matrix W as follows:

N
D = diag(Dy, Dy, -+, D), Di = ) Win, (1)

n=1

where N is the number of points in the point cloud. The basis func-
tions used in the GFT are defined by the graph laplacian operator
L, which is derived from the adjacency matrix W and the degree
matrix D. The graph shift operator L is formulated from seven
hyperparameters as follows[4]:

L = m D' + myDEW,D& + msl, 2)

where W, =W + al, and D, is the degree matrix derived from the
adjusted adjacency matrix W,. Here, I is the N X N identity matrix.
The set m = (my, ma, ms, e1, €2, e3,a) € R7 represents the hyperpa-
rameter set that defines the graph shift operator. The graph shift
operator is generally similar to a real symmetric matrix, therefore
possessing orthogonal eigenvectors and non-negative eigenvalues
corresponding to each eigenvector. The eigenvalue decomposition
of the graph shift operator L is defined as: L = ®A®~!, where &
is a matrix of eigenvectors, and A is a diagonal matrix containing
the eigenvalues. The GFT coefficients f, which represent the fre-
quency components of each attribute, are calculated by projecting
the attribute values s onto the basis functions @:f = s @. The corre-
sponding bit sequence is then derived by quantization and entropy
encoding of the GFT coefficients f. On the receiving end, entropy
decoding and dequantization are carried out to retrieve an estimate
of the GFT coefficients f The Inverse Graph Fourier Transform
(IGFT) is finally utilized to reconstruct an estimate of each attribute
§ from the estimated GFT coeflicients and basis functions, defined
as:§ = f oL

3 PROPOSED SCHEME

3.1 Overview

Fig. 1 presents an end-to-end architecture of the proposed point
cloud encoder and decoder. It consists of a point cloud encoder and
a decoder utilizing the GFT. The encoder models a point cloud as
a weighted undirected graph signal G = (V, &, W), where V and
& represent the sets of vertices and edges, respectively. W is an
adjacency matrix with positive weights, with the (i, j) element W; ;
indicating the weight of the edge between vertices i and j. For this
model, the 3D coordinates p = [x,y,2z]T € R3*N, consisting of N
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vertices, is treated as the vertex set of the graph G. Each element
W, j of the adjacency matrix is defined by the following equation:

llpi — pjll5
Wij =exp [-————=], (3)
kp
where K, is a parameter representing the variance of the distance
between two points. The bitstream after Huffman coding is then
transmitted over wired and wireless networks, and the decoder

reconstructs it back into a point cloud.

3.2 Encoder

The encoder generates the adjacency matrix W and the degree
matrix D from the 3D coordinates of the input point cloud. The
GFT coefficients f are then obtained by applying GFT for the 3D
coordinates. These coefficients are subsequently quantized to ¢
according to a predetermined quantization step size q. The step
size q is defined by the quantization parameter r, ensuring that the
range between the maximum and minimum quantized values is r.
The quantization process involves:

¢ =round (f/q), ¢ = ming’, (4)
s.t. max (round (f/q’)) — min (round (f/q’)) = r

where round(-) denotes the rounding operation of each element.
The quantized GFT coefficients ¢ are then encoded into a bit string
using Huffman coding, optimizing the data for efficient transmis-
sion.

3.2.1 Parameter Reduction. To effectively minimize traffic while
preserving the quality of point cloud reconstruction, it is essential
to optimize the hyperparameter setm = (ml, ma, ms, e1, €2, €3, a)
of graph shift operator and quantization parameter r under the
given bandwidth constraint. When the number of searches for
each parameter is M, this involves a search across M® parameter
combinations. This exhaustive search is computationally expensive
and inefficient. The proposed method simplifies the parameter space
by focusing on parameters that significantly impact traffic reduction
without compromising encoding effectiveness.

A critical observation from the definition of eigenvectors is that
the variation of parameter m3 does not affect the resulting eigen-
vectors. Based on this insight, we simplify the graph shift operator
by setting m3 = 0, reducing the complexity from seven parameters
to six:

Leparams = mngl + szZZWaDZS. (5)

Further simplification is achieved by normalizing m; with respect
to my, defining mi = %, which allows us to consolidate these
parameters into a single parameter m]. This transformation retains
the essential characteristics of the operator while reducing the
parameter space from six to five:

Léparams

Lsparams = = mi DS + D*W,DS. 6)

m3
The resultant graph shift operator Lsparams still needs to be a real
symmetric matrix for defining GFT, i.e., the eigenvectors is an
orthogonal. This requirement ensures that ez = es3, leading us

: +
to define a consolidated exponent e, = 82263, and thus we can
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Figure 1: Overview of Proposed Scheme

represent the operator with four parameters:

L4params = m’lDZI + D?WaDZJr. 7)

In summary, the proposed scheme can search the adequate basis
function @, which achieves better rate-distortion performance, from
a four hyperparameter set m’ = (mi, e1, e+, a) and a quantization
parameter q.

3.2.2 Decomposition-Free Hyperparameter Search. Utilizing the
graph shift operator Lgparams, as defined in the previous section,
allows for a quick determination of the adequate basis function
®. However, obtaining basis functions involves an eigenvalue de-
composition for each hyperparameter set m’ = (mj, e, e4, a). It is
typically requiring O(N?3). To address this computational challenge,
we propose a novel approach that leverages a similarity transfor-
mation, reducing the need for repeated eigenvalue decompositions
during the hyperparameter search.

The similarity transformation is applied to the graph shift oper-
ator using the degree matrix Dy, defined as follows.

] Y L »
Lsparams+ = D~ LaparamsDg ©~ = m{ D' + DG "W, D™ (8)

ey —e:
where e_ represents a transformation parameter defined as <5=.

This transformation maintains the structural integrity of the graph
while enabling parameter adjustments that influence the eigenvec-
tor configurations. The transformed eigenvector matrix @’ relates
to the original eigenvector matrix @ from Lgparams via:

® =Dy ® & '=0"'D,* ©)

where D, °~ adjusts the scaling of the eigenvectors without neces-
sitating new eigenvalue decompositions.

From Eq. (9), by applying the newly introduced hyperparameter
e_ to transform the eigenvector matrix derived from the hyperpa-
rameter set m’ = (m'l, e1, ey, a), the proposed scheme can generate
different basis functions. This process does not require a new eigen-
value decomposition of the transformed eigenvector matrix. This
modification enhances computational efficiency by utilizing exist-
ing eigenvector matrices. Additionally, the set of possible graph shift

operators for Lsparams and Lsparams+ are equivalent. This equiva-
lence ensures that the optimized rate-distortion performance is
maintained even without additional decompositions.

3.3 Decoder

The decoder reconstructs the received bitstream into ¢, which is an
estimate of the quantized GFT coefficients. The GFT coefficients
are decoded by applying the quantization step size g that was used
in the encoder. The decoding process is expressed as: f =gq¢.
Subsequently, an estimate § of the 3D coordinates for each 3D point
is derived using the IGFT. The IGFT is applied utilizing @’ as the
basis function.

3.4 Hyperparameter Learning from Training
Point Clouds

The optimized hyperparameter set for the given point cloud can
potentially improve the rate-distortion performance across different
point clouds. In this case, the time complexity is reduced to O(1). For
this purpose, the hyperparameter sets m’ can be optimized using a
training dataset comprised of point clouds. The optimization aims
to minimize the Bjontegaard delta (BD) rate, which is defined in
relation to both the Chamfer Distance [3, 5] and the entropy of the
quantized GFT coefficients. The Chamfer Distance measures the
similarity between two point clouds based on the displacement of
their 3D coordinates, and is calculated as follows:

> min||p- P||2+—Zm1n||P pllz

pes PeS

2|S| (10)

where S is the set of points in the source point cloud, and Sis the
set of points in the decoded point cloud. Entropy, which serves as a
lower bound on the average bit length required for data communi-
cation, is defined by the distribution of quantized GFT coefficients:

= - > P(q)log, P(q)

gecc

(11)
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where c represents the GFT coeflicients after quantization, and P(q)
is the probability of quantized value gq.

By minimizing both Chamfer Distance and entropy, the parame-
ter set aims to ensure that each point in the received point cloud
closely matches its counterpart in the original point cloud, while
simultaneously reducing the required traffic. However, Chamfer
Distance and entropy typically exhibit a trade-off relationship.

Bjentegaard delta (BD) rate [2] is used as a relative measure to
compare different hyperparameter sets by evaluating the trade-offs
between point cloud fidelity (as measured by Chamfer Distance)
and required traffic (as quantified by entropy). The BD rate is cal-
culated using the following integral, which represents the average
logarithmic difference in entropy between two hyperparameter
configurations over the range of observed Chamfer Distances:

1 Dp _
BD rate = 10PE D¢ fDL (log Ex (dz) ~log E1 (d) )dr (12)

Dy = min (dmaé( (d1), dmaé( (dz))

1€C1 2€C2
Dy = max | min (dq), min (d3)
(dlecl( dzECZ(

C={(d,E) {(d’,E')|d <dANE <E}=0}

In this paper, one hyperparameter set is fixed during the calculation
of the BD rate and serves as a benchmark. Here, the combination
graph Laplacian matrix specified in Eq. (15) is used as the bench-
mark. Minimizing the BD rate improves the quality of the recon-
structed point cloud and reduces traffic for effective transmission.

When we consider M candidate values for each parameter of
m = (m’l, e1,e4,a), a total M4 hyperparameter sets are utilized
for learning. During the learning phase, for each point cloud in
the training dataset, the top K% of hyperparameter sets with the
lowest BD rates are selected. If the total number of point clouds in
the training dataset is T, then the total number of candidate sets
for each parameter is M* x K x T. Finally, the optimal value for
each parameter is determined as the mode—the most frequently
occurring value among the candidates. For this study, we set K =
10% and T = 3.

4 EVALUATION
4.1 Settings

Dataset: To evaluate the rate distortion performance of the pro-
posed scheme, we used ShapeNet point cloud dataset. We focused
on objects categorized as “Chair”.

Metric: Quality of the point cloud was measured using the Chamfer
Distance, as defined in Eq. (10), and traffic was measured using
entropy, as outlined in Eq. (11).

Comparison Methods: We compared the proposed scheme against
three widely recognized graph shift operators: “Regular”, “Signless”,
and “Combination”. Each operator is defined as follows:

Regular: L=D -W (13)
Signless : L =D +W (14)
Combination : L = I — D~%’WD~%> (15)

These graph shift operators are referred to as well-known graph
Laplacian operators.
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Figure 2: 3D reconstruction quality as a function of traffic
under the different graph shift operators. Here, the perfor-
mance curve of “7params” is overlapped with that of “pro-
posed 6params” and “proposed 5params”.

Proposed Scheme Variants: The variants of the proposed scheme
are labeled as follows for clarity:

o The graph shift operator defined in Eq. (2) is referred to as
“7params”.

e The operators from Egs. (5), (6), (7), and (8) are labeled “Pro-
posed 6params”, “Proposed 5params”, “Proposed 4params”,
and “Proposed”, respectively.

o The operator determined through learning from the training

dataset is designated as “Proposed Learning”.

Measurement Setup: For the measurement of a rate-distortion
curve, graph shift operators except “Proposed” and “Proposed Learn-
ing” were obtained by varying the quantization parameter r. For
“Proposed” and “Proposed Learning”, we varied both r and the trans-
formation parameter e_.

Execution Environment: The evaluations were performed using
an Intel(R) Xeon(R) Silver 4108 CPU @ 1.80 GHz, an NVIDIA Quadro
GV100 GPU, and Python 3.8.10.

4.2 Effect of Hyperparameter Reduction

In this section, we demonstrate how reducing the number of param-
eters in a hyperparameter set affects the compression performance
of point clouds. For comparison, we used “7params,” which has the
most parameters, and the reduced-parameter schemes “Proposed
6params”, “Proposed 5params”, and “Proposed 4params”. Fig. 2
displays the Chamfer Distance and entropy for each graph shift
operator. The evaluation results reveal the following insights:

e “Proposed 6params” and “Proposed 5params” achieve better
point cloud quality at the same entropy compared to well-
known graph Laplacian operators

e “Proposed 6params” and “Proposed 5params” perform nearly
as well as “7params”.
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Figure 3: Visual performance of the reconstructed point cloud in each graph shift operator. ere, the entropy of regular, signless,

and other schemes is approximately 0.3, 0.9, and 0.1, respectively.
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Figure 4: 3D reconstruction quality as a function of traffic
under the different graph shift operators. Here, “Proposed”
used decomposition-free hyperparameter search.

e “Proposed 4params” shows inferior point cloud quality com-
pared to “7params”, and under certain conditions, performs
worse than Combination in terms of entropy.

Fig. 3 visualizes the original point cloud alongside the reconstructed
point cloud in each graph shift operator. Distortions are observable
in the back and legs across all schemes. Additionally, the seat sur-
face shows notable distortions with Combination and “Proposed
4params”.
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Figure 5: Normalized execution time and Chamfer Distance
in “7params” and each proposed scheme. Here, the entropy
of each schemes is 0.1, respectively.

4.3 Impact of Decomposition-Free Parameter
Search

This section explores the impact of the proposed decomposition-

free parameter searches on the quality of the reconstructed point

cloud, required traffic, and time complexity. For comparison, we

used “7params” and two of the proposed schemes “4params” and

“Proposed”. Fig. 4 illustrates the relationship between Chamfer Dis-

tance and entropy for each graph shift operator. The evaluation
reveals "Proposed”, which realizes decomposition-free parameter
search, enhances reconstruction quality over “Proposed 4params”,
underscoring the effectiveness of its parameter search approach.

Chamfer Distance
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Figure 6: 3D reconstruction quality as a function of traffic
under the different graph shift operators. Here, “Proposed
Learning” used the trained hyperparameters from the train-
ing point cloud dataset.

It suggests that decomposition-free parameter search does not de-
grade the reconstructed point cloud quality. Therefore, the pro-
posed scheme can serve as a viable alternative to conventional
search methods, potentially offering computational efficiency with-
out sacrificing rate-distortion performance.

We then evaluate the execution time across the proposed scheme
variants to discuss the effect of the decomposition-free parameter
search on the time complexity. Fig. 5 shows the normalized execu-
tion times and Chamfer Distances for each proposed scheme. Note
that the execution time for “7params” and “Proposed 6params” are
estimates based on the execution time for one parameter set, while
those for other schemes are based on actual measurements. The
measurement results show that "Proposed" achieves significant re-
ductions in search time compared to computation-hungry schemes,
e.g., “7params”, without the degradation of 3D reconstruction qual-
ity.

In summary, by incorporating a decomposition-free search, "Pro-
posed" achieves execution times similar to “Proposed 4params” but
offers better point cloud compression performance. This demon-
strates the efficiency of the proposed scheme in optimizing both the
computational time and the reconstructed quality of point clouds.

4.4 Effect of Trained Parameter Set

Finally, this section evaluates the compression performance by
applying the hyperparameters learned from a training dataset to
other point clouds. We used “7params” as an ideal performance and
“Proposed Learning” to discuss the effect of the learned hyperpa-
rameters. Fig. 6 shows the Chamfer Distance and entropy for each
graph shift operator. It demonstrates that applying hyperparame-
ters derived from the training point cloud dataset enhances point
cloud compression performance over well-known graph Laplacian

K. Hinata et al.

operators. This finding suggests that the same graph shift opera-
tor could be reused for different point clouds without additional
computation costs.

5 CONCLUSION

In this paper, we propose a graph-based novel PCC scheme to si-
multaneously achieve rate-distortion optimization and expedite hy-
perparameter optimization. For this purpose, the proposed scheme
reduces the number of hyperparameters by leveraging the inherent
properties of the graph shift operator. Additionally, it realizes the
hyperparameter search without eigenvalue decomposition, effec-
tively enhancing both the rate-distortion performance of 3D point
cloud compression and the time complexity of hyperparameter
optimization. Evaluations verified that the proposed scheme signif-
icantly decreases the time needed for hyperparameter search while
maintaining rate-distortion performance compared to computation-
hungry existing schemes. Moreover, the proposed scheme demon-
strated robust point cloud compression performance using hyperpa-
rameter sets derived from the training point cloud dataset, and thus
new parameter searches can be eliminated for the compression.
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