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Abstract
Biosignal-based hand gesture classification is an important component of effective human-
machine interaction. For multimodal biosignal sensing, the modalities often face data loss
due to missing channels in the data which can adversely affect the gesture classification
performance. To make the classifiers robust to missing channels in the data, this paper
proposes using Random Channel Ablation (RChA) during the training process. Ultrasound
and force myography (FMG) data were acquired from the forearm for 12 hand gestures over
2 subjects. The resulting multimodal data had 16 total channels, 8 for each modality. The
proposed method was applied to convolutional neural network architecture, and compared
with baseline, imputation, and oracle methods. Using 5-fold cross-validation for the two
subjects, on average, 12.2% and 24.5% improvement was observed for gesture classification
with up to 4 and 8 missing channels respectively compared to the baseline. Notably, the
proposed method is also robust to an increase in the number of missing channels compared
to other methods. These results show the efficacy of using random channel ablation to
improve classifier robustness for multimodal and multi-channel biosignal- based hand gesture
classification.
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Abstract—Biosignal-based hand gesture classification is an
important component of effective human-machine interaction.
For multimodal biosignal sensing, the modalities often face data
loss due to missing channels in the data which can adversely affect
the gesture classification performance. To make the classifiers
robust to missing channels in the data, this paper proposes using
Random Channel Ablation (RChA) during the training process.
Ultrasound and force myography (FMG) data were acquired
from the forearm for 12 hand gestures over 2 subjects. The
resulting multimodal data had 16 total channels, 8 for each
modality. The proposed method was applied to convolutional
neural network architecture, and compared with baseline, impu-
tation, and oracle methods. Using 5-fold cross-validation for the
two subjects, on average, 12.2% and 24.5% improvement was
observed for gesture classification with up to 4 and 8 missing
channels respectively compared to the baseline. Notably, the
proposed method is also robust to an increase in the number
of missing channels compared to other methods. These results
show the efficacy of using random channel ablation to improve
classifier robustness for multimodal and multi-channel biosignal-
based hand gesture classification.

Index Terms—Biomedical Signal Processing, Biomedical Imag-
ing, Image Processing, Biomedical Sensors, Deep Learning, Ro-
bustness, Multimodal, Multi-Channel, Ultrasound, FMG

I. INTRODUCTION

Hand gesture recognition using biosignals has been a fo-
cus of research for designing pipelines for effective human-
machine interfaces. For this, several biosignal modalities have
been explored such as surface electromyography (sEMG) [1],
ultrasound [2], force myography (FMG) [3], photoplethysmog-
raphy (PPG) [4], mechanomyography [5], inertial measure-
ment unit (IMU) [6], and electrical impedance tomography
(EIT) [7]. Forearm ultrasound can help with visualization
of the musculature which can be used to estimate hand
gestures [8]. Recent research has shown that it can be used to
estimate different hand configurations [9], finer finger move-
ments [2] and forces [10]. With FMG, piezoelectric sensors
around the forearm are used to acquire pressure information
corresponding to muscle contraction, from which hand ges-
tures can be inferred. Ha et al. showed an average classification
accuracy of over 80% for estimating hand gestures and pros-
thetic hand control [11]. Multimodal biosignal-based gesture
classification has been explored primarily with sEMG [12], in
addition to modalities like ultrasound [13], FMG [14] among
others. Multimodal data based systems have been shown to
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improve the gesture classification performance compared to
using just one modality [15]. We explore using ultrasound and
FMG in a multimodal fashion for gesture recognition in this
paper.

With the advancements in machine learning, there is a
growing interest in using biosignals for hand gesture clas-
sification not just in academia but also in industry [16].
The robustness of the machine learning models is of prime
importance for effective hand gesture classification. Though
combining multiple modalities and multiple channels can often
lead to more accurate predictions, it also increases the fragility
of the system, as in practice there are often missing channel
and missing modality issues due to the unreliability of the
sensors and communications, as well as partial occlusions
and other disruptions. A common practice is to impute the
missing values with zeros or the mean [17]. However, such ad-
hoc approaches have no robustness guarantee and still suffer
from significant performance degradation when the number of
missing channels increases. In this paper, we aim to improve
the robustness of multimodal and multi-channel signal pro-
cessing applied to biosignal based hand gesture classification.
We leverage the Randomized Ablation technique [18] from the
Adversarial Machine Learning literature, which was proposed
to defend against sparse adversarial attacks, where some pixels
of an RGB image are adversarially perturbed.

In this paper, we generalize Randomized Ablation to multi-
channel and multimodal settings, which we call Random
Channel Ablation (RChA). We apply this to biosignal pro-
cessing, with a focus on robust hand gesture prediction in the
presence of missing channels. We use multimodal ultrasound
and FMG data for the classification of 12 hand gestures with
a convolutional neural network (CNN). Section II describes
the data acquisition, model, gesture classification workflow,
and random channel ablation technique. Section III describes
the experimental setup for data acquisition, processing, experi-
mental design, and evaluation metrics. Finally, the results and
discussion sections describe the obtained results and major
takeaways in addition to future research directions stemming
from this work.

II. METHODS AND EXPERIMENTAL DESIGN

Ultrasound and FMG data were simultaneously acquired
from 2 subjects. The data acquisition procedure and the 12
hand gestures were explained to the subjects. The study



Fig. 1. Data acquisition: (a) Hand gesture; (b) Linear ultrasound probe
strapped to the forearm using a custom-designed attachment; (c) BioX FMG
armband strapped to the forearm.

was approved by the institutional research ethics committee
at Mitsubishi Electric Research Laboratories (IRB reference
number 23001), and written informed consent was given by
the subjects before the data acquisition.

A. Data Acquisition

The ultrasound data was acquired using a Sonostar 4L
linear palm Doppler ultrasound probe. A custom-designed
3D-printed wearable was strapped onto the subject’s forearm.
The data from the probe was streamed to a Windows system
over Wi-Fi, and screenshots of the ultrasound images were
captured using a custom Python script. The 4L linear probe
has 80 channels of ultrasound data, and the post-processed
beamformed B-mode data is obtained, from which 350×350-
pixel image data is acquired. The FMG data was acquired
using a BioX AAL-Band 2.0. The data were streamed to
the Windows system over Bluetooth, and saved along with
the ultrasound frames using the Python script to ensure that
the ultrasound and FMG data were synchronized. The FMG
band gives 8 channels of FMG data. Fig. 1 shows the data
acquisition from the ultrasound and FMG.

The data were acquired for 12 hand gestures selected based
on activities of daily living, as described in detail in [19].
These hand gestures consist of 4 finger flexions, 4 pinch
configurations, hand wolf, fist, hook, and open hand gestures.
100 frames of data were acquired while the subject had a fixed
hand gesture Per subject, 24,000 frames of data were used for
the study which resulted from 20 sessions of data acquisition
(20 sessions, 12 hand gestures, 100 frames per gesture: 24,000
frames). The average frame rate of data acquisition was 18
Hz. The experiments were run on a desktop with an Intel i7-
13700K CPU, 128GB RAM, and an NVIDIA GeForce RTX
4090 GPU.

B. Model Architecture, Parameters and Metrics

A CNN was used in this paper designed using PyTorch
based on a network used to classify hand gestures from
ultrasound images from the forearm [2], [19]. The network is
tailored for image compression, and its architecture is designed

Fig. 2. The model architecture to classify hand gestures from multimodal
data.

to capture hierarchical features through convolutional and
pooling operations. The network has 4 cascaded convolution
layers followed by batch normalization and pooling layers
compared to the referenced architecture which has 5 cascaded
convolution layers and a different number of parameters per
layer because of different input dimensions. The 2-dimensional
convolution layers have 16 channels as the output channels,
and a kernel size of (3, 3), with a stride of 1. These are
followed by a fully connected linear layer which flattens
out the output from the fourth max-pooling layer. After
another batch normalization, a dropout operation is applied
with dropout probability of 0.5. This is followed by a final
fully connected layer with a softmax activation which leads to
the probabilities of the 12 hand gestures based on the input
data. Each convolution layer has a rectified linear unit (ReLU)
activation. The first fully connected (dense) layer has a ReLU
activation, while the output layer has a softmax activation. The
network is visualized in Fig. 2.

Cross Entropy Loss was used for evaluating the loss and
the Adam optimizer was used for optimizing the network. A
learning rate of 0.0001 and a batch size of 10 were used. The



Fig. 3. Data pre-processing and ablation. (a) The 350 × 350-pixel forearm ultrasound image was acquired using a linear ultrasound probe. (b) 8-channel
FMG data was simultaneously acquired. (c) The ultrasound image was downsized by a factor of 2. The new image dimensions were 175×176. An additional
column of zeros was added to make the column width divisible by 8. (d) Ultrasound and FMG data were independently normalized and then appended per
frame. The FMG data was expanded to span the rows of the ultrasound image. The dimensions of each sample were 175 × 184 with the last 8 columns
belonging to FMG and the remaining to the downsized ultrasound image. (e) The output after random channel ablation with channels 0, 6, 8, and 15 ablated.
First, the number of channels to be ablated was chosen randomly which turned out to be 4. Then, 4 channels were randomly chosen and ablated from the 16
channels.

evaluation was done for three different random seed values: 0,
1, and 11, and the results were averaged over these seeds.
Classification accuracy percentage (Acc) was used as the
accuracy metric, which is the fraction of correct classifications
over the total number of classifications multiplied by 100.

5-fold cross-validation was used to assess the robustness
and generalization performance of our method. The dataset
was partitioned into five subsets, training the model on four of
these subsets, and evaluating its performance on the remaining
subset. This meant, that per subject and fold, the training
data had 19,200 samples and the testing data had 4,800
samples. This process was repeated five times, each time
using a different subset for evaluation. Throughout training and
evaluation, careful attention was given to maintaining temporal
independence and preventing any overlap between the train
and test sets. The results were averaged to provide a more
reliable estimate of the model’s performance and reduce the
impact of variability in a single train-test split.

C. Data Preprocessing

Fig. 3 shows the data pre-processing for the ultrasound and
FMG data. The 350 × 350-pixel ultrasound data and 1 × 8
FMG data are obtained per frame. The ultrasound image is
downsized by a factor of 2. Let I be the original image
with dimensions d× d. The downsized image, Idownsized, with
dimensions d

2 ×
d
2 , is expressed as follows:

Idownsized(i, j) = I(2i, 2j). (1)

Here, i and j are pixel indices in the downsized image,
and 2i and 2j are the corresponding pixel indices in the
original image. The downsized image is shown in Fig. 3(c).
The dimension of the downsized ultrasound image is 175×175
pixels. A zeros column was added to the downsized image to
make the columns perfectly divisible by 8, with the updated
dimensions being 175× 176 pixels.

To have consistency in the FMG and ultrasound data, the
data from both modalities were independently normalized.
Following this, the FMG data was expanded to have the same
number of rows as the ultrasound data and then appended

to the ultrasound data as shown in Fig. 3(d). The dimension
of this image is 175 × 184 pixels with the last 8 columns
representing data obtained from FMG and the remaining 176
columns belonging to the ultrasound image.

D. Robust Training for Hand Gesture Classification

It has been previously shown that randomly ablating image
pixels can help make a classifier robust to sparse adversarial
perturbations that only corrupt very few number of image
pixels [18]. This is because the fraction of corrupted pixels
is very small and the vast majority of the pixels are benign.
There is a high probability that the randomly retained (non-
ablated) pixels are not corrupted. Further, it is possible to rec-
ognize images with partial observation (i.e., retained pixels).
If a classifier is trained deliberately with randomly ablated
information (i.e., partial observation), using the Randomized
Ablation strategy can be certifiably robust to such sparse
adversarial perturbations. In our work, instead of an adversary,
we only consider randomly missing channels, and our robust
classifier is trained on randomly observed/retained channels.

Algorithm 1 describes the robust training procedure of
the proposed Random Channel Ablation method. The pre-
processed data is first combined for both modalities. The
maximum number of ablated channels K, the batch size M
for training, and the learning rate η are specified. Each batch
Xbatch,ybatch in Xtrain,ytrain is then used for training the
neural network and its parameters θ are then updated. The
parameters are updated based on the gradient ∇θ of the loss
function w.r.t. the model parameters θ. The loss function
ℓ(fθ(Xablate),ybatch) is based on the loss obtained from the
predictions fθ(Xablate) and the true labels ybatch.

Fig. 3(e) shows the multimodal data sample after randomly
ablating 4 channels. First, the number of channels to be ablated
was set as 4. Then, 4 channels were randomly chosen and
ablated from the total 16 channels. For FMG, each column
corresponds to one channel, and for ultrasound, each channel
is 22-pixel wide column. This was done so that the ablation
was consistent across the modalities.



Algorithm 1 Robust training via Random Channel Ablation
of T epochs. The neural network f is parameterized by θ.

1: Input Xtrain = append(Xus, Xfmg), ytrain, max # of
ablated channels K, batch size M , learning rate η

2: for t = 1, . . . , T do
3: for {Xbatch,ybatch} in {Xtrain,ytrain} do
4: Xablate ← ablate(Xbatch,K)
5: θ = θ − η∇θℓ(fθ(Xablate),ybatch)
6: end for
7: end for
8: return neural network parameters θ
9:

10: Subroutine Xablate ← ablate(Xbatch,K) :
11: Initialize Xablate = Xbatch

12: Randomly choose # of ablated channels k ∈ [0, . . . ,K]
13: if k > 0, then randomly choose k channels of Xablate

and set them to zero
14: end if

TABLE I
CLASSIFICATION ACCURACY FOR DIFFERENT METHODS WHEN SAMPLES

ARE RANDOMLY MISSING UP TO 25% CHANNELS

Baseline Imputation Proposed Oracle
Subj 1 70.0% 81.9% 86.2% 87.3%
Subj 2 87.3% 95.6% 95.5% 97.1%

Average 78.7% 88.8% 90.9% 92.2%

E. Evaluation

During testing, the index of missing channels is chosen uni-
formly at random for each sample. For missing channels, the
proposed method fills zero to the missing channels, and then
applies robust classifier trained in Algorithm 1 for prediction.

The proposed method is compared with the Baseline
method, Imputation method, and Oracle, where the classifier of
these 3 methods is trained on all channels. The Oracle has all
channels available during testing as well, and its performance
can be viewed as an upper bound for the missing-channel case.
To deal with missing channels at testing, the Baseline method
simply fills in with zero values. While for the Imputation
method, the missing channel is imputed using the overall
sample mean of that channel from the training samples.

III. RESULTS

Upon averaging the hand gesture classification results over
the two subjects, the average Oracle case hand gesture clas-
sification accuracy was 92.2%. Table I shows the gesture
classification accuracy for the Baseline, Imputation, Proposed,
and Oracle methods when the fraction of missing channels is
up to 25%. Since the multimodal data comprises 16 channels,
this leads to a maximum of 4 channels being missing (i.e.,
the number of missing channels of each testing sample is
randomly chosen from 1 to 4). On average, our proposed
method’s classification accuracy was 90.9%, compared to
88.8% for the Imputation method and 78.7% for the Baseline
method.

TABLE II
CLASSIFICATION ACCURACY FOR DIFFERENT METHODS WHEN SAMPLES

ARE RANDOMLY MISSING UP TO 50% CHANNELS

Baseline Imputation Proposed Oracle
Subj 1 56.1% 75.1% 83.8% 87.3%
Subj 2 73.9% 92.2% 95.1% 97.1%

Average 65.0% 83.7% 89.5% 92.2%

Fig. 4. Classification accuracy for a fixed number of channels being missing.

Table II shows the gesture classification accuracy for the
Baseline, Imputation, Proposed, and Oracle methods when
the fraction of missing channels is up to 50%. This leads
to a maximum of 8 channels being missing. On average,
our proposed method’s classification accuracy was 89.5%
compared to 83.7% for the Imputation method and 65.0% for
the Baseline method.

Fig. 4 shows the results where a fixed number of channels
are missing per sample for the different methods. For 4 missing
channels, on average, our proposed method’s classification
accuracy was 90.5% compared to 86.5% for the Imputation
method and 69.8% for the Baseline method. For 8 missing
channels, on average, our proposed method’s classification
accuracy was 87.7% compared to 73.0% for the Imputation
method and 41.6% for the Baseline method. It is also worth
noting that, when there is no missing channel, our robustly
trained classifier performs almost the same as the Baseline
method (which is also the Oracle method since there are no
missing channels).

IV. DISCUSSION

In this section, we discuss the effect of random channel ab-
lation, and the effect of the number of missing channels on the
classification performance. We also highlight the advantages
of our method in making it robust to missing channels and
some future research directions stemming from this work.



A. Effect of Random Channel Ablation

As can be seen in both Tables I and II, the proposed method
outperforms the Baseline and the Imputation methods. For
a maximum of 4 (25%) channels being missing, there is an
improvement of 12.2% compared to the Baseline method, and
2.1% compared to the Imputation method. The classification
accuracy is 1.3% lower than the Oracle case, which is expected
since the proposed method only has partial observation of
the channels during testing. Similar trends were observed
with a maximum of 8 (50%) channels being missing with an
improvement of 24.5% from the Baseline method and 5.8%
from the Imputation method. The classification accuracy for
the proposed method is only 2.7% less than the Oracle case.
This shows that random channel ablation can help make the
classifier robust to missing channels, while still maintaining
very high utility.

B. Effect of Number of Missing Channels

With a higher number of missing channels in the test set, it
is expected to see a significant drop in classification accuracy,
as can be seen for the Baseline method in Fig. 4. For 4
channels missing, the proposed method’s accuracy is 20.7%
better than the Baseline method and 4.0% better than the
Imputation method. For 8 channels missing, the proposed
method’s accuracy is 46.1% better than the Baseline method
and 14.7% better than the Imputation method. Overall, the
drop in the classification accuracy from 0 channels missing
to 8 channels missing is a mere 4.1% for the proposed
method compared to 19.2% for the Imputation method and
50.6% for the Baseline method, demonstrating clearly superior
performance compared to the other methods.

C. A Universal All-in-One Classifier

For the proposed random channel ablation method, only one
universal classifier needs to be trained, and it can be applied
to all situations with up to K out of n channels missing. In
contrast, one could train a specific classifier for the specific
missing-channel situation. For example, one could train a
specific classifier for the situation where only the second
channel is missing. However, this would scale poorly when
the number of total channels n and the maximum number of
missing channels K is large, since one would have to train∑K

k=0

(
n
k

)
classifiers in total, which would not be practical.

D. Future Research

This work focused on showcasing the effectiveness of our
random channel ablation technique for multimodal and multi-
channel biosignals through ultrasound and FMG modalities.
For future work, we aim to diversify the data acquisition
by incorporating additional modalities, such as surface elec-
tromyography, inertial measurement unit gloves, and cameras,
among others. Considering the temporal aspects of the input
data can be used to improve the classification of hand gestures,
and it can also help leverage some additional modalities in a
multimodal setting such as sEMG which has been proven to

deliver good gesture classification performance [20]. For merg-
ing data from multimodal ultrasound and FMG information,
alternative learning based approaches can be explored such as
in [21] and [22]. Within the scope of the system described
in the paper, these approaches would entail learning a low-
dimensional embedding of the ultrasound data which would
then be fused with the 1D FMG signal.

Additionally, the current study focused on data acquired
from 2 subjects. To ensure the generalizability and applica-
bility of multimodal and multi-channel biosignal based hand
gesture recognition using our proposed random channel abla-
tion approach, future work will focus on acquiring data from
multiple subjects. The expanded set of subjects will enable an
evaluation of the proposed approach for subjects with varying
characteristics, making it more versatile.

V. CONCLUSION

In this study, we introduced our random channel ablation
technique aimed at enhancing the robustness of deep learning
classifiers used for hand gesture recognition when faced with
missing channels in multimodal and multi-channel biosignal
data. Our approach demonstrated notable resilience to up
to 50% missing channels, surpassing the performance of
the Baseline and Imputation methods. We observed minimal
degradation in classifier performance compared to the Oracle
case. The efficacy of our method unveils promising prospects
for its application in diverse multimodal and multi-channel
biosignal training scenarios. This technique holds practical
implications for real-world data acquisition and deep learning
model performance, particularly in scenarios where certain
channels may be absent. We illustrated the capability to bolster
model robustness which can be utilized for several applications
and across several modalities.
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