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Abstract
Contact-implicit trajectory optimization (CITO) is an effective method to plan complex tra-
jectories for various contact-rich systems including manipulation and locomotion. CITO
formulates a mathematical program with complementarity constraints (MPCC) that enforces
that contact forces must be zero when points are not in contact. However, MPCC solve
times increase steeply with the number of allowable points of contact, which limits CITO’s
applicability to problems in which only a few, simple geometries are allowed to make contact.
This paper introduces simultaneous trajectory optimization and contact selection (STOCS),
as an extension of CITO that overcomes this limitation. The innovation of STOCS is to
identify salient contact points and times inside the iterative trajectory optimization process.
This effectively reduces the number of variables and constraints in each MPCC invocation.
The STOCS framework, instantiated with key contact identification subroutines, renders the
optimization of manipulation trajectories computationally tractable even for high-fidelity ge-
ometries consisting of tens of thousands of vertices.
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Abstract—Contact-implicit trajectory optimization (CITO) is
an effective method to plan complex trajectories for various
contact-rich systems including manipulation and locomotion.
CITO formulates a mathematical program with complementarity
constraints (MPCC) that enforces that contact forces must be
zero when points are not in contact. However, MPCC solve times
increase steeply with the number of allowable points of contact,
which limits CITO’s applicability to problems in which only a
few, simple geometries are allowed to make contact. This paper
introduces simultaneous trajectory optimization and contact
selection (STOCS), as an extension of CITO that overcomes this
limitation. The innovation of STOCS is to identify salient contact
points and times inside the iterative trajectory optimization
process. This effectively reduces the number of variables and
constraints in each MPCC invocation. The STOCS framework,
instantiated with key contact identification subroutines, renders
the optimization of manipulation trajectories computationally
tractable even for high-fidelity geometries consisting of tens of
thousands of vertices.

I. INTRODUCTION

Humans and other organisms treat contact as a fact of
life and utilize contact to perform dexterous manipulation
of objects and agile locomotion. In contrast, the majority of
current robots avoid making contact with objects as much as
possible, and tend to avoid contact-rich manipulations like
pushing, sliding, and rolling [5, 7]. Trajectory optimization
[10] has been investigated as a tool for generating high
quality manipulations, but choosing an effective mathematical
representation of making and breaking contact remains a
major research challenge. Two general classes of methods are
available: hybrid trajectory optimization and contact-implicit
trajectory optimization (CITO). Hybrid trajectory optimization
divides a trajectory into segments in which the set of contacts
remains constant, but it requires the contact mode sequence to
be known in advance [17] or explored by an auxiliary discrete
search. CITO [16, 12, 13, 15, 14] allows the optimizer to
choose the sequence of contact within the optimization loop.
CITO formulates contact as a complementarity constraint to
ensure that the contact forces can be non-zero if and only if a
point is in contact [16]. Although the resulting mathematical
programming with complementary constraint (MPCC) [11]
formulation is less restrictive than hybrid trajectory optimiza-
tion, it still requires a set of predefined allowable contact points
on the object. Moreover, MPCC rapidly becomes more chal-
lenging to solve as the number of complementarity constraints

increases, so past CITO applications were limited to a small
handful of potential contact points.

This paper introduces the simultaneous trajectory optimiza-
tion and contact selection (STOCS) algorithm to address the
scaling problem in contact-implicit trajectory optimization. To
the best of our knowledge, this is the first method capable of
optimizing contact-rich manipulation trajectories with high-
fidelity geometric representations in 3D. This method paves
the way for manipulation planning with raw sensor input, such
as point clouds derived from RGBD images, and eliminates
the need for geometry simplification.

STOCS applies an infinite programming (IP) approach to
dynamically instantiate possible contact points and contact
times between the object and environment inside the opti-
mization loop, and hence the resulting MPCCs become far
more tractable to solve. This paper presents a novel method,
Time-active Maximum Violation Oracle (TAMVO) with spa-
tial disturbance and temporal smoothing, for selecting salient
contact points and contact times, which encourages the IP
framework to converge quickly toward a feasible solution.
We demonstrate the effectiveness and efficiency of STOCS in
solving 3D pushing, sliding, pivoting, and rolling tasks with
irregular objects and environments, whose models can include
up to tens of thousands of vertices.

II. APPROACH

A. Problem Description

Our method requires the following information as inputs: 1)
Object initial pose region: Qinit ⊂ SE(3). 2) Object goal pose
region: Qgoal ⊂ SE(3). 3) Object properties: a rigid body O
whose geometry, mass distribution, and friction coefficients
with both the environment µenv and the manipulator µmnp

are known. 4) Environment properties: rigid environment E
whose geometry is known. 5) Robot’s contact point(s) with
the object: cmnp. 6) A time step ∆t and number of time steps
T in the trajectory.

Our method will output a trajectory τ that includes the
following information at time t: 1) Object’s configuration: qt.
2) Object’s velocity (angular and translational): vt. 3) Robot’s
contact point(s): cmnp

t . 4) Manipulation force: ut. 5) Object’s
contact points with the environment: Ỹt. 6) Contact force at
each object-environment contact point: z(yt) ∀yt ∈ Ỹt.

In this paper, we treat all objects and environments as rigid
bodies and we assume the contact between the manipulator



Fig. 1: STOCS accepts as input the high-fidelity geometry of the object (represented by a dense point cloud) and the environment (represented
by a signed distance field), the robot’s contact point, and start and goal poses of the object (left). The STOCS algorithm first generates an
initial trajectory by linearly interpolating between the start and goal poses, and then it iterates between selecting contact points and solving
a finite-dimensional MPCC to decide a step direction until the convergence criteria are met (center). As output (right), STOCS produces
the pose of the object, active object-environment contact points (green dots) and forces (green lines), and manipulation force (red lines).
Nonpenetration, Coulomb friction, complementarity, and quasi-dynamic stability are enforced throughout the trajectory.

and the object is sticking contact.

B. STOCS Trajectory Optimizer

Overall, as shown in Alg.1, STOCS formulates contact-rich
trajectory optimization as an infinite program (IP), which is
a constrained optimization with a potentially infinite set of
variables and constraints. It uses an exchange method to solve
the IP, by wrapping a contact selection outer loop around
a finite optimization problem. The inner problem formulates
CITO with complementarity constraints and solves an MPCC.
We refer the reader to [19, 16] for the detailed format of the
MPCC problems solved inside STOCS.

The oracle design is a key component of STOCS. We
compare the Maximum Violation Oracle (MVO) used in [19],
which adds the closest / deepest penetrating points between
the object and the environment at each time step along the
trajectory, along with a new method, Time Active Maximum
Violation Oracle (TAMVO) with smoothing. TAMVO selects
index points more judiciously and only adds the closest /
deepest penetrating points at a specific time step.

We denote the index set Ỹ instantiated at the kth outer
iteration as Ỹ k. MVO may include index points that do
not generate active contact forces during the iteration. For
instance, as illustrated in Fig. 2(a), the closest or deepest
penetrating points at time step t are typically active only
around that specific period.

To address this issue, we introduce TAMVO (Alg. 2). In this
refined approach, the index set is no longer the same across
time steps. Lines 8–12 identify closest points at each time step.
Duplicate points (within threshold ϵ) are excluded in lines 13–
18. Given default parameters nt = 0 and Ns = [0], adds only
the closest or most deeply penetrating points at the current
time step t to Ỹ k

t .

Algorithm 1 STOCS
Require: qstart, qgoal, cmnp

1: Ỹ 0 = [ ] ▷ Initialize empty constraint set
2: z0 ← ∅ ▷ Initialize empty force vector
3: x0 ← initialize trajectory(qstart, qgoal, cmnp)
4: for k = 1, . . . , Nmax do
5: ▷ Update constraint set and guessed forces zk
6: Add all points in Ỹ k−1 to Ỹ k, and initialize their forces in

zk with the corresponding values in zk−1

7: Call Oracle to add new points to Ỹ k, and initialize their
corresponding forces in zk

8: xk ← xk−1

9: ▷ Solve for step direction
10: Set up inner optimization P k = P (Ỹ k)
11: Run S steps of an NLP solver on P k, starting from xk, zk
12: Set x∗, z∗ to its solution, and ∆x← x∗−xk, ∆z ← z∗−zk
13: Do backtracking line search with at most Nmax

LS steps to find
optimal step size α such that ϕ(xk + α∆x, zk + α∆z;µ) ≤
ϕ(xk, zk;µ)

14: ▷ Update state and test for convergence
15: xk ← xk + α∆x, zk ← zk + α∆z
16: if Convergence condition is met then

return xk,zk
17: return NOT CONVERGED

Choosing only the closest points at the current iterate is
potentially not the most ideal choice unless the current iterate
is near-optimal. A better choice would anticipate which points
are active at the optimum. To address this, we introduce the
following two strategies designed to mitigate this issue.
Spatial Disturbance (SD). Recognizing that the current iterate
is likely to be in the neighborhood of the optimal solution, the
SD approach introduces perturbations to the current solution
to add new candidate contact points. Consequently, in lines
9–12 of Alg. 2, qt is perturbed with disturbance ns to choose
closest points. We choose to perturb along each dimension of



Algorithm 2 Time-Active Maximum-Violation Oracle

Input q0:T , Ỹ k−1, max object-environment distance d∗max,
contact uniqueness threshold ϵ, time smoothing step nt, spatial
disturbances Ns

Output Ỹ k

1: Ỹ k ← Ỹ k−1

2: Ỹ ′ ← [[ ]0, [ ]1, . . . , [ ]T ]
3: for t = 0, . . . , T do
4: y∗ = argminy∈Ỹt

g(qt, y)
5: d∗ = g(qt, y

∗)
6: if d∗ < d∗max then
7: add y∗ to Ỹ ′[t]

8: for t = 0, . . . , T do
9: for ns ∈ Ns do

10: ys = argminy∈Yt
g(qt + ns, y)

11: if g(qt + ns, ys) < d∗max then
12: add ys to Ỹ ′[t]

13: for t = 0, . . . , T do
14: for t′ = t− nt, . . . , t+ nt do
15: if 0 ≤ t′ ≤ T then
16: for y′ in Ỹ ′[t] do
17: if ∥y′ − y∥ > ϵ ∀y ∈ Ỹ k

t then
18: add y′ to Ỹ k

t

qt in both positive and negative directions. In 3D, this strategy
chooses 12 perturbations accounting for both increases and
decreases in x, y, z and roll, pitch, yaw. An illustration of
adding perturbation to rotation in 2D is shown in Fig. 2(e).
Time Smoothing (TS). Considering that the closest points
may be active not just at the current time step t, but also
during a surrounding interval, in line 14 of Alg. 2, the closest
points detected within the adjacent time steps from t− nt to
t+nt, governed by a parameter nt, are added to the index set
of time step t. The effect of using TS is illustrated in Fig. 2(d).

III. EXPERIMENTAL RESULTS

The proposed methods are implemented in Python using the
optimization interface and the SNOPT solver [8] provided by
Drake [18].

To demonstrate its generalizability, we collect object geome-
tries from the YCB dataset [4], the Google Scanned Objects
[6], and 3D models found online [1, 2]. Klampt [3] and the
code in [9] are used to find the closest points between two
complex shaped geometries.

To demonstrate the effectiveness of STOCS in planning
with high-fidelity geometric representations, we conduct ex-
periments on ten different objects represented by dense point
clouds sampled on the surface of the objects’ meshes, and five
different environments represented by Signed Distance Field
(SDF). The SDFs are calculated offline on a grid that encloses
the corresponding environment given a closed polygonal mesh
of the environment, and values off of the grid vertices are
approximated via trilinear interpolation.

Using STOCS, we plan for pushing, pivoting, rolling and
rotating trajectories on these objects. Some planned trajectories
are illustrated in Fig. 3, while detailed information regarding
the objects’ geometries and the solve of the trajectories are

(a) Closest point on the object to the environment at each time step

(b) Index points selected by MVO at each time step

(c) Index points selected by TAMVO without SD and TS at each time step

(d) Index points selected by TAMVO with TS (ns = 1) at each time step

(e) Spatial Disturbance

Fig. 2: Comparing various Oracles. (a) The object’s trajectory is
depicted as moving from left to right (as indicated by the black
arrow) and undergoing clockwise rotation (as indicated by the arrow
on the star). (b) In Maximum Violation Oracle (MVO), the closest
point on the object is added ot the candidate set at every time step.
(c) The Time-Active Maximum Violation Oracle, without Spatial
Disturbance and Spatial Disturbances, introduces the closest point
only at the current time step. The Time Smoothing technique with
ns = 1, demonstrated in (d), extends constraint imposition to the
closest points identified at adjacent time steps. (e) presents the Spatial
Disturbance technique applied at a specific time step, with only
disturbed rotation illustrated.

TABLE I: Success rates of STOCS for varying choice of
Oracle.

Oracle MVO TAMVO TAMVO+SD TAMVO+TS TAMVO+SD+TS
Success Rate 0.75 0.42 0.92 0.58 1.0

presented in Table II. We set nt = 1 and Ns = [1e−2] as
the default parameters for TAMVO. ∆T = 0.1 s, µmnp =
1.0 and µenv = 1.0 are used for all the experiments. For all
experiments, T = 10 is used except in the tasks of pushing a
basket on a shelf and sliding a plate on another plate, where
T = 5 is used. To model the robot manipulatior as having a
patch contact, 3 to 5 object vertices in the neighborhood of
the indicated cone are allowed to be used as contact points.

Following the initial assessments, we further evaluated the
efficacy of the TAMVO alongside the SD and TS techniques
through a set of comparative experiments. These experiments
utilized STOCS to plan trajectories for the same set of tasks,
with the primary variation being the specific oracle employed
in each scenario.

Table 1 presents the success rates of all tested Oracles. The
data shows that the MVO achieves a 75% success rate. In con-
trast, TAMVO without SD and TS exhibits worse performance
than MVO; this is particularly evident in 3D scenarios where
relying solely on the nearest object-to-environment point is
inadequate for fulfilling the object’s balance constraints. The
SD and TS techniques, introduced to address this challenge,



(a) Shoe Pushing on Plane (b) Koala Pivoting on Plane (c) Mustard Pivoting on Plane (d) Tool Rotating on Plane (e) Drug Bottle Rolling on Plane

(f) Koala Pivoting on Curve (g) Sphere Rolling on Curve (h) Pillow Pivoting on Sofa (i) Basket Pushing on Shelf (j) Plate Sliding on Plate

Fig. 3: Trajectories planned by STOCS. Progress along the trajectory is indicated by color (dark to light). The black arrow indicates the
object’s movement direction. The red cone marks the contact location of the manipulator on the object.

(a) Average Index Points

(b) Solve Time

Fig. 4: The average index points selected at each time step by
the different Oracles (a) and the solve time (b) for tasks that were
successfully solved by all Oracles.

both demonstrated enhanced performance when combined
with TAMVO, surpassing the success rate of TAMVO alone.
Also, the integration of SD and TS with TAMVO consistently
achieved successful trajectory planning for all tasks.

Figure 4 displays the average number of index points
selected at each time step by the different Oracles assessed
in our study, focusing on tasks that were successfully solved
by all Oracles. As depicted in Fig. 4(a), the MVO selects a
larger number of points than TAMVO and all its variations.
Notably, TAMVO combined with SD and TS can successfully
plan trajectories for all tasks while selecting fewer index points
compared to MVO. These findings validate our hypothesis

TABLE II: Numerical results of STOCS. Number of points in the
object’s representation (# Point), solve time (Time), outer iteration
count (Outer iters), and average active index points for each iteration
(Index points) are reported.

Environment Object Task # Point Outer iters. Index points Time (s)

Plane

Box Push 764 3 5.75 24.84
Shoe Push 17890 6 4.95 144.71
Koala Pivot 67359 4 5.89 37.93
Mustard Pivot 8424 3 8.58 59.37
Sphere Roll 2362 6 4.39 94.42
Tool Rotate 8316 6 5.09 99.85
Drug Roll 5533 10 6.35 319.72

Curve
Koala Pivot 67359 9 13.47 676.01
Sphere Roll 2362 4 6.86 72.66

Sofa Pillow Pivot 13316 7 9.95 201.39
Shelf Basket Push 71961 7 23.10 421.30
Plate Plate Slide 67283 3 24.67 54.02

regarding TAMVO: an index point identified at time step t
is most valuable within a temporal vicinity of t. Furthermore,
these results substantiate our rationale for introducing SD and
TS, affirming that a localized exploration in both temporal
and spatial dimensions offers a more efficient strategy than
incorporating index points identified at distant time steps.

Figure 4(b) presents the solve times for STOCS employing
various Oracles across all successful tasks. The results indicate
that the quantity of index points selected by an Oracle does not
necessarily correlate with the solve time. For instance, in the
sphere rolling on plane task, TAMVO+SD+TS chooses a larger
number of index points than TAMVO+TS, yet the solve time
for TAMVO+SD+TS is much faster than that of TAMVO+TS.
Similarly, in the case of the drug bottle rolling on plane task,
it can be seen that both TAMVO+SD+TS and TAMVO+TS
select a comparable number of index points, yet the solve
time for TAMVO+TS is much faster than TAMVO+SD+TS.
This phenomenon underscores that a larger number of index
points does not invariably lead to longer solve time. Although
TAMVO+SD+TS provides the best performance in terms of
success rate, it is not guaranteed to give the best solve time
for all different tasks.
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