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Abstract

The Lagrangian Inspired Polynomial (LIP) estimator [1] is a black-box estimator based on Gaussian Process Regression,
recently presented for the inverse dynamics identification of Lagrangian systems. It relies on a novel multi-output kernel that
embeds the structure of the Euler-Lagrange equation. In this work, we extend its analysis to the class of underactuated robots.
First, we show that, despite being a black-box model, the LIP allows estimating kinetic and potential energies, as well as the
inertial, Coriolis, and gravity components directly from the overall torque measures. Then we exploit these properties to derive
a two-stage energy-based controller for the swing-up and stabilization of balancing robots. Experimental results on a simulated
Pendubot confirm the feasibility of the proposed approach.

I. INTRODUCTION

In recent years, learning for control in complex robotics applications has gained increasing interest. Several machine
learning methods have been presented, both for modeling and direct synthesis of the controller. In this context, under-
actuated robots (UR) are an important class of systems. UR are mechanical systems characterized by fewer control inputs
than degrees of freedom (DOF). Such systems are ubiquitous in robotics: examples are manipulators with passive joints,
autonomous bicycles and motorcycles, bipedal robots, and most of aerospace and marine vehicles. To control such systems,
for instance, several Reinforcement Learning algorithms have been explored. These algorithms aim at automatically learning
a control law, see for example [2] for a model-free approach or [3], [4] for model-based solutions. Although effective,
generally these methods ignore previous contributions on UR from control theory. As a result, they typically require a huge
amount of interactions with the system and do not provide any performance guarantees.

A viable alternative consists of combining model learning with classic model-based control methods. Within this approach,
a model of the system dynamics is derived from experimental data using machine learning techniques without the need for
manually deriving accurate models of the dynamics, which is the main drawback of classic model-based methods. Then,
the learned model is used inside a model-based controller, exploiting results from control theory.

Typically, such control strategies rely on the inverse dynamics model, which relates torques to the robot trajectories. The
problem of learning the inverse dynamics from data has been extensively explored in the literature [5], [6], [7], [8]. An
interesting class of solutions is represented by black-box methods, which propose to learn the inverse dynamics map by
means of universal approximators, without any knowledge about the underlying system kinematics and dynamics [9], [10],
[11], [12]. However, learning inverse dynamics models for the control of UR is particularly challenging. Indeed, most of
the strategies proposed for UR control require models that return the different inverse dynamics components and the system
energy, see [13]. Typically, black-box models do not provide such information. Underactuation further exacerbates these
problems: torques of the underactuated dimensions are constant signals equal to zero, leading to an ill-posed estimation
problem.

Physics-Informed (PI) models are a class of black-box solutions that could mitigate the aforementioned problem [14],
[15], [16]. PI methods have been recently proposed to improve the data efficiency and generalization of black-box estimators.
Instead of learning the inverse dynamics in a completely unstructured manner, PI methods embed knowledge from physics
as priors in the model structure. As a result, learned models not only show better accuracy but also provide insights about
relevant physical properties. For instance, in [15], the authors proposed Deep Lagrangian Networks (DeLaNs), a neural
networks model with structure inspired by Euler-Lagrange (EL) equations. Similar ideas have been explored in [17], [18],
[19].

In the context of inverse dynamics identification of fully-actuated manipulators, we proposed a PI solution based on
Gaussian Process Regression (GPR), named LIP estimator [1]. The LIP estimator derives a multioutput kernel of the torques
by encoding EL equations. In this work, we extend the analysis of the LIP estimator to the class of UR and show its
applicability in traditional model-based control strategies for UR.
Contribution: Our contribution is twofold. First, we review the recently proposed LIP estimator and extend its analysis
in the context of UR, showing its ability to learn the inverse dynamics map, its different components, and the kinetic and
potential energies. Second, we exploit the LIP to derive an energy-based controller for the stabilization of balancing UR. The
controller is based on two modules: an energy-based controller for the swing-up, and an LQR which stabilizes the system



once it has reached the unstable equilibrium. The energy-based controller performs a partial feedback linearization on the
actuated system and a regulation of the energy to steer the non-actuated system to a trajectory passing through the unstable
equilibrium. Once the system is sufficiently close to the target, the control is switched to the LQR. We show that the LIP
model is suitable to implement this kind of controller since it returns the inertia matrix, the Coriolis and gravity torques,
energy estimates, and the linearization of the system dynamics required by the LQR. This allows performing the swing-up
and stabilization of the balancing robot in a completely black-box fashion. The method is validated on a simulated setup
involving a Pendubot [20]. The LIP method is compared with DeLaNs and with the true analytical model, which has been
included as a baseline. Results confirm the feasibility of the proposed approach.

The paper unfolds as follows. In Section II, we review the modeling and control of UR and we define the inverse dynamics
identification problem. Then, in Section III, we present the LIP estimator and show how to derive the balancing controller.
Section IV reports the results of the performed experiments, while Section V draws the conclusions.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we first provide the inverse dynamics model of UR under the rigid body assumption. Then we review the
class of energy-based controllers we consider in this work.

A. Inverse dynamics

Consider a mechanical system with nDOF and let q ∈ Rn be the vector of generalized coordinates. We assume the system
to have m < n control inputs, each of which actuates a single DOF. We partition the vector q ∈ Rn as qT = [qT

1 , q
T
2 ],

where q1 ∈ Rm and q2 ∈ Rn−m refer respectively to the actuated and the non-actuated DOFs.
Under the rigid body assumption, the inverse dynamics of the system can be derived from the Euler-Lagrange equations

(see [13]) as [
M11(q) M12(q)
M21(q) M22(q)

] [
q̈1

q̈2

]
︸ ︷︷ ︸

m(q,q̈)

+

[
c1(q, q̇)
c2(q, q̇)

]
︸ ︷︷ ︸

c(q,q̇)

+

[
g1(q)
g2(q)

]
︸ ︷︷ ︸

g(q)

=

[
τ 1

0

]
︸ ︷︷ ︸

τ

, (1)

where
M(q) =

[
M11(q) M12(q)
M21(q) M22(q)

]
is the symmetric, positive definite inertia matrix, m(q, q̈) represents the inertial torque, c(q, q̇) accounts for the Coriolis and
centripetal torques, g(q) represents the gravity contribution while τ 1 ∈ Rm is the vector of generalized torques produced
by the m actuators. For the sake of brevity, in the following, we will explicitly point out the dependency on q, q̇ only when
necessary.

The inverse dynamics identification problem consists of estimating the map in (1) that relates x̃ = (q, q̇, q̈) and the torques
τ from a set of noisy measures. Black-box solutions treat the inverse dynamics as an unknown function and, generally,
rely on universal approximators to estimate the function from experimental data. Several solutions, including our approach,
adopt GPR [21], which is a framework for Bayesian inference widely used in machine learning and robotics.

Remark 1: The standard approach when using GPR consists of considering the different torque components independently
and solving n independent regression problems, one for each generalized coordinate. In UR, torques of the under-actuated
dimensions are constant signals equal to zero, leading to an ill-posed estimation problem if the components are learned
independently of each other, which prevents the possibility of deriving any inverse dynamics model useful for model-based
control strategies.

B. Model-based balancing control of underactuated systems

In what follows, we focus our attention on a particular class of robots described by (1), known as balancing systems.
Common examples of balancing systems are the Cartpole, the Furuta Pendulum, the Acrobot, and the Pendubot. For such
systems, the typical control challenge requires swinging up and balancing the robot in the unstable equilibrium point, hereafter
denoted by x⋆ = [qT

⋆ , q̇
T
⋆ ]

T with q̇⋆ = 0. In the remainder of this section, we review one of the most common approaches
presented in the literature, which combines an energy-based controller for the swing-up and an LQR for the balancing.

1) Energy-based swing-up controller: We review the energy-based swing-up controller presented in [22], [23]. The first
step consists of a partial feedback linearization. From (1) we isolate the dynamics of the actuated and non-actuated subsystems
respectively as

M11q̈1 +M12q̈2 + c1 + g1 = τ 1, (2)

M21q̈1 +M22q̈2 + c2 + g2 = 0. (3)



We can solve (3) for q̈2 as q̈2 = −M−1
22 (M21q̈1 + c2 + g2) since M22 is invertible (given that M > 0). Substituting the

resulting expression into (2) leads to
M̄11q̈1 + c̄1 + ḡ1 = τ 1, (4)

with M̄11 = M11 −M12M
−1
22 M21, c̄1 = c1 −M12M

−1
22 c2 and ḡ1 = g1 −M12M

−1
22 g2.

A feedback linearizing controller for (4) can be defined as

τ 1 = M̄11u+ c̄1 + ḡ1, (5)

where u is a design parameter. Choosing τ 1 as in (5) leads to the following closed-loop system

q̈1 = u (6)

M22q̈2 + c2 + g2 = −M21u (7)

We obtained a linear second-order dynamics for the actuated subsystem. Selecting u according to

u = −k1q1 − k2q̇1 + ū, k1, k2 > 0, (8)

makes the linear subsystem in (6) asymptotically stable for ū = 0. The remaining design problem is the choice of ū, which
can be used to stabilize the non-actuated dynamics in (7). Most of the existing literature proposes to design ū based on
energy concepts, penalizing the mismatch w.r.t. the system energy at the desired configuration. This leads to control laws
of the form

ū = fe(T ,V), (9)

where T (q, q̇) = 1
2 q̇

TM(q)q̇ is the kinetic energy, while V(q) denotes the potential energy. However, the choice of fe
depends on the system of interest. We will clarify our choice in the experimental section after introducing our setup. Examples
of energy-compensating terms for common balancing robots can be found in [22], [24], [25].

Remark 2: As highlighted in [22], the controller presented in this section is not stabilizing the system to a fixed point
but only to a manifold. For this reason, in applications such as the swing-up of balancing robots, the control must switch
to another controller achieving local asymptotic stability to the equilibrium.

2) Linear quadratic regulator: To stabilize the system at the equilibrium x⋆ we resort to a Linear Quadratic Regulator
(LQR). First, we provide a state space description for the system with dynamics expressed in (1). Let the system state x be
such that xT = [qT , q̇T ]. The state evolution can be derived from (1) as

ẋ =

[
q̇

−M−1(q)[c(q, q̇) + g(q)]

]
+

[
0n

M−1(q)

]
τ = f(x) + g(x, τ ) (10)

Now we linearize the non-linear system in (10) around xT
⋆ . Moreover, let τ ⋆ be the reference input at the equilibrium.

Applying a first-order Taylor expansion, the system dynamics around (x⋆, τ ⋆) can be approximated as

ẋ ≈ A(x− x⋆) +B(τ − τ ⋆). (11)

Recalling that at the equilibrium q̇⋆ = 0, matrices A and B are

A =
∂f

∂x

T ∣∣∣∣
x⋆,τ⋆

=

[
0 I

−M−1(q)∂g(q)∂q M−1(q)C(q, q̇)

]∣∣∣∣
x⋆,τ⋆

=

[
0 I

−M−1(q⋆)
∂g(q⋆)

∂q 0

]
(12)

and

B =
∂g

∂τ

T ∣∣∣∣
x⋆,τ⋆

=

[
0

M−1(q⋆)

]
, (13)

where C(q, q̇) ∈ Rn×n is the skew-symmetric Coriolis matrix, such that c(q, q̇) = C(q, q̇)q̇.
Then, we introduce the infinite horizon control problem on the linearized system in (11), namely,

argmin
τ

∫ ∞

0

(x− x⋆)
TQ(x− x⋆) + (τ − τ ⋆)

TR(τ − τ ⋆)dt,

which leads to the control input τ = −Kx, with K being the optimal control gain, which can be computed by solving the
continuous time algebraic Riccati equation.

III. LAGRANGIAN INSPIRED POLYNOMIAL ESTIMATOR FOR MODELING AND CONTROL OF UNDER-ACTUATED SYSTEMS

In this section, we briefly review the proposed inverse dynamics LIP estimator for the control of UR. Then, we detail the
application of the LIP model to the UR control described in Section II.



A. LIP estimator

The LIP estimator is based on GPR [21], which is a framework for Bayesian inference widely used in machine learning
and robotics applications. Generally, GPR solutions for inverse dynamics identification model each torque component τ i(x̃)
as a Gaussian Process (GP) by assuming τ i(x̃)s are independent given x̃, and then apply standard GPR inference. As
discussed in the previous section, this approach is not effective for UR. The LIP estimator follows an alternative strategy
and defines the kinetic and potential energies as two independent GPs. Then, it derives a multi-output kernel of the torques
by exploiting EL equations. In this way, the inverse dynamics problem is well defined also in the UR setup.

Our framework models T and V as independent GPs, namely T ∼ GP
(
0, kT (·, ·)

)
and V ∼ GP

(
0, kV(·, ·)

)
, where kT

and kV are the kernels that defines the covariance of T and V . For instance, let x̃ and x̃′ be two input locations, then the
covariance between the values of T at x̃ and x̃′ is E

[
T (x̃)T (x̃′)

]
= kT (x̃, x̃′). For convenience, we introduce also KT

XX′ ,
that is the matrix that collects kT evaluated at X = {x̃1, . . . , x̃N}, X ′ = {x̃′

1, . . . , x̃
′
M}:

KT
XX′ =

kT (x̃1, x̃
′
1) . . . kT (x̃1, x̃

′
M )

...
...

...
kT (x̃N , x̃′

1) . . . kT (x̃N , x̃′
M )

 .

Similar definitions hold for kV and all the other kernels we will introduce. The LIP estimator defines kT and kV relying on
a polynomial formulation that extends [8]. Due to space constraint, we refer the interested reader to [1] for further details.

Notice that, (i) once we define T and V as zero-mean GPs, for the properties of GPs also the Lagrangian function
L = T − V is a zero-mean GP with kernel kL(·, ·) = kT (·, ·) + kV(·, ·), namely L ∼ GP

(
0, kL(·, ·)

)
. Furthermore, (ii)

under rigid body assumptions, each τ i(x̃) is described by a linear differential equation of L, namely, τ i = d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi .
Expanding explicit derivations w.r.t. time, we obtain

τ i =

n∑
j=1

(
∂2L

∂q̇i∂q̇j
q̈j +

∂2L
∂q̇i∂qj

q̇j
)
− ∂L

∂qi
=: GiL,

where Gi is the linear operator that maps L in the linear differential equation of τ i. Finally, (iii) GPs are closed w.r.t. linear
operators [26], namely, if f is a zero-mean GP with kernel kf (·, ·) and g(x̃) = Gf(x̃), then also g(x̃) is a zero-mean GP
with kernel kg(x̃, x̃′) = GG′kf (x̃, x̃′). The last expression means that kg(x̃, x̃′) is obtained by applying two times the
operator G to kf (x̃, x̃′), first w.r.t. the input x̃ then w.r.t. x̃′.

Based on (i), (ii), and (iii), we conclude that torques are a zero-mean GP, with covariance defined by a multi-output kernel
kτ (x̃, x̃′) ∈ Rn×n that encodes the EL equations, and is expressed as

kτ (x̃, x̃′) =

G1G′
1k

L(x̃, x̃′) . . . G1G′
nk

L(x̃, x̃′)
...

. . .
...

GnG′
1k

L(x̃, x̃′) . . . GnG′
nk

L(x̃, x̃′)

 . (14)

To derive (14) we applied the multi-output version of property (iii). For a more detailed derivation, we refer the interested
reader to [1].

Once kτ is defined, we can compute torque estimates following standard GPR. Let X be a set of N training input
locations, and y =

[
yT
1 , . . . ,y

T
N

]T
the respective torque measurements, with yi ∈ Rn equal to the torque measures at input

x̃i. The LIP torque estimate in a general input location x̃ is

τ̂ (x̃) = Kτ
x̃X (Kτ

XX +Σe)
−1

y, (15)

where Σe is a regularization parameter that accounts for the additive Gaussian noise modeled by GPR. For each dimension,
we assumed independent and identically distributed noise, thus obtaining a block diagonal matrix with equal diagonal blocks,
namely Σe = diag(Σe1 , . . . ,ΣeN ), with Σe1 = Σe2 = . . . = ΣeN = diag(σ2

e1 , . . . , σ
2
en), where σ2

ei is the variance of the τ i

measures.

B. LIP for control

In this section, we describe how to estimate the kinetic and potential energies, the inertial, Coriolis, and gravity vector as
well as ∂g

∂q required by the control laws presented in Section II.



1) Kinetic and potential energies: The kinetic energy T and potential energy V are required to implement the energy
based control law described by (9). The LIP model provides a principled way to estimate them from the torque measurements
y. Indeed, within the LIP framework, T , V and τ are jointly Gaussian distributed, since the prior of τ is derived by applying
the linear operator G to the kinetic and potential GPs T and V . The covariances between T and τ and between V and τ
at general input locations x̃ and x̃′ are

Cov[T (x̃), τ (x̃′)] = Cov[T (x̃),GL(x̃′)] =: kT τ (x̃, x̃′), (16a)

Cov[V(x̃), τ (x̃′)] = Cov[V(x̃),GL(x̃′)] =: kVτ (x̃, x̃′). (16b)

Recalling that we model T and V as independent GPs, and in view of the properties of GPs under linear operators, we
obtain

kT τ (x̃, x̃′) = Cov[T (x̃),GT (x̃′)] =
[
G′kT (x̃, x̃′)

]T
= [G′

1k
T (x̃, x̃′), . . . ,G′

nk
T (x̃, x̃′)] (17a)

kVτ (x̃, x̃′) = Cov[V(x̃),GV(x̃′)] =
[
G′kV(x̃, x̃′)

]T
= [G′

1k
V(x̃, x̃′), . . . ,G′

nk
V(x̃, x̃′)] (17b)

From the posterior distributions of T and V given y we can obtain an estimate of the energies at arbitrary input location x̃
as

T̂ (x̃) = KT τ
xX(Kτ

XX +Σe)
−1y, V̂(x̃) = KVτ

x̃X(Kτ
XX +Σe)

−1y, (18)

where the covariance matrices KT τ
x̃X ∈ R1×nN and KVτ

x̃X ∈ R1×nN are obtained as KT τ
x̃X =

[
kT τ (x̃,x1), . . . , k

T τ (x̃, x̃N )
]

and KVτ
x̃X =

[
kVτ (x̃, x̃1), . . . , k

Vτ (x̃, x̃N )
]
.

2) Torque components: The energy based control law in (5) requires to estimate m, c and g, while the LQR in Sec. II-
B.2 requires the inverse of the inertia matrix M as well as the term ∂g

∂q . These quantities are derived similarly to how we
computed the energies in the previous section.

First, the inertia matrix is estimated component wise. The element in position ij of M is

M ij(q) =
∂2T (q, q̇)

∂q̇i∂q̇j
=: GMijT (x̃),

where we introduced the linear operator GMij . The covariance between Mi,j and τ at general input locations x̃ and x̃′ can
be computed as

Cov
[
M ij(x), τ (x̃′)

]
= Cov

[
GMijT (x̃),GT (x̃′)

]
= GMijGkT (x̃, x̃′) =: kM

ijτ (x̃, x̃′).

Accordingly, we can estimate M ij at any input location x̃ as M̂ ij(x̃) = KMijτ
x̃X (Kτ

XX + Σe)
−1y. with KMijτ

x̃X =

[kM
ijτ (x̃, x̃1), . . . , k

Mijτ (x̃, x̃N )]. Then, from the estimate of the inertia matrix we can derive an estimate of the inertial
torque component as m̂(x̃) = M̂(x̃)q̈.

Next, we can estimate the gravity contribution g. Recall that the i-th component of the vector g is defined as gi(q) = ∂V(q)
∂qi .

The covariance between gi and τ at general input locations x̃ and x̃′ is

Cov
[
gi(x), τ (x̃′)

]
= Cov

[
∂V(x̃)
∂qi

,GV(x̃′)

]
=

∂

∂qi
G′kV(x̃, x̃′) =: kg

iτ (x̃, x̃′).

Accordingly gi can be estimated at any input location x̃ as ĝ(x̃) = Kgiτ
x̃X (Kτ

XX+Σe)
−1y, with Kgiτ

x̃X = [kg
iτ (x̃, x̃1), . . . , k

giτ (x̃, x̃N )].
Given the estimates of m and g, it is possible to obtain an estimate of the Coriolis and centripetal contribution c as

ĉ(x̃) = τ̂ (x̃)− m̂(x̃)− ĝ(x̃).
Finally, the matrix ∂g

∂q ∈ Rn×n required in the computation of matrix A in (12), is estimated following the same procedure
adopted for the inertia matrix. Its element in position ij is given by[

∂g(q)

∂q

]
ij

=
∂2V(q)
∂qi∂qj

=: GGijV(q) =: Gij(x̃).

Then, the covariance between Gij(x̃) and the torque vector τ at general input locations x̃ and x̃′ is

Cov
[
Gij(x̃), τ (x̃′)

]
= Cov

[
GGijV(q),GV(x̃′)

]
= GGijG′kV(x̃, x̃′) =: kG

ijτ (x̃, x̃′).

Finally, the estimate at a general input location x̃ is computed as Ĝij(x̃) = KGijτ
x̃X (Kτ

XX + Σe)
−1y, with KGijτ

x̃X =

[kG
ijτ (x̃, x̃1), . . . , k

Gijτ (x̃, x̃N )].



IV. EXPERIMENTAL RESULTS

We chose the Pendubot as a benchmark for testing the LIP estimator performance on the estimation and control of a UR.
The Pendubot is a double-inverted pendulum composed of two links with only the first one actuated. In this example the
links lengths are l1 = l2 = 20 cm and masses are m1 = m2 = 0.3 kg respectively. The task consists of swinging up and
controlling the system in the unstable equilibrium point. To carry out the task, we first derive an inverse dynamics model
using the LIP estimator, then we implement the controller presented in Section II with the learned model. We implemented
all the simulations and controllers in Python and with the auxiliary library PyTorch, [27].

A. Estimation evaluation

First, we test the ability to estimate the torque τ and the components m(q, q̈), c(q, q̇),g(q) and the potential and kinetic
energies on the simulated Pendubot. The trajectories used for training and test were collected simulating (1). The input
torques are different realizations of filtered white Gaussian noise with variance 0.5 and cutoff frequency of the filter 1 Hz.
Test trajectories are significantly different from the training trajectories, because of high accelerations that are not present
in the training set. The hyperparameters of the LIP estimator were optimized by marginal likelihood maximization. As a
baseline, the LIP model is compared with the DeLaN model and we considered the same structure as in [15] and used the
Adam optimizer. The accuracy when predicting torques and energies is evaluated by means of Mean Squared Error (MSE)
in Fig. 1. We also show the estimated trajectories on the test dataset in Fig. 2. The proposed LIP model outperforms the

τ1 τ2 m1 m2 c1 c2 g1 g2 V T
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E
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Fig. 1. MSE of torque components and energies of the LIP (green) and DeLaN (red).
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Fig. 2. Torques and energies and estimates. The dashed blue line represents the ground truth, LIP and DeLaN are in green and red, respectively.

NN-based torque estimator and can also well estimate all the components of the torque and the energies. Instead, even
though the DeLaN produces reasonable estimates of torque and energies completely misses the decomposition of inertia
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Fig. 3. Time evolution of the generalized coordinates q1 and q2. In dashed black is the real controller, in green the LIP-based one, and in orange the
nominal one.

and Coriolis components. The ability of the LIP model to well capture all the different components is fundamental for
model-based controllers like the energy-based one presented in Section II.

B. Control performance evaluation

The goal of this section is to show that using the black-box LIP model we can perform a complete swing up and balancing
of the Pendubot without requiring the knowledge of the model. We implemented the general control scheme described in
(5) and (8), with k1 := kp/kd and k2 := kv/kd. Regarding the choice of ū, we implemented the same strategy as in [25],
namely

ū =
kE(E − E⋆)Ξ

kd(kdM22 + kE(E − E⋆)|M |) ,

with Ξ = |M |(kpq1+ kv q̇1)+ kd(M12(c2+ g2)−M22(c1+ g1)). The values chosen for the controller’s gains are kE = 0.8,
kp = 0.31, kd = 0.029 and kv = 0.064. The energy-based controller is switched to the LQR when the Pendubot reaches a
neighborhood of the vertical equilibrium, described by the condition |q1|+ |q2|+ 0.1|q̇1|+ 0.1|q̇2| < ϵ, with ϵ = 0.6.

The feedback matrix K of the LQR controller is computed using the lqr routine of the Python Control Systems Toolbox
with Q = I and R = 100, obtaining K = [8.2 8.2 1.8 1.2]. The response of the LIP-based controller is compared against
the response given by the true model and a nominal model. In the latter, we considered uncertain knowledge of the system’s
parameters, assuming that m1 = 0.315 kg, m2 = 0.285 kg, l1 = 20.4 cm, and l1 = 19.2 cm. The DeLaN estimator has not
been considered for this task, since it does not provide the possibility to implement the LQR controller. Fig. 3 depicts the
time evolution of the joints’ variables. We can notice that the LIP based controller is capable of swinging up and balancing
the system and that the trajectory produced is almost identical to the one we obtain using the true model. With the nominal
model we are still able to achieve the same goal, however the performances of this controller are worse than the data-driven
ones. The swing-up time needed to reach a neighborhood of the vertical position and switch to the LQR is higher. Also,
the stabilizing controller takes more time, with a larger overshoot.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we extended our GP-based PI inverse dynamics estimator, named Lagrangian Inspired Polynomial estimator,
to modeling and control of UR. Differently from standard GP-based black-box models, the LIP estimator, besides deriving
an inverse dynamics model in a black-box fashion, can also estimate the different dynamics components and potential and
kinetic energies. Thanks to these properties, the resulting model can rely on model-based controllers from control theory to
solve control tasks for UR. The proposed strategy has been compared in simulation with state-of-art solutions, confirming
the effectiveness of the proposed strategy.
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