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Integrated Motion Planning and Actuator Physical

Design for Mobile Manipulators
Zehui Lu, Yebin Wang

Abstract—This paper investigates the differentiable dy-
namic modeling of mobile manipulators to facilitate efficient
motion planning and physical design of actuators, where the
actuator design is parameterized by physically meaningful
motor geometry parameters. These parameters impact the
manipulator’s link mass, inertia, center-of-mass, torque con-
straints, and angular velocity constraints, influencing control
authority in motion planning and trajectory tracking control.
A motor’s maximum torque/speed and how the design param-
eters affect the dynamics are modeled analytically, facilitating
differentiable and analytical dynamic modeling. Additionally,
an integrated locomotion and manipulation planning problem
is formulated with direct collocation discretization, using the
proposed differentiable dynamics and motor parameterization.
Such dynamics are required to capture the dynamic coupling
between the base and the manipulator. Numerical experiments
demonstrate the effectiveness of differentiable dynamics in
speeding up optimization and advantages in task comple-
tion time and energy consumption over established sequential
motion planning approach. Finally, this paper introduces a
simultaneous actuator design and motion planning framework,
providing numerical results to validate the proposed differen-
tiable modeling approach for co-design problems.

I. Introduction
Mobile manipulators offer an evolution in robotic sys-

tem architectures, enabling them to transition from au-
tomated systems to autonomous ones [1]. These systems
combine mobility, provided by the mobile platform, with
the manipulation capabilities of the mounted articulated
arm, resulting in a versatile manipulation workspace [2].
Mobile manipulators have gained attention across various
domains, including industrial settings like factories and
warehouses [3]–[5], indoor environments such as health-
care [6], and outdoor field applications like environment
exploration [7], [8], excavation [9], and satellite service [10].
Their flexibility makes them well-suited for undertaking
and assisting with a wide range of tasks [2]. Nevertheless,
mobile manipulators are expected to operate in complex,
less structured, and dynamic environments, which presents
unique challenges in system design, perception, motion
(i.e. locomotion and manipulation) planning, and control.
These challenges have motivated researchers to explore
various approaches in planning for mobile manipulators.
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Motion planning is crucial in bridging the gap between
perception and control in autonomous mobile manipula-
tors across different deployment stages. This continuum is
characterized by the level of feedback between perception
and control, spanning from motion planning methodolo-
gies primarily used in offline settings to various forms
of online replanning or closed-loop control suitable for
navigating complex, less structured, and dynamic environ-
ments [2]. Motion planning typically involves predicting
how the ego robot behaves based on a certain range of
actions, and assessing the impacts of these actions on
both the environment and the robot’s subsequent decision-
making process. The prediction usually relies on either a
kinematic or dynamic model of the ego robot. The choice
between these models depends on the required accuracy
of the modeling and the specific mission requirements.

Over the past two decades, researchers have been
focusing on developing computationally efficient methods
for generating safe and robust motion planning in a
complex environment. The planning/control hierarchy of
a robot typically consists of at least two levels [11].
A high-level planner, often a motion planner, generates
a desired trajectory of velocity, acceleration, or torque
for each actuator, which is then passed to a low-level
controller. The low-level controller for each actuator is
responsible for tracking the desired trajectory provided by
the high-level planner. However, the actual behavior of the
robot may not always align exactly with what the motion
planning algorithm anticipates due to the robot’s modeling
fidelity and the inherent dynamics of its actuators. Based
on existing literature, this discrepancy or uncertainty is
somewhat manageable to some extent in specific domains.
However, from the perspective of designers or manufac-
turers, this level of modeling and its subsequent motion
planning is insufficient. In other words, manufacturers
must understand how critical design parameters influence
the system dynamics, actuator capabilities, subsequent
motion planning, and eventually closed-loop robot control.
Given some performance metrics, these factors can assist
in iteratively updating the design parameters to achieve
optimal robot performance. The entire process is known as
robot co-design. Additionally, both the system dynamics
and the impact of design parameters on the system
dynamics are expected to be analytically modeled, which
aims to facilitate solving some underlying optimization
problems related to motion planning or robot design given
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existing numerical gradient-based optimization solvers.
To summarize, is it necessary to understand how major

design parameters analytically influence the system dy-
namics and actuator capabilities, and how these factors
affect motion planning subsequently. This paper investi-
gates the analytical and differentiable dynamic modeling
of mobile manipulators with motor parameterization given
physically meaningful motor geometry parameters, which
enables integrated motion (locomotion and manipulation)
planning and actuator design. This paper also studies how
the design parameters affect the actuators’ capabilities and
subsequently the motion planning given the parameterized
dynamics model. The differentiability in this paper means
that the gradient of the system dynamics regarding the
underlying optimization decision variables, such as the
system’s states and inputs, is analytical.

A. Literature Review
1) Motion Planning: The mobile base and manipulator

have significantly different dynamic characteristics, as
the mobile base generally has higher inertia than the
manipulator. Despite this disparity, these two systems are
strongly coupled, leading to complex dynamic behaviors.
These characteristics compound the complexity of the
planning problem.

Various approaches have been employed to solve the
motion planning problem for mobile manipulators. The
planning algorithms are generally categorized into two
classes, i.e. combined or separate planning, based on
whether they consider the behavioral differences between
the mobile base and the robot manipulator or not [12].

For separate planning, a complex task is often divided
into a sequence of sub-tasks, and planning is conducted
separately for each sub-task. This approach essentially
decouples the planning for the mobile base and the robot
manipulator due to the lack of a dynamic model of the
entire mobile manipulator. Nevertheless, it reduces the
complexity of planning over a high-dimensional space.
While various planning algorithms exist in the literature
for locomotion (mobile base) [13] and manipulation plan-
ning [14]–[23], they have not been specifically implemented
for mobile manipulators. When motion planning is sepa-
rately performed for the mobile base and the manipulator,
the existing algorithms for each component can be utilized
once a goal configuration is determined for both the mobile
base and the manipulator. The separation of locomotion
and manipulation results in inefficient and suboptimal
solutions even if optimal solutions are obtained for each
sub-task [12]. Furthermore, the separation may lead to
infeasibility since poor base placement could render the
final goal state unreachable [12], [24].

As for the combined planning, existing methods can be
categorized into several subsets based on utilizing different
levels of model information. First, some methods rely on
the kinematic model of a simple mobile manipulator to
design position-tracking controllers [25] and perform tra-
jectory planning [26]. Particularly, [27] perform position-
tracking control based on a kinematic model of the base

and a dynamic model of the manipulator. Also, [28] derive
the dynamics for a two-wheel differential unicycle with a
two-link manipulator, and proposes an optimization-based
trajectory planning with constant joint velocity limits.

The majority of the literature relies on fast sam-
pling/searching [5], [8], [17], [29]–[38] or optimizing [5],
[9], [16], [39]–[42] over a generally high-dimensional con-
figuration space or the task space (i.e. the Euclidean space)
with kinematic constraints, where the collision avoidance
is typically implemented by checking the intersection
between the forward occupancy (volume) of the robot and
the volume of obstacles. Since implementing the forward
occupancy or enforcing kinematic constraints only requires
a kinematic model, there is no essential difference in doing
so for a mobile manipulator or a fixed 6-DOF (degree of
freedom) manipulator. Consequently, a mobile manipula-
tor is considered a single system despite the behavioral
difference between the mobile base and the manipulator.
Due to the absence of dynamics or actuator information,
the motion trajectory may not always be dynamically
feasible. As a result, one can only assume that, given
empirical kinematic constraints on joint velocities and
accelerations, the desired inputs for actuators are always
feasible. Thus, at run-time, the actual trajectory may
deviate from the expected one from motion planning.
On the other hand, these empirical kinematic constraints
could also significantly affect the operation speed of
robots. This effect is especially noticeable for mobile
manipulators, where limiting acceleration and velocity is
necessary in the literature to minimize the jerk caused by
sudden movements and the manipulator’s sway while the
base is in motion.

To reduce this discrepancy, [43] and [44] employ a high-
fidelity dynamic model for offline modeling error computa-
tion and a low-fidelity kinematic/dynamic model for real-
time planning. These methods incorporate pre-computed
modeling errors between two models to reduce real-time
computational burden and address safety concerns arising
from inaccuracies in real-time planning. Additionally,
some methods such as [22] and [23] utilize two models of a
fixed manipulator with low and high fidelity for real-time
motion planning and control. Therefore, a high-fidelity
dynamic model for a mobile manipulator is essential for
fast and high-precision motion planning in safety-critical
scenarios, as such a model accurately characterizes the
dynamic coupling between the base and the manipulator.
Moreover, from the manufacturers’ perspective, under-
standing how major design parameters analytically affect
the dynamics and actuator capabilities is necessary. This
understanding allows for the consideration of these factors
in subsequent motion planning, ensuring that the planned
trajectories are dynamically feasible given the physical
limitations of the system and its actuators.

2) Dynamic Modeling: According to the above litera-
ture review on motion planning, dynamic modeling for
mobile manipulators is essential for accurate and safe
motion planning, as well as robot design problems. The
literature on dynamic modeling of mobile manipulators
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can be generally categorized into two classes, i.e. modeling
for a particular type of mobile manipulators or general
multiple rigid bodies.

Regarding the dynamic modeling for some particular
mobile manipulators, [26] and [25] develop kinematic
models for differential unicycles with a two-link/three-link
manipulator. [27] combine the kinematics of a nonholo-
nomic cart with the dynamics of a three-link manipulator.
[28] discuss how to model the dynamics of a differential
unicycle with a two-link manipulator. [45] develop a dy-
namic model for a nonholonomic cart with a two-flexible-
link manipulator by recursive Gibbs–Appell (Lagrange)
formulations. The above works model the kinematics or
dynamics of the mobile base as a simple differential
unicycle, where the contact between the wheels and the
ground is not considered. In contrast, [46] investigate the
high-fidelity modeling of a four-wheeled robot, including
the modeling of contact forces between the wheels and
the ground, as well as how the terrain affects the robot’s
dynamics.

As for the analytical modeling methodologies for general
multibody dynamics in the literature, [47] proposes the
Articulated Body Algorithm (ABA) to efficiently and
analytically generate forward dynamics for a tree-like
chain of articulated links. [48] investigate the analytical
and symbolic computation of derivatives for the analytical
forward dynamics given the ABA. [49] propose Pinocchio,
a fast implementation of rigid body dynamics algorithms
and their analytical derivatives. Pinocchio can take a
robot’s urdf configuration file as input to generate its
analytical dynamics. While Pinocchio is widely used in
the research community, it cannot analytically embed
actuators into the system dynamics, as they are implicitly
included in the mass, inertia, and center-of-mass (CoM)
of each link in an urdf file. [50] propose a revised
ABA algorithm for calculating the forward dynamics of
a fixed 6-DOF manipulator, where the motor dynamics
are coupled with the manipulator dynamics. Although
the dynamics’ fidelity is relatively high, combining the
slow manipulator dynamics (∼ 100 Hz) with the fast
motor dynamics (over 2000 Hz) can significantly slow
down any computation that involves dynamics forward
propagation as it requires a smaller discretization. Hence,
for the sake of computational efficiency, it is necessary
to analytically understand the motors’ capacity and how
they affect the entire robot without including their faster
dynamics. Therefore, this paper aims to investigate how
to include this information analytically into the dynamics
of a mobile manipulator.

B. Paper Organization and Contributions
The rest of this paper is organized as follows: Section

II introduces necessary notations and preliminary defi-
nitions; Section III presents the definition of a class of
mobile manipulators and all its necessary components;
Section IV introduces the parameterization of servomotors
given motor geometry parameters, as well as presents

both the numerical and analytical modeling of motor
torque capacity; Section V presents the forward and
inverse dynamics modeling of a mobile manipulator and
cross-validates the algorithms; Section VI formulates an
integrated locomotion and manipulation planning opti-
mization problem with discretization by direct collocation;
Section VII presents some numerical experiments for the
integrated planning method and a benchmark method;
Section VIII showcases a simultaneous actuator design and
motion planning framework with some numerical results;
Section IX discusses the limitations of the proposed
modeling approach and concludes this paper.

The contributions of this paper are summarized as
follows:

1) An analytical modeling approach for a manipulator’s
actuators based on motor design parameters;

2) A differentiable and analytical modeling approach
for mobile manipulators given actuators parameter-
ized by motor design parameters;

3) An analytical modeling approach for a motor’s
maximum speed/torque as a function of its design
parameters;

4) An integrated locomotion and manipulation plan-
ning approach with motor torque/speed constraints
and direct collocation discretization;

5) A framework of simultaneous actuator design and
integrated motion planning for mobile manipulator
co-design.

II. Preliminaries

This section introduces necessary notations and prelim-
inary definitions.

A. Notations

Denote R as the real number set and R+ as the positive
real number set. Denote Z+ as the positive integer set.
Denote Em as the m-dimensional Euclidean vector space.
Denote SO(3) as the Special Orthogonal Group associated
with E3. Denote SE(3) as the Special Euclidean Group as-
sociated with E3. For x,y ∈ Rn, x ≤ y indicates element-
wise inequality. Let col{v1, · · · ,va} denote a column stack
of elements v1, · · · ,va, which may be scalars, vectors
or matrices, i.e. col{v1, · · · ,va} ≜

[
v1

⊤ · · · va
⊤]⊤.

Let 0n,1n ∈ Rn denote a zero and an one vector. Let
In ∈ Rn×n denote an identity matrix. Let Ja, bK denote a
set of all integers between a ∈ Z and b ∈ Z, with both ends
included. Denote diag(a1, · · · , an) as a diagonal matrix in
Rn×n with diagonal elements a1, · · · , an. Given a matrix
A ∈ Rn×m, A[a : b, c] ∈ R(b−a+1) (1 ≤ a ≤ b ≤ n, 1 ≤
c ≤ m) represents a vector slice of A from c-th column,
a-th row until b-th row; A[a : b, c : d] ∈ R(b−a+1)×(d−c+1)

(1 ≤ a ≤ b ≤ n, 1 ≤ c ≤ d ≤ m) represents a matrix slice
of A from c-th column until d-th column, a-th row until
b-th row.
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B. Homogeneous Transformation

Let TL1,L2 ∈ SE(3) be a homogeneous transformation.
Its subscript indicates that TL1,L2 is a transformation
from an inertia frame {L2} to an inertia frame {L1}. Let
pL2

be a homogeneous coordinate of a point in R3 in
the frame {L2}, then TL1,L2

· pL2
is the homogeneous

coordinate of the same point in the frame {L1}. Let
TL2,L3 ∈ SE(3) be a homogeneous transformation from
an inertia frame {L3} to the inertia frame {L2}. Then
TL1,L3

= TL1,L2
· TL2,L3

is the homogeneous transfor-
mation from the frame {L3} to the frame {L1}. Denote
ML1,L2

∈ SE(3) be a homogeneous transformation with
the same linear translation of TL1,L2

and zero rotation, i.e.
ML1,L2 [1 : 3, 1 : 3] = I3 and ML1,L2 [1 : 3, 4] = TL1,L2 [1 :
3, 4].

C. Euclidean Cross Operator

For two vectors a, b ∈ R3, the cross product a × b is
equivalent to a linear operator [a×] that maps b to a×b.
The operator a× is given by

a× =

xy
z

× =

 0 −z y
z 0 −x
−y x 0

 . (1)

If λ ∈ R, then (λa)× = λ(a×). The matrix in (1) is a
3× 3 skew-symmetric matrix representation of vector a.

D. Spatial Cross Operator

Given a homogeneous transformation T =

[
R p

01×3 1

]
∈

SE(3), its adjoint representation [AdT ] is

[AdT ] =

[
R 03×3

[p×]R R

]
∈ R6×6, (2)

where R ∈ SO(3) and p ∈ R3. [AdT ] is a linear operator
and has the following properties:

[AdT−1 ] = [AdT ]
−1, [AdT 1T 2

] = [AdT 1
][AdT 2

]. (3)

Denote a spatial twist V =

[
ω
v

]
∈ R6 with angular

velocity ω ∈ R3 and linear velocity v ∈ R3 in its
inertia frame {L2}. Given a homogeneous transformation
TL1,L2 , its adjoint operator applying on a spatial twist,
i.e. [AdTL1,L2

]V , is a transformation of the spatial twist
from the inertia frame {L2} to the inertia frame {L1}.

A spatial cross operator [V×∗] is given by

[V×∗] ≜ [adV ] =

[
ω× 03×3

v× ω×

]
∈ R6×6. (4)

The spatial cross operator [V×∗] can be viewed as a
differentiation operator that maps from a spatial force
to the derivative of the spatial force.

E. Screw Axis to Homogeneous Transformation

Given a screw axis S =

[
ω
v

]
∈ R6 with ||ω|| = 1,

for any angular distance θ ∈ R traveled around the axis
S, the corresponding homogeneous transformation matrix
T (S, θ) ∈ SE(3) is

T (S, θ) = e[S]θ =

[
R(ω, θ) p(S, θ)
01×3 1

]
, (5)

where R(ω, θ) = I3 + sinθ[ω×] + (1 − cosθ)[ω×]2, and
p(S, θ) = (I3θ + (1− cosθ)[ω×] + (θ − sinθ)[ω×]2)v. The
matrix exponential e[S]θ converts a rotation around the
screw axis into a homogeneous transformation in SE(3).

III. Mobile Manipulator

This paper considers a class of mobile manipulators
given in Fig. 1. Suppose that the degree of freedom (DOF)
of the manipulator is n ∈ Z+. Link 2 is the first (fixed)
link of the manipulator. Joint 3 is the first joint of the
manipulator. Link 2 is installed rigidly on Link 1, a mobile
base, and thus Joint 2 is a 0-DOF fixed joint. Joint 1
is defined as a 3-DOF planar joint, which includes the
linear translation along the x-axis and the y-axis and the
rotation around the z-axis. Joint 1 connects Link 1 with
the ground, which is also denoted as Joint 0 and Link 0.
From Joint 3 to Joint 2+n, each joint is a 1-DOF revolute
joint along a screw axis.

As illustrated in Fig. 2, for each Joint k, k = 3, · · · , n+2,
there is a motor installed, denoted by Motor k(k ≥ 3). In
detail, for each k = 3, · · · , n+ 2, the stator of Motor k is
installed rigidly on Link k − 1 and the rotor of Motor k
connects with Link k through Joint k’s gearbox.

Remark 1. This paper models the mobile base as one rigid
body with one 3-DOF planar joint on SE(2) because this
paper focuses on the modeling methodology and algorithm
of the forward and inverse dynamics of the entire chain of
rigid bodies given motor parameterization. To model the
full 6-DOF motion of a mobile base, including pitch and
roll movements, one has to define a particular mechanical
configuration for the mobile base, including how motors
are attached to the wheels, and how wheels are attached
to the base and interact with the ground, which introduces
extra modeling complexity and is out of the scope of this
paper.

A. Joints
Before introducing the forward dynamics, the kinemat-

ics of each joint and link need to be defined first. If Joint
1 is just a naive 3-DOF joint allowing movement in SE(2),
its motion subspace matrix in Joint 1’s inertia frame {J1}
is given by

SJ1
=

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⊤

∈ R6×3. (6)
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Figure 1. Definition of a mobile manipulator. Joint 3 to Joint n+2
are all 1-DOF joints; Joint e is only for notation and has 0-DOF.

Figure 2. Scheme of a geared motor between Link k− 1 and Link k
(k = 3, · · · , n+ 2).

The position and velocity variables of Joint 1 are given
by

q1 ≜
[
θz px py

]⊤
, q̇1 ≜

[
ωz vx vy

]⊤
. (7)

Since Joint 2 is a fixed joint with 0-DOF, its motion
subspace matrix in Joint 2’s inertia frame {J2} is given
by

SJ2
= 06. (8)

And its position and velocity variables q2 are given by

q2 ≡ 0 ≡ q̇2. (9)

For Joint k = 3, · · · , n + 2, its position and velocity
variables are given by qk ≜ θk ∈ R and q̇k ≜ θ̇k ∈ R,
where θk and θ̇k are the joint angular position and
velocity around the screw axis of Joint k, respectively.
For Joint k = 3, · · · , n + 2, its motion subspace matrix
in Joint k’s inertia frame {Jk} is equivalent to its screw
axis. For Joint k rotating around its y-axis and z-axis
of the frame {Jk}, SJk

=
[
0 1 0 0 0 0

]⊤ and
SJk

=
[
0 0 1 0 0 0

]⊤, respectively.
By [47, Chapter 3.5], the apparent derivative of Joint

k’s motion subspace matrix SJk
is defined by

S̊Jk
=

∂SJk

∂t
+

nk∑
j=1

∂SJk

∂qk[j]
q̇k[j], (10)

where nk is the dimension of Joint k’s position variable
qk; qk[j] denotes the j-th element of qk. Denote S̊Jk

as

the apparent derivative of SJk
in the frame {Jk}, and we

have

S̊J1
= 06×3, S̊Jk

= 06, ∀k = 2, · · · , n+ 2. (11)

Given the class of mobile manipulators defined in Fig.
1, the linear transformation from {Jk} to {Jk−1} is given
by

MJk−1,Jk
=

[
I3 pJk−1,Jk

01×3 1

]
, k = 3, · · · , n+ 2, (12)

where pJk−1,Jk
∈ R3 indicates the position coordinates of

Joint k in the frame {Jk−1}.

B. Links

Given a specific kinematic chain, the homogeneous
transformation from Link 1’s inertia frame {L1} to Link
0’s inertia frame {L0} (or the global frame), is given by

TL0,L1(q1) =


cos(θz) −sin(θz) 0 px
sin(θz) cos(θz) 0 py

0 0 1 h1

0 0 0 1

 , (13)

where h1 > 0 is the height of CoM of the mobile base
(Link 1) from the global frame. TL1,L0

= (TL0,L1
)−1.

The transformation from Link k’s inertia frame {Lk}
to the frame {Jk} is given by

MJk,Lk
=

[
I3 pJk,Lk

01×3 1

]
, k = 1, · · · , n+ 2, (14)

where pJk,Lk
∈ R3 indicates the position coordinates of

Link k in the frame {Jk}. Note that for k = 1, pJ1,L1
[3] =

h1.
The homogeneous transformation from {J2} to {L1} is

given by

TL1,J2
= ML1,J2

=

[
I3 pL1,J2

01×3 1

]
, (15)

where pL1,J2
∈ R3 is the position coordinates of Joint 2

in the frame {L1}.
The homogeneous transformation from the frame {L2}

to the frame {L1} is given by

TL1,L2 = TL1,J2 · T J2,L2 =

[
I3 pL1,J2

+ pJ2,L2

01×3 1

]
.

(16)
Thus, TL2,L1 = (TL1,L2)

−1 = ML2,L1 since there is no
rotation between Link 1 and Link 2.

For k = 3, · · · , n + 2, the transformation of the frame
{Lk−1} to the frame {Lk} is given by

MLk,Lk−1
= (MJk,Lk

)−1(MJk−1,Jk
)−1MJk−1,Lk−1

= (MJk−1,Jk
MJk,Lk

)−1MJk−1,Lk−1
.

(17)
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C. Inertia of Links
The spatial inertia matrix ĜLk

∈ R6×6 of Link k in the
frame {Lk} is given by

ĜLk
=

[
Ik,G 03×3

03×3 mkI3

]
, (18)

where Ik,G ∈ R3×3 is the inertia tensor in matrix form
for Link k; mk is the mass of Link k.

The stator of Motor k(k ≥ 3) is mounted on Link k− 1
and hence each link’s inertia should add the effect from
the stator. The mass and inertia of a manipulator’s link
are typically greater than the ones of a motor stator due
to the requirements of the mechanical design of the ma-
nipulator. Therefore, to simplify the parameterization of a
manipulator, this paper adopts the following assumption
on the CoM of Link k − 1.

Assumption 1 (Constant Link CoM). For k ≥ 3, the CoM
of Link k − 1 with Motor k’s stator installed on the end
of Link k − 1 stays the same as the CoM of Link k − 1.

Suppose the inertia tensor matrix for the stator of Motor
k (k ≥ 3) is Ik,S ∈ R3×3 and the stator mass is mk,S. With
Assumption 1, the spatial inertia matrix GLk−1

of Link
k − 1 in the frame {Lk−1} is given by

GLk−1
= ĜLk−1

+

[
Îk,S 03×3

03×3 mk,SI3

]
, k = 3, · · · , n+ 2,

(19)
where Îk,S = Ik,S + mk,S · diag(lx, ly, lz); lx =
(dk,c2t[2])

2 + (dk,c2t[3])
2, ly = (dk,c2t[1])

2 + (dk,c2t[3])
2,

lz = (dk,c2t[1])
2 + (dk,c2t[2])

2; dk,c2t ∈ R3 is the position
coordinate of Link k − 1’s link tip in the frame {Lk}, i.e.
the location where Motor k’s stator is mounted on. For
Link 1 and Link n+ 2, GL1

= ĜL1
, GLn+2

= ĜLn+2
.

D. Homogeneous Transformation
To calculate rigid-body mechanics, Joint k’s motion

subspace matrix SJk
in the frame {Jk} needs to be

transformed into the matrix ALk
in the frame Lk, i.e.

ALk
= [Ad(MJk,Lk

)−1 ]SJk
, k = 1, · · · , n+ 2. (20)

Similarly,

ÅLk
= [Ad(MJk,Lk

)−1 ]S̊Jk
, k = 1, · · · , n+ 2. (21)

Note that AL2
= 06, ÅLk

= 06 for all k = 2, · · · , n+ 2.
Determining the transformation between the screw axis

SRk
∈ R6 of Motor k’s rotor and the screw axis of Joint

k (k ≥ 3) requires a specific mechanical configuration
of a gearbox, which further introduces the modeling
complexity. Due to the absence of detailed modeling of
gearboxes, this paper adopts the following assumption.
Since the gearbox of robotic manipulators is typically a
compact harmonic drive, the transformation between rotor
axes and joint axes can be neglected.

Assumption 2 (Coincident Axes). For k ≥ 3, the screw
axis of Joint k is the same as the screw axis of Motor k’s
rotor.

Assumption 2 assumes that MRk,Jk
= I4 and the

frame {Rk} is equivalent to the frame {Jk}, for k ≥ 3.
Nevertheless, one can readily define MRk,Jk

differently
according to the modeling of harmonic drives.

The inertia of rotors is modeled as follows. Denote the
gear ratio at Joint k as Zk > 0, for k ≥ 3. The motion
subspace matrix of Rotor k in the frame {Rk} is given by

ARk
= Zk[AdMRk,Jk

]SJk
= ZkSJk

. (22)

According to the definition of apparent derivatives in (10),

ÅRk
= Zk[AdMRk,Jk

]S̊Rk
= ZkS̊Jk

= 06, ∀k ≥ 3. (23)

The spatial inertia matrix GRk
∈ R6×6 of Motor k’s rotor

in the frame {Rk} is given by

GRk
=

[
Ik,R 03×3

03×3 mk,RI3

]
, (24)

where Ik,R ∈ R3×3 is the rotor’s inertia tensor in
matrix form; mk,R is the mass of Motor k’s rotor. The
transformation from the frame {Lk−1} to the frame {Rk}
is

MRk,Lk−1
= MRk,Jk

MJk,Lk
MLk,Lk−1

= MRk,Lk
MLk,Lk−1

, ∀k ≥ 3.
(25)

Finally, for k ≥ 3,

TLk,Lk−1
= e[−ALk

]θk ·MLk,Lk−1
, (26a)

TRk,Lk−1
= e[−ARk

]θk ·MRk,Lk−1
, (26b)

where e[·]θk is given by (5).
The homogeneous transformations from the inertia

frame {Lk} to the global inertia frame {L0} (equivalent
to {J0}) are given by

TL1 ≜ TL0,L1 ,TLk
≜ TL0,Lk

= TLk−1
(TLk,Lk−1

)−1.
(27)

The homogeneous transformations from the inertia
frame {Jk} to the global inertia frame {L0} are given
by

T Jk
≜ TL0,Jk

= TLk
(MJk,Lk

)−1. (28)

Given the homogeneous transformation T Jn+2,Je
from

the end effector frame {Je} to the frame {Ln+2}, the
transformation from the frame {Je} to the global inertia
frame {L0} is given by

T Je
≜ TL0,Je

= T Jn+2
· T Jn+2,Je

. (29)

For every Joint k and the end effector, its position
coordinates in the global inertia frame are given by
T Jk

[1 : 3, 4] and T Je
[1 : 3, 4], respectively.

IV. Motor Parameterization
Surface-mounted permanent magnet synchronous mo-

tors (SPMSM) are typically used as the actuators (servo-
motors) of robotic manipulators. This section introduces
the modeling of a class of SPMSMs admitting the design
parameterization summarized in Table I. Fig. 3 illustrates
the physical meaning of the design variables, where the
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Table I
SPMSM Design Parameters

Parameter Description Parameter Description
l Axial length of core hsy Stator yoke

rro Outer radius of rotor wtooth Width of tooth
rso Outer radius of stator b0 Slot opening
hm Height of magnet

Units of all design parameters are mm

Figure 3. The cross-section of an SPMSM design. The core axial
length l is not illustrated in this figure.

axial length l is not shown. Denote an arbitrary motor’s
design variables as

β ≜ col{l, rro, rso, hm, hsy, wtooth, b0} ∈ R7.

This section also introduces how motor parameteri-
zation could affect the dynamic modeling and motion
planning of the mobile manipulator.

A. Magnetic Equivalent Circuit Modeling
This subsection presents the magnetic equivalent circuit

(MEC) modeling [51] for an SPMSM as depicted in Fig. 3.
To avoid confusion on whether a parameter is applied
universally or just on one particular motor, this subsection
introduces an index j to indicate a particular motor. βj ∈
R7 denotes the design parameter associated with motor
j. gcd(a, b) denotes the greatest common divisor of two
positive integers a and b. The constant parameters for an
SPMSM are:

• Number of slots Q = 12
• Number of slots per phase q1 = Q/3
• Number of pole pairs p = 4
• Number of slots per pole per phase qpm = q1

gcd(q1,2p)
• Number of winding turns per tooth ns = 50
• Number of coils connected in parallel Cp = 1
• Gear ratio at the j-th joint Zj = 50 ∀j
• Height of tooth tip htip = 2 mm
• Width of air gap δ = 0.5 mm
• Magnet width in electric angle αm = π
• Remanent flux density of the magnet Br = 1.38 T
• Maximum limitation for flux density Bmax = 1.5 T
• Mass density of iron ρiron = 7.8 · 10−6 kg/mm3

• Mass density of copper ρcu = 8.93 · 10−6 kg/mm3

• Electric resistivity of copper winding ρe = 1.8 ·
10−5 Ω·mm

• Permeability of air µ0 = 4π · 10−7 N/A2

• Relative recoil permeability of the magnet µr = 1.05
• Filling factor ff = 0.55

1) Geometric Parameters: According to Fig. 3, the
expression for the slot height is

hss,j = rso,j − hsy,j − rro,j − δ − htip. (30)

For a rectangular tooth cross-section, one can compute
the slot width as bss,j = Aslot,j/hss,j , where Aslot,j is the
slot area, i.e.

Aslot,j =
π((rso,j−hsy,j)

2−(rro,j+δ+htip,j)
2)

Q − wtooth,jhss,j .
(31)

The cross-section area of the stator core is given by

Aso,j = πr2so,j − π(rro,j + δ)2 −Q(Aslot,j + b0htip). (32)

Thus the volume of the stator core is given by

Vj = Aso,j lj . (33)

The copper area is given by Acu,j = Aslot,jff . For
concentrated windings and assuming one winding is a
complete turn around a tooth, the area of a single coil is
given by Acoil,j = Acu,j/(2ns). The minimal wire diameter
is

Dwire,j =
√

4Acoil,j/π. (34)

The arc span per slot can be determined by τs,j =
2π(rro,j+δ)/Q. The average length of the coil end-winding
lend,av,j and the total coil length lcoil,j are given by

lend,av,j = (wtooth,j(2−π/2)+πτs,j/2)/2, lcoil,j = 2lj+2lend,av,j .

Then the weight of the stator and rotor are given by:
mrotor,j = ρironπr

2
ro,j lj ,

mstator,j = ρironπr
2
so,j lj − ρironπ(rro,j + δ)2lj

− ρironAslot,j ljQ+ ρcuAcoil,j lcoil,jnsQ.

(35)

Without loss of generality, define the x-axis as the central
axis of each rotor or stator, i.e. x-axis coincides with the
axial length of core lj ; consequently, define the y-axis and
z-axis by following the right-hand rule and the two axes
indicate the central radius. All three axes originate at the
centroid of the rotor or stator, i.e. the center of the axial
length lj . Since each rotor is a solid cylinder, the moment
of inertia about three principal axes of each rotor is given
by:

Ixx,r,j =
1
2ρironπr

4
ro,j lj =

1
2mrotor,jr

2
ro,j ,

Iyy,r,j = Izz,r,j =
1
12ρironπr

2
ro,j lj(3r

2
ro,j + l2j ).

(36)

To simplify the inertia calculation for stators, each stator
is simplified as a hollow cylinder with outer radius rso,j
and inner radius rro,j + δ. Then the moment of inertia
about three principal axes of each stator is given by:
Ixx,s,j =

1
2mstator,j(r

2
so,j + (rro,j + δ)2),

Iyy,s,j = Izz,s,j =
1
12mstator,j(3(r

2
so,j + (rro,j + δ)2) + l2j ).

(37)
For a motor installed on a joint with a known screw axis,
one can use Ixx,r,j , Ixx,s,j defined in (36) and (37) as the
inertia around the screw axis, and use the rest as the
inertia around the other two axes.
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2) Resistance: The resistance per tooth is given by
R1,j = (n2

sρelcoil,j)/(Aslot,jff ). Using this, the phase
resistance can be calculated as

Rj = q1R1,j/C
2
p. (38)

3) Permeance: The permeance of the magnetic path
across the air gap and the slot opening, denoted by pg,j
and pso,j , are given by:

pg,j =
2πrro,jµ0l/Q
δ+hm,j/µr

, pso,j =
µ0htiplj

b0,j
.

The permeance of the magnetic path that curves from tip
to tip is given by ptt,j =

µ0(δ+hm,j)lj
π(δ+hm,j)/2+b0,j

.
4) Inductance: For an SPMSM, its d-axis and q-axis

inductance are equivalent to each other and given by

Ld,j = Lq,j = q1n
2
sL1,j/C

2
p, (39)

where L1,j is the inductance per turn and per tooth, given
by L1,j = pg,j + 3pso,j + 3ptt,j .

5) Flux: To proceed with the calculation, it is necessary
to determine Carter’s coefficient denoted by kC,j , given by

kC,j =
tpitch,j

tpitch,j−γjδ
, γj =

(b0,j/δ)
2

5+b0,j/δ
, tpitch,j =

2πrro,j
Q . (40)

Then, the magnetic flux density across the gap is given by
Bg,j = Br

hm,j/µr

hm,j/µr+δkC,j
. The flux density corresponding to

the first harmonics can be calculated as Bg,1,j = 4Bg,j/π.
Consequently, the flux per tooth per single turn is given
by

Φ1,j = Bg,1,j lj2πrro,j/Q. (41)

In the absence of skewness, the permanent flux linkage is
given by

Φpm,j = kwnsΦ1,jq1/Cp, (42)

where kw = kpkd denotes the winding factor, and

kp = sin(πp/Q), kd = sin(π/6)
qpmsin(π/(6qpm)) . (43)

B. Torque Capacity Modeling
This subsection introduces the modeling of SPMSM

torque capacity, which is crucial to motion planning and
control of the mobile manipulator. Particularly, the max-
imum and minimum torques are modeled as an analytical
function of motor speed and design parameters.

The dynamics of a permanent magnet synchronous
motor (PMSM) are governed by ordinary differential
equations (ODEs) as follows:

i̇d,j = (−Rjid,j + pωjLq,jiq,j + ud,j)/Ld,j ,

i̇q,j = (−Rjiq,j − (Ld,jid,j +Φpm,j)pωj + uq,j)/Lq,j ,

τj = 1.5p(Φpm,jiq,j + (Ld,j − Lq,j)iq,jid,j),
(44)

where id,j , iq,j are the current in d- and q-axis; ωj is the
rotor speed of the motor (motor speed in short); ud,j , uq,j

are the voltage in d- and q-axis; τj denotes the electric
torque produced by the motor.

Remark 2. For an SPMSM, Ld,j = Lq,j and thus the
electric torque τj in (44) can be simplified as τj =
1.5pΦpm,jiq,j .

For illustration purposes, this section presents the motor
operation when τj > 0 and ωj > 0, i.e. the first quadrant.
The torque capacity for the other three quadrants is
equivalent to the one in the first quadrant. A motor
control strategy must be determined first to model the
motor torque capacity. The following assumption defines
a common motor control strategy.

Assumption 3. For an arbitrary SPMSM, the current
signals id and iq and the DC bus voltage are measured.
The motor controller first follows the maximum torque
per ampere (MPTA) strategy before hitting voltage con-
straints. After the motor hits either the current or voltage
constraint, it follows the maximum torque per voltage
(MPTV) strategy.

For an arbitrary SPMSM, given the max DC bus voltage
Vmax,j and the max current Imax,j , one can estimate
the feasible torque region in the speed-torque plane. The
max voltage dropping to overcome back-EMF (counter-
electromotive force) can be calculated as

Vdq,max,j = Vmax,j/
√
3−RjImax,j ≥ 0. (45)

Without flux weakening, i.e. id,j = 0, the corner electric
speed before hitting the voltage constraint while keeping
the max torque (iq,j = Imax,j) is given by

ωce,j =
Vdq,max,j√

(Lq,jImax,j)2 +Φ2
pm,j

. (46)

Given id,j , iq,j and ωj , the back-EMF is given by

Vbemf,j = pωj

√
(Lq,jiq,j)2 + (Φpm,j + Ld,jid,j)2. (47)

Remark 3. Determining the feasibility of an operating
point (ωj , τj) is equivalent to find a feasible pair (id,j , iq,j)
such that the following voltage and current constraints
hold:

pωj

√
(Lq,jiq,j)2 + (Φpm,j + Ld,jid,j)2 ≤ Vdq,max,j ,

i2d,j + i2q,j ≤ I2max,j ,
(48)

where iq,j = τj/(1.5pΦpm,j) ≤ Imax,j .

Denote ωe,j ≜ pωj as the electric speed. If ωe,j ≤ ωce,j

and τj ≤ 1.5pΦpm,jImax,j , then the voltage constraint is
always satisfied and the feasible solution with max torque
per ampere is id,j = 0 and iq,j = τj/(1.5pΦpm,j); if ωe,j ≤
ωce,j and τj > 1.5pΦpm,jImax,j , the operating point is
infeasible. Denote the corner speed when the maximum
constant torque 1.5pΦpm,jImax,j is about to decrease as

ωr,j ≜ ωce,j/p, (49)

where ωce,j is given by (46).
With ωe,j > ωce,j , one needs to infer the max allowable

q-axis current iq,lim,j which is restricted by either the max
voltage or max current constraint. For the operating point
(ωj , τj), it requires iq,j = τj/(1.5pΦpm,j). We first consider
the special case when both current and voltage constraints
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are active, the solution of which is obtained by solving two
unknown id,j , iq,j from two equations

pωj

√
(Lq,jiq,j)2 + (Φpm,j + Ld,jid,j)2 = Vdq,max,j ,

i2d,j + i2q,j = I2max,j .
(50)

Its solution is given by

id,lim,j =
(Vdq,max,j/ωe,j)

2 − (Ld,jImax,j)
2 − Φ2

pm,j

2Φpm,jLd,j
,

iq,lim,j =
√
I2max,j − i2d,lim,j .

(51)

When ωj = ωr,j , id,lim,j = 0; when ωj > ωr,j , id,lim,j is
always negative to weaken the permanent flux. Since the
current is bounded by i2d,j + i2q,j ≤ I2max,j , the magnitude
of id,j cannot exceed Imax,j . According to (51) with ωe,j :=
pωj , id,lim,j(ωj) is a monotonically decreasing function to
the motor speed ωj . Therefore, one can analytically find
the crossover point ωmax,j for id,lim,j(ωmax,j) = −Imax,j ,
which yields

ωmax,j ≜
Vdq,max,j

p|Φpm,j − Ld,jImax,j |
. (52)

ωmax,j is the maximum motor speed given both the current
and voltage constraints only when Φpm,j−Ld,jImax,j > 0.
From (52), it is obvious that when Φpm,j − Ld,jImax,j =
0, ωmax,j = ∞. In other words, the voltage and current
constraints will not limit the motor speed. When Φpm,j −
Ld,jImax,j < 0, ωmax,j = ∞. The following two figures
illustrate the reason as (52) cannot.

First, a concrete example of id,lim,j with three different
signs of Φpm,j −Ld,jImax,j is shown in Fig. 4, where only
Imax,j changes as 5 A, 21.67 A, and 30 A for Fig. 4a
- Fig. 4c, respectively. When Φpm,j − Ld,jImax,j > 0,
there exists a finite ωmax,j . When Φpm,j −Ld,jImax,j = 0,
id,lim,j(ωj) asymptotically converges to Imax,j as ωj goes
to infinity. In Fig. 4c, ωj exceeds the intersection (its value
can be calculated by (52)) when id,lim,j reaches Imax,j = 30
A. When ωj keeps increasing after this intersection, by
Assumption 3, the motor cannot operate at both the
boundary of the current and voltage constraint. Thus, one
cannot use (50) to jointly determine id,j and iq,j , and its
further derivation (51) and (52) cannot be used as well.
Fig. 5c illustrates the reason in this particular case by
showing the current constraint and the contours of the
voltage constraint. Before explaining that, it is necessary
to introduce the voltage constraint in the id,j-iq,j plane.

The max torque for a given ωj ≥ ωr,j always achieves at
the boundary of the maximum voltage constraint. This is
because if the max voltage constraint is inactive while the
current constraint is hit, then from (47), one can always
reduce id,j and increase iq,j to produce a larger torque
while ensuring the current constraints. On the other hand,
the max current constraint is not necessarily active.

Remark 4. The voltage constraint can be rearranged as
follows

i2q,j + (
Φpm,j

Ld,j
+ id,j)

2 =
V 2
dq,max,j

ω2
e,jL

2
d,j

, (53)

which is a circle centered at (−Φpm,j

Ld,j
, 0) in the id,j-iq,j

plane with a radius of Vdq,max,j

ωe,jLd,j
. On the other hand, the

current constraint is a circle centered at the origin with a
radius Imax,j .

The contours of voltage constraints (53) are shown
in Fig. 5, where the red crosses represent the center
(−Φpm,j

Ld,j
, 0); the blue circles represent the current con-

straints; green solid/dashed lines represent the max torque
loci while increasing the motor speed. One can see that
if Φpm,j/Ld,j − Imax,j ≥ 0, the maximum torque always
achieves at the boundary of the current and voltage con-
straints because there are always intersections between the
current constraint (blue circle) and the voltage constraint
(contours). When Φpm,j/Ld,j−Imax,j < 0, the max torque
does not achieve at the maximum current, but inside along
the green line inside the blue circle. At some points, there
is no intersection between the blue circle and the contours.
This indicates that one cannot calculate id,j and iq,j by
(50), i.e. on both the voltage and current boundary, but
only on the voltage boundary (every contour).

To summarize, one can determine the feasible operation
region, i.e. the torque capacity, of a motor numerically
using the following algorithms. Algorithm 1 converts every
arbitrary operating point (ωj , τj) into id,j and iq,j when
feasible, and returns a false flag when infeasible. Note
that given motor design parameters βj , one can calculates
Rj , Ld,j , Lq,j , Φpm,j from Section IV-A. Algorithm 2
presents how to generate a motor feasible operation map
given an arbitrary range of motor speed [0, ω̂max,j ] and
torque [0, τ̂max,j ]. Keeping all the parameters the same
but given different Imax,j , Fig. 6 presents the motor
operation map and torque capacity given three different
signs of Φpm,j − Ld,jImax,j . The red region represents
the feasible operation range, whereas the white region
represents the infeasible range. The boundary between the
white and the red region is the maximum motor torque at
each motor speed obtained numerically by Algorithm 2.
The dashed lines/curves are some analytical functions for
torque bounds; the vertical dash-dot lines indicate some
critical speeds; the details of the analytical torque bound
functions are given in Section IV-C.

C. Analytical Torque Bound Modeling
Given the motor control strategy defined in Assump-

tion 3 and the derivation in Section IV-B, the motor
torque bound can be modeled analytically, which can
be categorized into three cases, depending on the sign
of Φpm,j/Ld,j − Imax,j .

When Φpm,j/Ld,j − Imax,j > 0, the maximum motor
torque τmax,j(ωj ,βj), as a function of motor speed and
motor design parameters, is given by

τmax,j =

{
1.5pΦpm,jImax,j , if |ωj | ≤ ωr,j

1.5pΦpm,jiq,lim,j , if |ωj | ∈ [ωr,j , ωmax,j ]
(54)

where ωr,j , iq,lim,j , and ωmax,j are given by (49), (51)
and (52), respectively. This piecewise-defined function
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(a) id,lim,j for case Φpm,j/Ld,j > Imax,j . (b) id,lim,j for case Φpm,j/Ld,j = Imax,j . (c) id,lim,j for case Φpm,j/Ld,j − Imax,j < 0.

Figure 4. id,lim,j as a function of ωj in all cases. The blue lines represent the function id,lim,j(ωj); the red dashed lines represent Imax,j ; the
pink dash-dot lines represent ωmax,j from (52). The intersection in (a) indicates the maximum motor speed constrained by the maximum
current Imax,j .
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(a) Visualization of current and voltage con-
straints for case Φpm,j/Ld,j > Imax,j .
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(b) Visualization of current and voltage
constraints for case Φpm,j/Ld,j = Imax,j .
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(c) Visualization of current and voltage
constraints for case Φpm,j/Ld,j−Imax,j <
0.

Figure 5. Visualization of current and voltage constraints in all cases given the same motor speed. Blue circles represent current constraints;
contours represent voltage constraints; red cross marks represent centers of the voltage constraint contours; green (dashed) lines represent
the max torque loci while increasing the motor speed.

(a) Motor operation map for case
Φpm,j/Ld,j > Imax,j .

(b) Motor operation map for case
Φpm,j/Ld,j = Imax,j .

(c) Motor operation map for case
Φpm,j/Ld,j − Imax,j < 0.

Figure 6. Motor operation map in all cases. The red region represents the feasible operation range; the white region represents the infeasible
range. The meaning of the dashed and dash-dot lines/curves is given in Section IV-C.
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Algorithm 1: Conversion of motor speed and torque
to motor currents
Input: βj , Vmax,j , Imax,j , number of pole pairs p

1 def omgTau2currents(ωj , τj):
2 Vdq,max,j ← Vmax,j/

√
3−RjImax,j , flag ← True

3 ωr,j ← Vdq,max,j

p
√

(Lq,jImax,j)2+Φ2
pm,j

, ωe,j ← pωj

4 if ωj ≤ ωr,j then
5 iq,j ← τj/(1.5pΦpm,j), id,j ← 0
6 if iq,j > Imax,j then flag ← False,

id,j , iq,j ← None
7 else
8 id,lim,j ←

(Vdq,max,j/ωe,j)
2−(Ld,jImax,j)

2−Φ2
pm,j

2Φpm,jLd,j

9 iq,lim,V,j ← Vdq,max,j/(ωe,jLq,j),
iq,t,j ← τj/(1.5pΦpm,j)

10 if id,lim,j ≤ −Imax,j then
11 if iq,t,j > iq,lim,V,j or

Φpm,j/Ld,j − Imax,j ≥ 0 then
12 flag ← False, id,j , iq,j ← None
13 else iq,j ← iq,t,j , id,j ← −Φpm,j/Ld,j

14 else
15 id,lim,j ←

sign(id,lim,j)min(|id,lim,j |, Imax,j)
16 if id,lim,jLd,j +Φpm,j < 0 then
17 id,lim,j ← −Φpm,j/Ld,j

18 iq,lim,C,j ←
√
I2max,j − i2d,lim,j

19 iq,lim,j ← min(iq,lim,V,j , iq,lim,C,j)

20 else iq,lim,j ←
√
I2max,j − i2d,lim,j

21 if iq,t,j > iq,lim,j then
22 flag ← False, id,j , iq,j ← None
23 else iq,j ← iq,t,j , id,j ← id,lim,j

24 return id,j , iq,j , flag

Algorithm 2: Generation of motor operation map
and torque capacity
Input: βj , Vmax,j , Imax,j , number of pole pairs p,

Nω ∈ Z+, Nτ ∈ Z+, ω̂max,j > 0, τ̂max,j > 0
1 M ← zeros(Nτ , Nω), vω ← linspace(0, ω̂max,j , Nω),

vτ ← linspace(0, τ̂max,j , Nτ )
2 for iτ in range(Nτ ) do
3 for iω in range(Nω) do
4 ωj ← vω[iω], τj ← vτ [iτ ]
5 id,j , iq,j , flag← omgTau2currents(ωj , τj)
6 if flag is True then M [iτ , iω] = 1

7 return M

is visualized in Fig. 6a. The yellow dash-dot vertical
line represents ωr,j , which is the motor corner speed
to start decreasing the constant maximum torque. The
purple dash-dot vertical line represents ωmax,j , which is
the maximum motor speed given current and voltage

constraints. The black dashed horizontal line represents
the constant maximum torque given by the first row of
(54). The blue dashed curve represents the maximum
torque, which decreases as the motor speed increases,
according to the second row of (54). Fig. 6a verifies the
analytical torque bound given the numerical result from
Algorithm 2. Even though the particular shape of the
maximum torque in [ωr,j , ωmax,j ] is concave in Fig. 6a,
with Imax,j increasing but still less than Φpm,j/Ld,j , the
shape could become convex.

When Φpm,j/Ld,j − Imax,j = 0, the maximum motor
torque is given by

τmax,j =

{
1.5pΦpm,jImax,j , if |ωj | ≤ ωr,j

1.5pΦpm,jiq,lim,j , if |ωj | ∈ [ωr,j ,∞)
(55)

where ωr,j and iq,lim,j are given by (49) and (51), respec-
tively. Note that the only difference between (54) and (55)
is whether there exists a maximum motor speed ωmax,j

or not. This piecewise-defined function is visualized in
Fig. 6b. The yellow dash-dot vertical line represents ωr,j .
According to (52), there is no ωmax,j or ωmax,j = ∞.
The black dashed horizontal line represents the constant
maximum torque given by the first row of (55). The blue
dashed curve represents the maximum torque based on the
second row of (55). Fig. 6b verifies the analytical torque
bound given the numerical result from Algorithm 2.

When Φpm,j/Ld,j − Imax,j < 0, one needs to find the
critical motor speed ωs,j that switches from the boundary
of the current constraint to the boundary of the voltage
constraint. This point is equivalent to the intersection
point between the blue circle (current constraint) and the
green line (voltage constraint) in Fig. 5c.

There are two ways to find ωs,j analytically. Regarding
the first method, when Φpm,j/Ld,j − Imax,j ≥ 0, there
always holds Φpm,j − id,lim,jLd,j ≥ 0 due to −Imax,j ≤
id,lim,j ≤ 0. This means that id,j = id,lim,j when the torque
is maximum. However, when Φpm,j/Ld,j − Imax,j < 0,
id,lim,jLd,j + Φpm,j could vary from positive to negative,
depending on the motor speed. Note that this id,lim,j

is obtained by both the activated current and voltage
constraint, according to (51). When Φpm,j + id,lim,jLd,j <
0, to avoid the flux go to negative, the current limit
on the d-axis is no longer given by (51), but given by
Φpm,j + id,jLd,j = 0 to compensate the flux, thus

id,lim,V,j = −Φpm,j/Ld,j . (56)

In this case, since the voltage constraint is activated, the
maximum current on the q-axis, i.e. the maximum torque,
is derived from the voltage constraint, which reads

iq,lim,V,j = Vdq,max,j/(ωe,jLq,j). (57)

Therefore, the critical condition that determines whether
the maximum torque is constrained by the voltage con-
straint only or by both the voltage and current con-
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straints is id,lim,jLd,j +Φpm,j = 0 together with id,lim,j =
(Vdq,max,j/ωe,j)

2−(Ld,jImax,j)
2−Φ2

pm,j

2Φpm,jLd,j
, i.e.

(Vdq,max,j/ωe,j)
2 − (Ld,jImax,j)

2 − Φ2
pm,j

2Φpm,jLd,j
Ld,j+Φpm,j = 0,

(58)
which gives the critical speed ωs,j as

ωs,j ≜
Vdq,max,j

p
√
(Ld,jImax,j)2 − Φ2

pm,j

. (59)

When ωj ≤ ωr,j , the maximum torque is a constant as
in the other two cases above; when ωj ∈ [ωr,j ,∞), both
the voltage and current constraints are activated, thus the
maximum torque occurs when the currents are given by
(51); when ωj ∈ [ωs,j , ωmax,j ], only the voltage constraint
is activated, thus the maximum torque occurs when the
currents are given by (56) and (57).

As for the second method to determine ωs,j , inspired by
Fig. 5c, the critical speed occurs when the motor torque
induced by both the current and voltage constraints is
equal to the torque induced by only the voltage constraint.
The former is equal to 1.5pΦpm,jiq,lim,j , where iq,lim,j is
given by (51). The latter is equal to 1.5pΦpm,jiq,lim,V,j ,
where iq,lim,V,j is given by (56). Thus one has
Vdq,max,j

ωe,jLq,j
=

√
I2max,j − i2d,lim,j ,

id,lim,j =
(Vdq,max,j/ωe,j)

2 − (Ld,jImax,j)
2 − Φ2

pm,j

2Φpm,jLd,j
,

(60)

which can be simplified as a quadratic-like equation, i.e.
(L2

d,jI
2
max,j − Φ2

pm,j)
2ω4

e,j − 2V 2
dq,max,j(L

2
d,jI

2
max,j−

Φ2
pm,j)ω

2
e,j + V 4

dq,max,j = 0.
(61)

Since Φpm,j/Ld,j − Imax,j < 0, one has Ld,jImax,j >
Φpm,j > 0 and thus L2

d,jI
2
max,j − Φ2

pm,j > 0. Then (61)
can be written as

(ω2
e,j −

V 2
dq,max,j

L2
d,jI

2
max,j − Φ2

pm,j

)2 = 0. (62)

Together with ωe,j = pωj > 0, solving (62) gives

ωs,j =
Vdq,max,j

p
√
(Ld,jImax,j)2 − Φ2

pm,j

,

which verifies (59) obtained by the first method.
Thus, when Φpm,j/Ld,j − Imax,j < 0, the maximum

motor torque τmax,j(ωj ,βj), as a function of motor speed
and motor design parameters, is given by

τmax,j =


1.5pΦpm,jImax,j , if |ωj | ≤ ωr,j

1.5pΦpm,jiq,lim,j , if |ωj | ∈ [ωr,j , ωs,j ]

1.5pΦpm,jiq,lim,V,j , if |ωj | ∈ [ωs,j ,∞)

(63)

where ωr,j , iq,lim,j , ωs,j , and iq,lim,V,j are given by (49),
(51), (59), and (57), respectively. This piecewise-defined
function is visualized in Fig. 6c. The yellow dash-dot
vertical line represents ωr,j . The grey dash-dot vertical line
represents ωs,j , which is the critical motor speed switching

from activating both the current and voltage constraints to
only the voltage constraint. The black dashed horizontal
line represents the constant maximum torque given by
the first row of (63). The blue dashed curve represents
the maximum torque given by the second row of (63). The
brown dashed curve represents the maximum torque given
by the third row of (63). Fig. 6c verifies the analytical
torque bound given the numerical result from Algorithm 2.
Regardless of the sign of Φpm,j/Ld,j−Imax,j , the minimum
motor torque is given by

τmin,j(ωj ,βj) ≜ −τmax,j(ωj ,βj). (64)

Therefore, for all allowable motor speeds, the lower and
upper bound of motor torque is illustrated in Fig. 7,
based on the analytical piecewise functions (54), (55),
and (63). The motor operation maps from Fig. 6 verify
the correctness of the analytical functions for the torque
bounds.

V. Dynamics Modeling

This section introduces the modeling methodology for
a mobile manipulator’s forward and inverse dynamics.

A. Inverse Dynamics
This subsection presents the recursive Newton-Euler

algorithm (RNEA) for the inverse dynamics of a mobile
manipulator with motor parameterization. The details
are summarized in Algorithm 3. Its derivation follows
the methodology from [52, Chapter 8.9.3] but is re-
vised accordingly for mobile manipulators with motor
parameterization. First, this paper adopts the following
assumption on each motor’s gearbox.

Assumption 4 (Massless Gearbox). The mass of the
gearbox for Motor k (k ≥ 3) is negligible.

Assumption 4 is adopted due to the absence of the de-
tailed inertia modeling of harmonic drives. Otherwise, one
can lump the inertia of the primary gear, respectively the
secondary gear, into its corresponding rotor, respectively
its corresponding link. Remark 1 discusses the reason why
no motors are considered for the base.

To recursively model the inverse dynamics, one first
needs to compute all the necessary quantities recursively,
including the twist, its time derivative, and the velocity-
product accelerations of each rigid body. This procedure is
reflected in Line 3 - Line 10 of Algorithm 3. The twist VLk

of Link k is the sum of the twist of Link k − 1 expressed
in frame {Lk} and the twist due to the joint velocity q̇k

or θ̇k, i.e.

VLk
= AdTLk,Lk−1

VLk−1
+ALk

q̇k. (65)

The velocity-product acceleration ζLk
of Link k is related

to the acceleration of Link k by the equation of motion,
i.e.

ζLk
= ÅLk

q̇k + adVLk
ALk

q̇k. (66)
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(a) Motor torque bound for case
Φpm,j/Ld,j > Imax,j .

(b) Motor torque bound for case
Φpm,j/Ld,j = Imax,j .

(c) Motor torque bound for case Φpm,j/Ld,j−
Imax,j < 0.

Figure 7. Motor torque bound in all three cases.

The acceleration V̇Lk
of Link k, is given by the time

derivative of VLk
, i.e.

V̇Lk
= AdTLk,Lk−1

V̇Lk−1
+ ζLk

+ALk
q̈k. (67)

Similarly, Line 5 - Line 7 hold for Rotor k, k ≥ 3.
Denote VL0

= 06 as the twist of the base frame {L0}
expressed in frame {L0}. Gravity is treated as an accel-
eration of the base in the opposite direction, and thus
V̇L0 = −ag =

[
0 0 0 0 0 9.81

]⊤, where ag denotes
the gravity expressed in frame {L0}.

Figure 8. Free-body diagram for Link k and Link k + 1. Revised
based on Fig. 8.12 of [52].

Secondly, one needs to identify all the wrenches applied
on Link k and Link k + 1 (k ≥ 2) with the existence
of Rotor k + 1. This procedure is reflected in Line 11 -
Line 18 of Algorithm 3. The free-body diagram for Link
k and Link k+1 is illustrated in Fig. 8. Link k receives a
wrench FLk

from Motor k’s gearhead (expressed in frame
{Lk}) and a fictitious force (or inertia force) due to the
inertia of Link k (expressed in frame {Lk}). Link k + 1
receives a wrench FLk+1

from Motor k + 1’s gearhead
(expressed in frame {Lk+1}) and a fictitious force due to
the inertia of Rotor k + 1 (expressed in frame {Rk+1}).
To represent all the wrenches in the same frame {Lk}, the
adjoint representation of TLk,Lk+1

and TLk,Rk+1
are used

to convert the wrenches from frame {Lk+1} to frame {Lk},
and from {Rk+1} to frame {Lk}, respectively. Thus, the
following equation, equivalent to Line 16, holds for each
pair of Link k and Link k + 1, k ≥ 2.
FLk
−F I,Lk

−Ad⊤TLk+1,Lk
FLk+1

−Ad⊤TRk+1,Lk
F I,Rk+1

= 0.

(68)

Algorithm 3: Recursive Newton-Euler algorithm for
the inverse dynamics of a mobile manipulator

1 Inputs:
q1, q̇1, q̈1;ALk

,GLk
, ÅLk

,TLk,Lk−1
, k ∈ J1, n+2K;

θk, θ̇k, θ̈k,ARk
, ÅRk

,GRk
,TRk,Lk−1

, Zk, k ∈J3, n+ 2K
2 VL0

= 06, V̇L0
=

[
01×5 9.81

]⊤
, q2 = q̇2 = q̈2 = 0

3 for k = 1 to n+ 2 do
4 if k ≥ 3 then
5 VRk

← AdTRk,Lk−1
VLk−1

+ARk
θ̇k

6 ζRk
← ÅRk

θ̇k + adVRk
ARk

θ̇k
7 V̇Rk

← AdTRk,Lk−1
V̇Lk−1

+ ζRk
+ARk

θ̈k

8 VLk
← AdTLk,Lk−1

VLk−1
+ALk

q̇k

9 ζLk
← ÅLk

q̇k + adVLk
ALk

q̇k

10 V̇Lk
← AdTLk,Lk−1

V̇Lk−1
+ ζLk

+ALk
q̈k

11 for k = n+ 2 to 1 do
12 F I,Lk

← GLk
V̇Lk

− ad⊤VLk
GLk

VLk

13 if k ≥ 3 then
14 F I,Rk

← GRk
V̇Rk

− ad⊤VRk
GRk

VRk

15 if k ≤ n+ 1 then
16 if k ≥ 2 then FLk

← F I,Lk
+

Ad⊤TLk+1,Lk
FLk+1

+Ad⊤TRk+1,Lk
F I,Rk+1

17 else FLk
← F I,Lk

+Ad⊤TLk+1,Lk
FLk+1

18 else FLk
← F I,Lk

19 if k ≥ 3 then
20 τk,gear ← A⊤

Lk
FLk

21 τk ← τk,gear/Zk +A⊤
Rk

F I,Rk
/Zk

22 else fk ← A⊤
Lk

FLk

23 return f1, τk, k = 3, · · · , n+ 2

Note that when k = 1, since there is no rotor, (68) is
reduced to

FLk
−F I,Lk

−Ad⊤TLk+1,Lk
FLk+1

= 0, (69)

which is equivalent to Line 17. The fictitious forces of
Link k and Rotor k are given by Line 12 and Line 14,
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respectively.
Finally, the actuator at each Joint k only has to provide

force or torque in its motion subspace, which results in
Line 20 and Line 22 of Algorithm 3. The torque for Motor
k (k ≥ 3) is the torque at Rotor k, which is given by the
sum of the torque transmitted from the gearhead and the
fictitious force of Rotor k projected on Rotor k’s motion
subspace, i.e. Line 21. f1 ≜ col{τ1,z, f1,x, f1,y} ∈ R3

denotes the input wrench applied on Joint 1, whose vector
element represents the torque applied around Joint 1’s z-
axis and the forces applied along Joint 1’s x- and y-axis. τk
(k = 3, · · · , n+2) denotes the input motor torque applied
on Joint 3, · · · , n+ 2. The input of the entire mobile ma-
nipulator is denoted by u ≜ col{f1, τ3, · · · , τn+2} ∈ Rn+3.

B. Forward Dynamics

This subsection presents the articulated-body algorithm
(ABA) for the forward dynamics of a mobile manipulator
with motor parameterization. The details are summarized
in Algorithm 4. The derivation of Algorithm 4 follows
the methodology from [47, Chapter 7.3], but is revised
accordingly for mobile manipulators with motor parame-
terization.

First, one needs to define how the rigid bodies are
articulated together since it determines how bias forces
and spatial inertia matrices are updated recursively when
using ABA to propagate forward dynamics. As illustrated
in Fig. 2, for k ≥ 3, Rotor k is articulated with Link k via
its gearbox, and Link k− 1 is articulated with Link k via
its gearbox. Link 1 is articulated (or rigidly connected)
with Link 2 via Joint 2, a 0-DOF joint.

Then, Line 3 - Line 12 of Algorithm 4 recursively
calculates and initializes the twists, velocity-product ac-
celerations, spatial inertia matrices, and bias forces of each
link and rotor from the base to the last link. Specifically,
Line 11 and Line 12 initialize the spatial inertia matrices
IA

Lk
and the bias forces pA

Lk
for each link, respectively.

Line 7 and Line 8 initialize the same quantities for each
rotor, i.e. IA

Rk
and pA

Rk
, respectively.

Thirdly, Line 13 - Line 34 recursively updates the spatial
inertia matrices and bias forces from the last link to the
first link. Specifically, Line 14 - Line 22 defines some
intermediate quantities that will be used later. Note that
this part skips Link 2 because there is no input applying
on Link 2 and Link 2 is rigidly connected with Link 1.
The reason for not combining Link 1 and Link 2 as one
rigid body is for the ease of modularization. Line 24 -
Line 27 updates Link 1’s spatial inertia matrix IA

L1
and

bias force pA
L1

from Link 2. Line 31 - Line 32 updates
Rotor k’s spatial inertia matrix and bias force given Link
k’s effect. Line 33 - Line 34 updates Link k − 1’s spatial
inertia matrix and bias force given Link k’s effect.

Finally, Line 35 - Line 40 recursively calculates the joint
accelerations from the base to the last link. Note that the
joint acceleration for Joint 2 is constantly zero since Link
2 is rigidly connected with Link 1.

Algorithm 4: Articulated-body algorithm for the
forward dynamics of a mobile manipulator

1 Inputs:
q1, q̇1,f1;ALk

,GLk
, ÅLk

,TLk,Lk−1
, k ∈ J1, n+2K;

θk, θ̇k, τk,ARk
, ÅRk

,GRk
,TRk,Lk−1

, Zk, k ∈J3, n+ 2K;
2 VL0 = 06, V̇L0 =

[
01×5 9.81

]⊤
, q2 = q̇2 = 0 ;

3 for k = 1 to n+ 2 do
4 if k ≥ 3 then
5 VRk

← AdTRk,Lk−1
VLk−1

+ARk
θ̇k;

6 ζRk
← ÅRk

θ̇k + adVRk
ARk

θ̇k;
7 IA

Rk
← GRk

;
8 pA

Rk
← adVRk

IA
Rk

VRk
;

9 VLk
← AdTLk,Lk−1

VLk−1
+ALk

q̇k;
10 ζLk

← ÅLk
q̇k + adVLk

ALk
q̇k;

11 IA
Lk
← GLk

;
12 pA

Lk
← adVLk

IA
Lk

VLk
;

13 for k = n+ 2 to 1 do
14 ULk

← IA
Lk

ALk
;

15 if k = 1 then
16 Dk ← (A⊤

Lk
ULk

)−1;
17 µLk

← fk −A⊤
Lk

pA
Lk

;
18 else if k ≥ 3 then
19 µLk

← Zkτk −A⊤
Lk

pA
Lk

;
20 URk

← IA
Rk

ARk
;

21 µRk
← Zkτk −A⊤

Rk
pA
Rk

;
22 Dk ← (A⊤

Lk
ULk

+A⊤
Rk

URk
)−1;

23 if k = 2 then
24 Ia

Lk
= IA

Lk
;

25 pa
Lk

= pA
Lk

+ Ia
Lk

ζLk
;

26 IA
Lk−1

← IA
Lk−1

+Ad⊤TLk,Lk−1
Ia
Lk

AdTLk,Lk−1
;

27 pA
Lk−1

← pA
Lk−1

+Ad⊤TLk,Lk−1
pa
Lk

;
28 else if k ≥ 3 then
29 Ia

Lk
← IA

Lk
−ULk

DkU
⊤
Lk

;
30 pa

Lk
← pA

Lk
+ Ia

Lk
ζLk

+ULk
DkµLk

;
31 Ia

Rk
← IA

Rk
−URk

DkU
⊤
Rk

;
32 pa

Rk
← pA

Rk
+ Ia

Rk
ζRk

+URk
DkµRk

;
33 IA

Lk−1
←

IA
Lk−1

+Ad⊤TLk,Lk−1
Ia
Lk

AdTLk,Lk−1
+

Ad⊤TRk,Lk−1
Ia
Rk

AdTRk,Lk−1
;

34 pA
Lk−1

←
pA
Lk−1

+Ad⊤TLk,Lk−1
pa
Lk

+Ad⊤TRk,Lk−1
pa
Rk

;

35 for k = 1 to n+ 2 do
36 âk ← AdTLk,Lk−1

V̇Lk−1
;

37 if k = 1 then q̈k ←Dk(µLk
−U⊤

Lk
(âk + ζLk

));
38 else if k = 2 then q̈k ← 0;
39 else θ̈k ←Dk(µLk

−U⊤
Lk

(âk + ζLk
)−

U⊤
Rk

(âk + ζRk
)−A⊤

Rk
pA
Rk

);
40 V̇Lk

← âk + ζLk
+ALk

q̈k;
41 Return: q̈1, θ̈k, k = 3, · · · , n+ 2;
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C. Modeling Validation
This subsection presents the modeling validation by

comparing the forward dynamics and the inverse dynamics
obtained from Algorithm 4 and Algorithm 3, respectively.
Since both algorithms are derived by different methodolo-
gies, it is reasonable to infer that the modeling is correct if
there is no difference or only numerical error between the
numerical results from the two algorithms. The definition
of the so-called numerical results is given below.

First, the continuous-time forward dynamics of the
mobile manipulator can be obtained symbolically by
Algorithm 4. One could obtain a discrete-time trajectory of
states and inputs by solving a motion planning problem,
which will be introduced in Section VI. Then at each
time instance, one could compute the joint accelerations
q̈1, θ̈k, k ≥ 3 given the current state, i.e. the joint positions
q1,θk and the velocities q̇1, θ̇k, and the current input
f1, τk, k ≥ 3 with the continuous-time forward dynamics.
Finally, at each time instance, with Algorithm 3, given
q1,θk, q̇1, θ̇k, and q̈1, θ̈k, one could compute the desired
input and compare the inputs from the forward dynamics
and the inverse dynamics. Since this process only evaluates
the state and input by continuous-time forward dynamics
at each time instance, how the continuous-time forward
dynamics are discretized will not affect the comparison
accuracy. In other words, the comparison does not involve
forward propagating the continuous-time dynamics and
thus there is no accumulated error regarding how to
integrate the continuous-time dynamics. The only reason
why this process involves motion planning is to generate
a reasonable trajectory of states and inputs for point-wise
evaluation.

The statistics about the error between the forward
and inverse dynamics are summarized in Table II, where
the percentage error is defined by the error percentage
regarding the maximum absolute value of this variable’s
trajectory. Based on Table II, the error might only be a
relatively large round-off error. According to [47, Chap-
ter 10], large round-off errors can arise during dynamics
calculations for the following reasons: (1) using a far-away
coordinate system; (2) large velocities; (3) large inertia
ratios. For reason (1), a coordinate system is far away from
a rigid body if the distance between the origin and the
center of mass is many times the body’s radius of gyration.
Ideally, this distance should be no more than about one
or two radii of gyration [47, Chapter 10]. Thus this paper
conjectures that using a global coordinate system for
mobile manipulators can cause large round-off errors. For
reason (3), one generally requires the base to have a larger
inertia than the manipulator for stability, and thus a large
inertia ratio is also a possible reason for large round-off
errors. How to compute mobile manipulator dynamics in a
more numerically stable coordinate system requires further
investigation.

VI. Integrated Locomotion and Manipulation Planning
This section introduces an optimization-based inte-

grated locomotion and manipulation planning given the

Table II
Error between Forward and Inverse Dynamics

Name mean ± std quartiles† max mean
τ1,z 0.154± 0.113 0.051, 0.149, 0.229 0.417 0.41 %
f1,x 0.188± 0.114 0.102, 0.193, 0.235 0.492 0.23 %
f1,y 0.226± 0.173 0.104, 0.196, 0.281 0.706 0.24 %
τ3 0.003± 0.002 0.001, 0.003, 0.004 0.008 1.26 %
τ4 0.002± 0.002 0.001, 0.001, 0.003 0.013 0.07 %
τ5 0.002± 0.003 0.001, 0.001, 0.003 0.013 0.21 %
τ6 0.003± 0.003 0.001, 0.002, 0.005 0.013 1.97 %
τ7 0.002± 0.002 0.000, 0.001, 0.002 0.011 0.37 %
τ8 0.003± 0.002 0.001, 0.002, 0.004 0.008 1.57 %

† 25th, 50th, 75th percentile
‡ If no indication, unit for torque is Nm; unit for force is N

differentiable dynamics of a mobile manipulator with
motor parameterization. Consider a mobile manipulator
with n = 6. The motor design variables for manipulator’s
j-th motor, j ∈ J3, n + 2K, are denoted by lj , rro,j , rso,j ,
hm,j , hsy,j , wtooth,j , b0,j . And further denote

βj ≜ col{lj , rro,j , rso,j , hm,j , hsy,j , wtooth,j , b0,j},
β ≜ col{β3, · · · ,βn+2} ∈ R7n,

where β indicates all the motor design parameters of the
mobile manipulator. Denote θ ≜ col{θ3, · · · , θn+2} ∈ Rn

as the joint angular positions of the arm and denote
θ̇ ∈ Rn as the joint velocity similarly. The complete
forward dynamics for the mobile manipulator, detailed
in Algorithm 4, are abstracted as

ẋ = f c(x(t),u(t),β), (70)

where x ≜ col{q1,θ, q̇1, θ̇} ∈ R2(n+3) and u ≜
col{f1, τ3, · · · , τn+2} ∈ Rn+3.

Given a task, a trajectory planning optimization can
return its optimal trajectories of states and controls that
align with the task requirements:

min
x(t),u(t), tf

J(x(t),u(t), tf) (71a)

s.t. ẋ = f c(x(t),u(t),β), (71b)
∀t ∈ [0, tf ] with given x(0), (71c)
other constraints on x(t),u(t), (71d)

where tf > 0 denotes the final time for trajectory planning,
which could either be a decision variable or a prescribed
parameter. Note that (71) adopts the most general form,
which represents time-optimal trajectory planning, trajec-
tory tracking, or energy-optimal trajectory planning. For
the latter two cases, tf is a fixed prescribed parameter.
Given a particular value of β, the optimal states x∗(t),
controls u∗(t), and final time t∗f (if applicable) optimize
the cost function J .

Remark 5. One can combine the motor dynamics (44)
with the manipulator dynamics (70) together as an entire
system with its state q1,θ, q̇1, θ̇, id,j , iq,j and its input
f1, τ3, · · · , τn+2, ud,j , uq,j . However, the motor dynamics
typically operate at frequencies in the thousands of Hertz,
while the arm dynamics often run at frequencies in the
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hundreds of Hertz. The frequency discrepancy necessitates
discretizing the entire system with a time step much
smaller than 1 millisecond, which can lead to an unnec-
essary computational burden. In practice, it is reasonable
to assume that between every two consecutive time steps
of the manipulator dynamics, the motor dynamics have
enough time to adjust their speed and torque to match
the desired values, considering control constraints.

A. Discretization by Direct Collocation
Discretization is typically used to efficiently solve the

continuous-time problem (71) with numerical solvers.
Among different discretization methods, the direct collo-
cation method minimizes the error between state deriva-
tives from continuous-time dynamics and state derivatives
from approximated polynomial differentiation on every
control interval. For systems with fast and nonlinear
dynamics with running frequencies higher than hundreds
of Hz, direct collocation generally outperforms the Euler
method (ODE1) and the Runge–Kutta methods such as
ODE4. To discretize the optimal control problem (71)
with direct collocation, the continuous-time dynamics
ẋ = f c(x(t),u(t),β) is replaced by a set of discrete-time
collocation equations.

First, discretize the entire time horizon [0, tf ] into N ∈
Z+ uniform intervals, then the discretized time grids are
given by tk = k · tf/N , k = 0, · · · , N . Denote the uniform
time step as ∆ ≜ tf/N and the state at time tk as xk ≜
x(tk). Let the control over the time interval [tk, tk+1) as
constant, i.e. u(tk) = uk, ∀t ∈ [tk, tk+1), k = 0, · · · , N .

Secondly, one needs to compute the coefficients of the
polynomials on each interval [tk, tk+1) to ensure that the
continuous-time dynamics (i.e. some ODEs) are exactly
satisfied at the collocation points tk,i = tk + ci∆, i =
1, · · · , np, where np ∈ Z+ denotes the polynomial degree.
The collocation points c1 < · · · < cnp are defined in an
open interval (0, 1). For completeness, the left endpoint
c0 = 0 is also included and thus 0 = c0 < c1 < · · · <
cnp

< 1. The choice of the collocation points determines
the accuracy and numerical stability of the discretization
and the optimal control solution. This paper chooses the
Gauss collocation points, obtained as the roots of a shifted
Gauss-Jacobi polynomial, thanks to the good numerical
stability and the attribute of living in the open interval
(0, 1) [53].

Thirdly, to use the polynomials to approximate the
continuous-time dynamics, one needs to define the basis
of polynomials. This paper utilizes the Lagrange interpo-
lation polynomial basis. Define the basis for polynomials
as ℓi : R 7→ R, i = 0, · · · , np, and

ℓi(t) =
∏np

j=0,i ̸=j
t−cj
ci−cj

, i ∈ J0, npK. (72)

Then the approximated state trajectory qk(t) on each time
interval [tk, tk+1) is given by a linear combination of the
basis functions:

qk(t) =
∑np

j=0 ℓj(
t−tk
∆ )xk,j ,

where xk,j ∈ R2(n+3), ∀k ∈ J0, NK, j = J1, npK is the new
decision variable for the discretized optimal control prob-
lem. By differentiation, the approximated time derivative
of the state at each collocation point over the interval
[tk, tk+1) is given by

q̇k(tk,i) =
1

∆

np∑
j=0

ℓ̇j(ci)xk,j :=
1

∆

np∑
j=0

Cj,ixk,j , i ∈ J0, npK,
(73)

where ℓ̇j(ci) =
dℓj(t)
dt |t=ci ; Cj,i ∈ R is a constant given

a particular np, polynomial basis and collocation points;
denote C ∈ R(np+1)×(np+1) as the differentiation matrix,
where its element on the j-th row and i-th column is Cj,i.
Note that even though qk(t) is dependent on ∆ := tf/N ,
according to (73), the constant matrix C is independent
on tf and N . The state at the end of each time interval
[tk, tk+1), i.e. at time tk+1, is given by

xk+1 =
∑np

j=0 ℓj(1)xk,j :=
∑np

j=0 Djxk,j , (74)

where Dj ∈ R is a constant; denote D ∈ Rnp+1 as the
continuity vector, where its element on the j-th row is Dj .

In many applications, the objective function (71a)
typically includes an integration of a stage cost and a
terminal cost, i.e.

J = h(x(tf), tf) +

∫ tf

0

c(x(t),u(t))dt,

where h : R2(n+3)×R+ 7→ R is the terminal cost function.;
c : R2(n+3) × Rn+3 7→ R is the stage cost function.
Then, using the approximation qk(t), one can integrate the
stage cost over each time interval [tk, tk+1) given constant
control uk and obtain the following:∫ tk+1

tk

∑np

j=0 ℓj(
t−tk
∆ )c(xk,j ,uk)dt =

∆

np∑
j=0

∫ 1

0

ℓj(t)dt c(xk,j ,uk) := ∆

np∑
j=0

Bj c(xk,j ,uk),

(75)

where Bj ∈ R is a constant; denote B ∈ Rnp+1 as the
quadrature vector, where its element on the j-th row is
Bj .

Therefore, with the direction collocation, the
continuous-time optimal control problem can be rewritten
in discrete-time:

min
(∗)

h(xN,0, tf) +
tf
N

∑N−1
k=0

∑np

j=0 Bj c(xk,j ,uk) (76a)

s.t.
tf
N

f c(xk,i,uk,β)−
∑np

j=0 Cj,ixk,j = 0, (76b)

xk+1,0 −
∑np

j=0 Djxk,j = 0, (76c)
∀k ∈ J0, N − 1K, i ∈ J1, npK, given x0, (76d)
other constraints on decision variables, (76e)

where (∗) denotes all the decision variables, i.e. tf ∈ R+,
xk,i ∈ R2(n+3), ∀k ∈ J0, N − 1K, i ∈ J1, npK, uk ∈
Rn+3, ∀k ∈ J0, N − 1K, and xN,0.
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VII. Numerical Experiments
This section presents some numerical experiments on a

mobile manipulator, including an example of integrated
locomotion and manipulation planning and a comparison
with a benchmark planning method. This section aims
to emphasize that the dynamic modeling of a mobile
manipulator enables the integrated planning of both the
base and the manipulator. This integrated approach leads
to faster movement compared to a benchmark planning
method, where locomotion and manipulation planning are
performed sequentially.

A. Proposed: Integrated Planning
This subsection introduces a concrete example of the

integrated locomotion and manipulation planning problem
(76) with direct collocation:

min
(∗)

tf
N

∑N−1
k=0

∑np

j=0 Bj ||uk||22 (77a)

s.t.
tf
N

f c(xk,i,uk,β)−
∑np

j=0 Cj,ixk,j = 0, (77b)

xk+1,0 −
∑np

j=0 Djxk,j = 0, (77c)
x ≤ xk,i ≤ x, (77d)
∀k ∈ J0, N − 1K, i ∈ J1, npK, given x0, (77e)
τk,r − τmax,r(Zrθk,i,r,βr) ≤ 0, (77f)
τmin,r(Zrθk,i,r,βr)− τk,r ≤ 0, (77g)
f1 ≤ fk,1 ≤ f1, (77h)
∀k ∈ J0, N − 1K, i ∈ J1, npK, r ∈ J3, n+ 2K, (77i)
||pJe

(xN,0)− pJe,des||2 = 0, (77j)

where (∗) denotes all the decision variables, i.e. xk,i ∈
R2(n+3), ∀k ∈ J0, N − 1K, i ∈ J1, npK, uk ∈ Rn+3, ∀k ∈J0, N − 1K, and xN,0; np = 1. x and x represent the lower
and upper bound of states, respectively. τk,r represents
Motor r’s torque from the input uk. θk,i,r represents Joint
r’s position from the state xk,i; Zr = 50 represents the
gear ratio of Joint r. τmin,r and τmax,r are given by (54),
(55), or (63), depending on the sign of Φpm,r/Ld,r−Imax,r.
f1 and f1 represent the lower and upper bound of the
base’s control input, respectively. fk,1 represents the
base’s control from the input uk. Eq. (77j) constrains
the terminal state xN,0, where pJe

(·) is a mapping from
the state (joint positions) to the end effector position in
Euclidean space and pJe,des ∈ R3 represents the desired
end effector position. The details on pJe

(·) are given by
Section III-D.

The parameters related to the mobile manipulator are
given as follows. n = 6. The base mass is 90 kg, the
manipulator mass (including the motors) is 47.03 kg,
and the end effector is carrying a 5 kg solid iron ball.
f1 = −f1 =

[
150 Nm 150 N 150 N

]⊤, which can
generate an acceleration of approximately 1 m/s2 ≈ 0.1 g
in the x- and y-axis. Given some empirical motor design
parameters, the constant maximum torque is 13 Nm and
starts decreasing at 168 rad/s until reaching the maximum
speed at 301 rad/s. The base’s initial yaw angle is 0 rad;

the base’s initial positions in the x- and y-axis are 0 m;
the initial and the desired terminal velocities for every
joint of the mobile manipulator are all 0.

During the simulation, after an optimal trajectory is
obtained by solving (77), a PID (Proportional–Integral–
Derivative) controller is adopted to track the desired
torques from the optimal trajectory, i.e. for i ≥ 3,

τi(t) := τi,des(t) +KP,i

(
θi,des(t)− θi(t)

)
+KI,i∫ t

0

(
θi,des(t)− θi(t)

)
dt+KD,i

(
θ̇i,des(t)− θ̇i(t)

)
,

(78)

where KP,i,KI,i,KD,i > 0 are the proportional, integral,
and derivative gains, respectively; θi,des(t) and θ̇i,des(t) are
the desired joint position and velocity from the optimal
trajectory. Similarly, for the base, a similar PID controller
is used, i.e.

f1(t) := f1,des(t) +KP,1

(
q1,des(t)− q1(t)

)
+KI,1∫ t

0

(
q1,des(t)− q1(t)

)
dt+KD,1

(
q̇1,des(t)− q̇1(t)

)
,

(79)
where KP,1,KI,1,KD,1 ∈ R3 are the PID gain diagonal
matrices with positive diagonal elements. The closed-
loop system result from the integrated motion planning
approach is illustrated in Fig. 9, where the PID feedback
is given in (78) and (79). Note that for the integrated
motion planning, τi,des(t) and f1,des(t) in (78) and (79) are
the feed-forward terms and given by the optimal solution
of (77). The integrated motion planning problems with
different parameters are denoted as: (1)

1) P1: the proposed integrated planning (77) with final
time tf = 5.0 s and number of intervals N = 500;

2) P2: the same as P1, but tf = 3.5 s, N = 350;
3) P3: the same as P1, but tf = 2.0 s, N = 220.

Note that tf = 2.0 s is the minimal dynamically feasible
time for this particular example given the full dynamics
of the mobile manipulator. This is obtained by solving a
time optimal integrated motion planning problem, which
is similar to (77), but adding tf as one decision variable
and revising the objective function (77a) as just tf .

Figure 9. The closed-loop system with PID feedback for both the
integrated motion planning approach and the sequential planning
approach.

B. Comparison of Integrated Motion Planning with Ana-
lytical and Numerical Derivatives

To demonstrate the importance of using differentiable
dynamical modeling, this subsection provides a com-
parison between solving the integrated motion planning
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optimization using the analytical gradients from the
differentiable dynamic model and using the numerical
gradients from the finite difference method. Specifically,
this paper uses CasADi [54] to construct the analytical dy-
namic model with Algorithm 4, and employs the interface
between CasADi and the nonlinear optimization solver
IPOPT [55] to automatically provide the analytical gra-
dients of the objective function and the equality/inequality
constraints (including the analytical gradients of the
forward dynamics), as well as the analytical Hessian
matrix of the Lagrangian, to the IPOPT solver. As for
the numerical gradient approach, the numerical derivatives
are provided by the central finite difference method
in CasADi, and the Hessian matrix approximation is
given by the limited-memory quasi-Newton approximation
provided by IPOPT. The maximum iteration for both
approaches is 1500 and the optimization initial guess for
both approaches is a zero vector.

The desired end effector position is randomly generated
given the constant distance of 2.25 m and the constant
height of 0.5 m to the initial base position. Each approach
is performed for the same random end effector desired
position for 20 different trials and the result is summarized
in Table III, where Iteration Count indicates the total
IPOPT iterations; n_call_nlp_f indicates the number
of function calls for the objective function; similarly,
n_call_nlp_g for the constraints, n_call_nlp_grad_f
for the objective function gradient, n_call_nlp_jac_g
for the constraints’ gradients, n_call_nlp_hess_l for the
Hessian matrix of the Lagrangian; ||u||2 indicates the total
summation of control magnitude over time; Error indicates
the error between the final actual end effector position and
the desired one on in millimeters given the closed-loop PID
tracking controllers; Success indicates the success rate of
solving optimization successfully.

Table III demonstrates the significance of using a differ-
entiable dynamics model for solving motion planning op-
timization problems, regarding computational efficiency.
The differentiable dynamics model could provide the exact
Hessian matrix and exact gradients for the optimization,
which results in less total amount of function calls and
thereby reduces the total computing time. Moreover,
for interior-point methods, providing the exact Hessian
matrix makes the algorithm converge faster than using the
Quasi-Newton method with the limited memory BFGS
(Broyden-Fletcher-Goldfarb-Shanno) update [55]. As for
the optimality, according to the same result from ||u||2
and Error, the optimization with analytical and numerical
gradients in this comparison yields the same optimality,
i.e. the same control effort.

C. Benchmark: Sequential Planning
This subsection presents a benchmark approach, i.e.,

sequentially doing locomotion and manipulation planning.
The sequential planning approach has two phases. In the
first phase, the base moves to a location within a circle
centering at the projection of pJe,des on the ground (XOY

Table III
Motion Planning with Analytical and Numerical

Gradients

Item P2 P2†

IPOPT Time [s] 28.13± 1.07 267.21±24.42
Iteration Count 57.6± 2.4 679.6±50.6
n_call_nlp_f 758± 375 16795±8315
n_call_nlp_g 758± 375 16795±8315

n_call_nlp_grad_f 630± 340 7267±3863
n_call_nlp_jac_g 630± 340 7267±3863
n_call_nlp_hess_l 610±329 0

||u||2 14716±453 14716±453
Error [mm] 1.09±0.02 1.09±0.02
Success [%] 100 100

† with numerical gradients

plane). The base’s desired position, velocity, and accelera-
tion trajectory at the x- and y-axis are parameterized by a
prescribed maximum acceleration magnitude am > 0 and
a desired final time tf1. The dynamic coupling between
the base and the manipulator is essentially a wrench (or a
spatial force) applied on both parts. To reduce the effect
of this wrench, as discussed inSection I-A1, the motion
must minimize the jerk caused by sudden movements. The
trajectory parameterization is given by (80) - (82), and its
acceleration parameterization is illustrated in Fig. 10. The
acceleration increases from 0 initially and decreases to 0
finally for smooth movement.

Without loss of generality (WLOG), the desired base
movement at each axis is given by

a(t) =


4am

tf1
t, if t ∈ [0, tf1

4 ]
−4am

tf1
t+ 2am, if t ∈ [ tf14 , 3tf1

4 ]
4am

tf1
t− 4am, if t ∈ [ 3tf14 , tf1]

(80)

v(t) =


2am

tf1
t2, if t ∈ [0, tf1

4 ]
−2am

tf1
(t− 1

2 tf1)
2 + amtf1

4 , if t ∈ [ tf14 , 3tf1
4 ]

2am

tf1
(t− tf1)

2, if t ∈ [ 3tf14 , tf1]

(81)

p(t) =


2am

3tf1
t3, if t ∈ [0, tf1

4 ]
−2am

3tf1
(t− 1

2 tf1)
3 +

4amtf1t−amt2f1
16 , if t ∈ [ tf14 , 3tf1

4 ]
2am

3tf1
(t− tf1)

3 +
amt2f1

8 , if t ∈ [ 3tf14 , tf1]
(82)

Note that a(0) = a(tf1) = 0; v(0) = v(tf1) = 0; WLOG,
v(t) > 0 ∀t ∈ (0, tf1), p(t) = 0 and p(t) is monotonically
increasing in [0, tf1]. Given a particular final position pf ,
the parameterized trajectory in (82) yields tf1 =

√
8pf/am.

The desired yaw angle in the first phase is always the initial
yaw angle, so as the desired yaw velocity, to reduce the
influence of the base movement on the manipulator.

Since the dynamic coupling between two bodies is essen-
tially an unmodeled wrench, this wrench can be viewed as
a disturbance and one can design a feedback controller to
reject this disturbance. Hence, a PID controller, similar to
(79), is used to track the desired trajectories for the base,
where the feed-forward force on the x- and y-axis, i.e. the
second and third element of f1,des(t), are given by the total
mass of the robot multiplied by the desired acceleration
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defined in (80); the feed-forward torque around the z-axis,
i.e. the first element of f1,des(t), is zero. To stabilize the
manipulator while the base is moving, the desired motor
torques are computed by the inverse dynamics of a fixed
manipulator under the same actuator parameterization
given desired zero joint velocities and accelerations. A PID
controller, similar to (78), is adopted to track the desired
torques for the manipulator, where θi,des(t) = θi(0) and
θ̇i,des(t) = 0.

Figure 10. An illustration on the acceleration parameterization.

In the second phase, once the base arrives at the
desired location, a motion planning problem, similar to
(77), is solved given the fixed manipulator dynamics and
the prescribed time duration tf2. The PID controller for
the manipulator in the first phase is used to track the
desired torques returned by the optimization, where the
feed-forward torques are the optimal torques returned by
the fixed manipulator motion planning optimization. The
PID controller for the base in the first phase is used to
stabilize the base position at its desired one, with the feed-
forward term f1,des(t) being zero. The closed-loop system
of the sequential planning approach is also illustrated in
Fig. 9, where the difference between two approaches is
how the feed-forward terms, i.e. τi,des(t) and f1,des(t),
are calculated. The sequential planning problems with
different parameters are denoted by: (1)

1) B1: the sequential planning with am =[
0.25 0.25

]⊤ m/s2;
2) B2: the same as B1, but am =

[
0.50 0.50

]⊤ m/s2;
3) B3: the same as B1, but am =

[
0.75 0.75

]⊤ m/s2;
4) B4: the same as B1, but am =

[
1.00 1.00

]⊤ m/s2.

D. Comparison of Integrated and Sequential Planning
Methods

This subsection compares the motion planning results
from the proposed integrated planning approach and the
sequential planning approach given different parameters.
Each approach is tested for 20 trials, where the desired end
effector position is randomly generated in the same way as
Section VII-B does. The results are summarized in Table
IV, where the column Time indicates the completion time
in seconds. For the integrated motion planning method,
only one set of PID gains is used for all tf . For the
sequential planning method, only one set of PID gains
is used throughout two phases, for all am; tf2 = 2.5 s
is obtained by solving the time optimal motion planning
problem given the fixed arm dynamics. Each set of gains is
manually tuned to minimize the trajectory tracking error
and the end effector position error.

Table IV
Results From Multiple Planning Problems

Name Time [s] ||u||2 Error [mm] Success [%]
P1 5.0 6691±171 1.17±1.10 100
P2 3.5 13993±439 0.27± 0.15 100
P3 2.0 85705±6254 3.00±1.66 100
B1 9.35±0.22 5453± 65 38.68±9.83 90
B2 7.34±0.16 15289±157 36.26±11.19 80
B3 6.45±0.13 28017±264 34.64±11.93 85
B4 5.93±0.11 43090±423 34.35±6.98 90

According to Table IV, the integrated planning method
achieves time-optimal motion with millimeter-level end
effector positioning errors, compared to the sequential
planning. When compared with B1, the sequential plan-
ning approach with the smallest acceleration, P1 reduces
the completion time by almost half while consuming
similar control effort. In fact, the integrated planning
method with tf = 6 s completes the task with a control
effort of approximately 4166, consuming less energy than
B1 while still being more time-efficient. The optimal time
of tf = 2 s is obtained by solving the time-optimal
integrated motion planning given the full dynamics of the
mobile manipulator, which guarantees dynamical feasibil-
ity. Thus, the motion planning with a final time greater
than 2 s yields a 100% success rate in solving the motion
planning optimization. By tuning the final time within
the feasible range, one can customize motion planning to
balance time and energy efficiency.

Fig. 11 illustrates how the mobile manipulator moves
given different approaches and parameters. From Fig. 11a
to Fig. 11c, the integrated planning with different final
times all have precise trajectory tracking, and the zoom-
in areas in all three subfigures show that the end effector
reaches the desired goal position, even with the most
aggressive but feasible task time of tf = 2 s. From Fig. 11d
to Fig. 11g, where the sequential planning method is used,
the manipulator fails to reach the desired position with
the same precision. This is because the computation of the
parameterized motion does not account for the dynamic
coupling between the base and the manipulator. Thus,
the dynamical coupling is assumed small enough so that
it, being treated as a disturbance, can be compensated
by a tracking controller. However, this assumption holds
only if the desired motion has a small acceleration.
Consequently, it is challenging for the sequential planning
method to adjust the manipulator’s configuration while
the base is moving. Therefore, when a more time-efficient
movement is required, the sequential planning method
cannot perform as well as the integrated planning method.

Fig. 12 demonstrates the state and control trajectories
of some joints given different approaches. When com-
paring the base movement in Fig. 12a - Fig. 12l, the
sequential planning method struggles to precisely track
the desired state trajectory in the second phase. This
is due to the significant dynamical influence from the
manipulator motion to the base, which is not considered
and compensated for in the base motion. Similarly, in
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(a) P1. (b) P2. (c) P3.

(d) B1. (e) B2. (f) B3. (g) B4.

Figure 11. The desired and actual position trajectories of the base and the end effector on the XOY plane for different approaches.

Fig. 12m - Fig. 12p, the sequential planning method
fails to precisely track Joint 4’s desired trajectory due
to the dynamical influence from the base motion to the
manipulator. Note that Joint 4 is the first joint of the
manipulator that needs to generate torque to compensate
for the gravity of the entire manipulator. Thus, any small
tracking error or dynamics mismatch in Joint 4 can be
amplified for the rest of the joints. Fig. 12q - Fig. 12t
illustrates the control trajectory for different methods.
Specifically, Fig. 12q - Fig. 12r demonstrates that the base
yaw torque is constantly compensating for the dynamical
effect between the base and the manipulator, especially for
the most aggressive P3. This shows that for the sequential
planning method, the desired yaw torque, i.e. the feed-
forward term in the PID tracking controller, in both
phases cannot constantly equal zero. Without modeling
the dynamics of the entire mobile manipulator, one cannot
calculate how much yaw torque is required to compensate
for the motion. In other words, the base yaw torque in
Fig. 12r compensates for the dynamic coupling wrench,
whereas the sequential planning cannot compensate it well
because it assumes that the desired wrench, i.e. the feed-
forward term, is zero. Part 1 of the supplementary video
demonstrates how the mobile manipulator behaves given
different approaches.

E. Comparison with Measurement Noise
This subsection compares the motion planning results

given measurement noise. The state observed at each
time instance equals the true state plus a multivariate
Gaussian noise with zero mean and a diagonal covariance
matrix. In other words, each entry of the state follows

an independent Gaussian distribution. Particularly, the
localization and pose estimation of the mobile base are
less accurate than the measurement of the manipulator
joints’ angular positions and velocities. The variance for
joint angular positions and velocities is 1 × 10−5 rad
due to accurate measurement. The variances for the
base yaw angular position and velocity are 5.24 × 10−3

rad (0.3 degrees) and 1.75 × 10−3 rad/s (0.1 deg/s),
respectively. The variances for the base position (along
the x- and y-axis) and velocity are 0.02 m and 0.006 m/s,
respectively. Note that the measurement for the base is
quite noisy, as 99.7% of the position measurements in each
axis lie within an error range of ±60 millimeters. The
measured state is directly fed into the tracking controller
of each approach, without any filtering or estimator. Each
approach is performed for 20 different trials which are
randomly generated in the same way as Section VII-D
does. The result is summarized in Table V, where P2 and
P3 perform similarly despite measurement noise. Given
that 99.7% of the position measurements lie within an
error range of ±60 millimeters, the end effector error
of P2 and P3 is acceptable. Fig. 13 illustrates how the
mobile manipulator moves to reach the desired position
given measurement noise. Part 2 of the supplementary
video demonstrates how the mobile manipulator tracks the
desired trajectories under measurement noise. Adopting
a noise filter or a state estimator such as an Extended
Kalman Filter (EKF) for trajectory tracking might further
reduce the tracking error.
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(a) Base Yaw, P1. (b) Base Yaw, P3. (c) Base Yaw, B1. (d) Base Yaw, B4.

(e) Base X, P1. (f) Base X, P3. (g) Base X, B1. (h) Base X, B4.

(i) Base Y, P1. (j) Base Y, P3. (k) Base Y, B1. (l) Base Y, B4.

(m) Joint 4, P1. (n) Joint 4, P3. (o) Joint 4, B1. (p) Joint 4, B4.

(q) Base Inputs, P1. (r) Base Inputs, P3. (s) Base Inputs, B1. (t) Base Inputs, B4.

Figure 12. The state and control trajectories of some joints by different approaches.
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(a) P1. (b) P2. (c) P3.

(d) B1. (e) B2. (f) B3. (g) B4.

Figure 13. The desired and actual position trajectories of the base and the end effector on the XOY plane for different approaches with
measurement noise.

Table V
Results With Measurement Noise

Name Time [s] ||u||2 Error [mm] Success [%]
P1 5.0 6697±173 45.48±23.82 100
P2 3.5 13994±438 11.10±9.03 100
P3 2.0 85551±6245 6.23± 5.30 100
B1 9.35±0.22 5990± 329 57.96±26.04 90
B2 7.34±0.16 15569±440 39.63±16.76 80
B3 6.45±0.13 28261±363 35.68±12.85 85
B4 5.93±0.11 43344±528 33.65±12.13 90

VIII. Simultaneous Actuator Design and Integrated
Motion Planning

This section illustrates the effectiveness of the proposed
modeling approach for mobile manipulator co-design,
particularly by showcasing a simultaneous actuator design
and motion planning framework. Specifically, simultane-
ous design involves solving a motion planning problem
similar to (77), while also treating the motor design pa-
rameters β as decision variables, along with certain motor
design constraints. The following subsections present the
simultaneous design formulation and the corresponding
numerical results.

A. Formulation
This subsection introduces the simultaneous design

formulation. First, Motor j’s motor design parameter βj

is subject to the following design constraints:
lj ∈ [20, 100], rro,j ∈ [10, 100], rso,j ∈ [10, 100], hm,j ∈ [1, 5],

(83a)

hsy,j ∈ [5, 10], wtooth,j ∈ [5, 20], b0,j ∈ [1, 10], (83b)
hss,j > 0 mm, Dwire,j ≥ 0.6 mm, kC,j > 0, (83c)
0 < arcsin(

wtooth,j

2(rro,j+δ) ) + arcsin(
b0,j

2(rro,j+δ) ) ≤
π
Q , (83d)

0 < mstator,j +mrotor,j ≤ 3 kg, mstator,j > 0 kg, (83e)
0 T <

kpΦ1,j

wtooth,j lj
≤ 1.5 T, 0 T <

kpΦ1,j√
3hsy,j lj

≤ 1.5 T,

(83f)
Aslot,j > 0 mm2, Aso,j > 0 mm2, (83g)

where (83c) describe the minimal slot height, motor’s
minimal wire diameter, and minimal Carter’s coefficient;
(83d) and (83e) describe the tooth width bound and
the motor weight bound, respectively; (83f) describes the
magnetic flux bounds in the tooth and the stator yoke;
(83g) describes the minimal slot area and the minimal
cross-section area of the stator core. δ is a constant defined
in Section IV-A; hss,j , Dwire,j , mstator,j , mrotor,j , Φ1,j , kp,
kC,j can be calculated by (30) - (35) and (40) - (43) from
Section IV-A. The design constraints (83a) - (83b) can
be summarized as a closed convex set, i.e. βj ∈ B ⊂ R7;
the design constraints (83c) - (83g) can be written as an
inequality constraint, i.e. gd(βj) ≤ 0.

Thus, the simultaneous actuator design and motion
planning problem can be written as follows:

min
(∗)

tf
N

∑N−1
k=0

∑np

j=0 Bj ||uk||22 (84a)

s.t. βr ∈ B, gd(βr) ≤ 0, (84b)
tf
N

f c(xk,i,uk,β)−
∑np

j=0 Cj,ixk,j = 0, (84c)

xk+1,0 −
∑np

j=0 Djxk,j = 0, (84d)
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x ≤ xk,i ≤ x, (84e)
∀k ∈ J0, N − 1K, i ∈ J1, npK, given x0, (84f)
τk,r − τmax,r(Zrθk,i,r,βr) ≤ 0, (84g)
τmin,r(Zrθk,i,r,βr)− τk,r ≤ 0, (84h)
f1 ≤ fk,1 ≤ f1, (84i)
∀k ∈ J0, N − 1K, i ∈ J1, npK, r ∈ J3, n+ 2K, (84j)
||pJe

(xN,0)− pJe,des||2 = 0, (84k)

where (∗) denotes all the decision variables, i.e. β ∈ R7n,
xk,i, ∀k ∈ J0, N − 1K, i ∈ J1, npK, uk, ∀k ∈ J0, N − 1K, and
xN,0.

Since the simultaneous design optimization (84) in-
cludes motor design parameters β as decision variables,
the objective function and the constraints of (84) need
to be differentiable to β. According to Section IV-C,
the piece-wise analytical motor max/min torque functions
from (54), (55) and (63) are not differentiable to β.
However, as discussed in Section IV-B, when the motor
speed exceeds ωr,j = ωce,j(βj)/p, the maximum torque
starts to decrease from its constant value. This decrease
occurs because either the voltage or the current increases,
activating the voltage and/or current constraint. From
the perspective of minimizing the motor input power (i.e.
the product of current and voltage), it is reasonable to
constrain the motor speed to be less than ωce,j(βj)/p.
Consequently, the motor’s maximum torque remains con-
stant, determined by a function of β, regardless of the
sign of Φpm,j/Ld,j − Imax,j . Therefore, for all Motor r,
r ∈ J3, n + 2K, the motor torque constraints (84g) and
(84h) are reduced to

τk,r − τmax,r(βr) ≤ 0, −τmax,r(βr)− τk,r ≤ 0, (85)

where τmax,r := 1.5pΦpm,rImax,r. For every time instance
and collocation point, i.e. ∀k ∈ J0, N − 1K, i ∈ J1, npK, the
joint speed is constrained by

θk,i,r −
ωce,r(βr)

Zrp
≤ 0, −ωce,r(βr)

Zrp
− θk,i,r ≤ 0, (86)

where ωce,r(βr) is given by (46).

B. Numerical Results
This subsection presents the numerical results of the

simultaneous actuator design and motion planning. The
mobile manipulator is desired to carry a 5 kg solid iron
ball to reach a terminal position. The final time is 2
seconds. The initial guess of the motor design parameters
is the empirical design used in Section VII. The empirical
and optimized motor designs are visualized in Fig. 14,
where the magnet height and tooth width of all motors
are decreased to reduce the unnecessary permanent flux
Φm and thereby motor torque capacity; the axial length,
rotor radius, and stator radius of all motors are decreased
to reduce the unnecessary motor mass and inertia. Since
Motor 4 is the heaviest motor in the arm to compensate for
the entire arm’s gravity, the rotor radius, magnet height,
and tooth width of Motor 4 are greater than the others.

Table VI
Motion Planning Results with Empirical and Optimized

Motor Design

Item Empirical Optimized Reduced by
Motor Mass [kg] 18.00 2.44 86.44%

||u||2 68667 49039 28.58%

The motion planning results based on empirical and
optimized motor designs are summarized in Table VI. The
total motor mass of the arm and the required control
effort are significantly reduced by 86.44% and 28.58%,
respectively, with the optimized design. Comparing both
the integrated motion planning and sequential planning
summarized in Table IV given the empirical design, the
integrated motion planning with the optimized design
consumes a similar amount of control effort as B4. But it
achieves a more time-efficient motion, with its final time
being almost one-third of B4’s. These results verify the
effectiveness of the simultaneous design. Part 3 of the
supplementary video demonstrates how the mobile ma-
nipulator reaches the desired position given the empirical
and optimized motor design.

While this specific simultaneous design scheme requires
differentiability on design parameters, other co-design
schemes, like the sequential co-design scheme in [50], do
not. For instance, one can formulate two optimization
problems and solve them sequentially. The first is the
motion planning optimization with specific motor design
parameters, while the second is a motor design opti-
mization to minimize operational efficiency based on the
optimal trajectory obtained from the motion planning
optimization. In this case, the differentiability of the motor
torque and speed constraints to the design parameters is
relaxed for the motion planning optimization. This section
highlights the capability of the proposed modeling ap-
proach for robot co-design by showcasing the simultaneous
actuator design and motion planning framework.

IX. Conclusions and Future Work
This paper investigates differentiable dynamic modeling

for mobile manipulators, where actuators are parameter-
ized by physically meaningful motor geometry param-
eters. These parameters affect various aspects of the
manipulator, such as link mass, inertia, center-of-mass,
control constraints (motor torque capacity), and state
constraints (motor maximum speed), all of which influence
the performance of the motion planning and closed-
loop control system. This paper presents an analytical
model for the motor’s maximum torque and speed and
describes how design parameters impact the dynamics,
enabling differentiable and analytical dynamic modeling.
Furthermore, using the proposed differentiable dynamics
and motor parameterization, this paper formulates an in-
tegrated locomotion and manipulation planning problem,
discretized by direct collocation. The effectiveness of the
differentiable dynamics is demonstrated through numer-
ical experiments, showing improvements in computation
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Figure 14. Empirical and optimized motor design parameters.

efficiency, task completion time, and energy consumption,
compared to the prevailing sequential motion planning
approach. Lastly, this paper introduces a framework for
simultaneous actuator design and motion planning, offer-
ing numerical results to validate the effectiveness of the
proposed differentiable modeling approach for co-design
problems.

The limitations of the proposed modeling approach can
be summarized in three main aspects. Firstly, this paper
simplifies the mobile base as one rigid body with one 3-
DOF planar joint on SE(2). This choice is made to focus on
the methodology and algorithm for modeling the forward
and inverse dynamics of the entire chain of rigid bodies
based on motor parameterization. However, to model
the full 6-degree-of-freedom motion of a mobile base,
including pitch and roll behavior, a specific mechanical
configuration for the mobile base, including wheel-ground
contact, must be defined. This would introduce additional
modeling complexity beyond the scope of this paper. For
example, [46] investigate the high-fidelity modeling of a
four-wheeled car-like mobile robot, including the modeling
of contact forces between the wheels and the ground, as
well as how the terrain affects the robot’s dynamics. A
future improvement of the proposed modeling approach
could include similar techniques used in [46].

Secondly, this paper neglects the dynamics of the
gearboxes, typically harmonic drives, in the manipulator.
While harmonic drives are generally compact, and their
dynamics are often negligible compared to the manipu-
lator’s dynamics, modeling a harmonic drive with major
design parameters could increase the modeling fidelity for
the entire robot. This would further enable the integrated

design of motors and gearboxes.
Thirdly, the proposed modeling approach does not

account for friction in each joint. Actual friction occurs
at the contact surface between each motor’s rotor and its
corresponding gearhead. While some literature [56]–[58]
models a manipulator’s joint friction as a function of joint
velocity, joint friction is also affected by the temperature
of the contact surface, and any friction-related parameters
could vary depending on the actual lubrication condition
[57], [58]. Therefore, from the perspective of motion plan-
ning, it would be beneficial to consider unmodeled joint
friction as an unknown disturbance. Designing planning
and control techniques to compensate for this unknown
disturbance is necessary for high-precision motion. From
the perspective of robot co-design, reasonably modeling
joint friction could make the co-design result more realis-
tic. For instance, friction, as a function of joint velocity,
may restrict fast joint movement to save energy or improve
energy efficiency.

Regarding the proposed integrated locomotion and
manipulation planning, this paper emphasizes that con-
sidering the entire dynamics of mobile manipulators
could yield better motion performance compared to the
most common sequential planning approach. Modeling a
motor’s maximum torque/speed as analytical functions
ensures that the corresponding motion does not violate the
control authority of the motors. Even though the proposed
integrated motion planning is not a real-time algorithm,
it provides insights into how the proposed modeling
approach could benefit both offline and online motion
planning. A differentiable dynamic model is necessary for
many state-of-the-art online motion planning algorithms,
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according to this paper’s literature review.
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