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Abstract
Road maps for vehicle control and navigation systems are typically generated by mapping
systems that are highly accurate but updated infrequently. However, changes to the roads
are made at a higher frequency. Stored road maps may therefore not capture the true road
well. To resolve this, we consider online road-map estimation using the type of sensors found
in production cars. The map estimation for a given vehicle is based on a global positioning
system, camera, steering wheel, and wheel-speed sensors. As each vehicle covers a limited
amount of road, we leverage crowdsourced map estimates from multiple vehicles to get a more
complete representation of the road map. High-fidelity simulation results indicate a reduction
of the estimation error of roughly 15% when using 5 agents compared to the best single agent.
Furthermore, we show that the method is capable of updating map segments that have large
errors, for example, as may occur during road maintenance.
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Distributed Road-Map Monitoring Using Onboard Sensors

Yanyu Zhang, Marcus Greiff, Wei Ren, Karl Berntorp⋆

Abstract— Road maps for vehicle control and navigation
systems are typically generated by mapping systems that are
highly accurate but updated infrequently. However, changes to
the roads are made at a higher frequency. Stored road maps
may therefore not capture the true road well. To resolve this, we
consider online road-map estimation using the type of sensors
found in production cars. The map estimation for a given
vehicle is based on a global positioning system, camera, steering
wheel, and wheel-speed sensors. As each vehicle covers a limited
amount of road, we leverage crowdsourced map estimates from
multiple vehicles to get a more complete representation of the
road map. High-fidelity simulation results indicate a reduction
of the estimation error of roughly 15% when using 5 agents
compared to the best single agent. Furthermore, we show that
the method is capable of updating map segments that have large
errors, for example, as may occur during road maintenance.

I. INTRODUCTION

High-precision vehicle positioning is becoming increas-
ingly important as vehicles equipped with sophisticated
advanced driver assistance systems (ADASs) and even au-
tonomous driving (AD) features are becoming widespread.
For such applications, high positioning accuracy is needed
for safety-critical obstacle and lane-change maneuvering, and
to provide comfortable vehicle control.

Road-vehicle positioning is preferably approached by fu-
sion of multiple complementary sensor modalities, because it
adds robustness and redundancy [1]. By leveraging prior road
maps, for example, from a mobile mapping system (MMS),
reliability and accuracy can be improved because it enables
positioning relative to a global map. Maps from MMSs
are updated infrequently, while higher-frequency changes to
the map (e.g., road construction, lane marking repainting,
temporary road rerouting) are not captured by an MMS-
generated prior map. To this end, many approaches for
vehicle positioning include map updating in the estimation
problem. Recent works use a combination of global naviga-
tion satellite system (GNSS), camera, inertial measurement
units (IMUs), radar, and road maps to accurately and jointly
estimate the vehicle state and road map. For instance, [2]
fuses information from several (local) sensors to perform
joint road geometry estimation and vehicle tracking. This
work was extended in [3], [4], where a forward-looking
camera and radar, together with an IMU, a steering wheel
sensor, wheel-speed sensors, and a new road-geometry model
are leveraged in an extended Kalman filter (EKF).
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In [5], we developed a GNSS-based sensor fusion method
for joint (single) vehicle positioning and road-map estima-
tion, with the map represented by one or several splines.
The sensor-fusion method estimates the vehicle state and the
spline coefficients in an interacting multiple model (IMM)
linear-regression Kalman filter (LRKF), outputting the mean
estimate and associated covariance of said quantities.

Vehicle connectivity and crowdsourcing offer new pos-
sibilities for storing and processing data (e.g., [6]). This
paper presents a map estimation method using crowdsourced
data, for example, by a cloud storage as well as driver-
specific data. The method relies on (i) local position-specific
map estimates obtained from multiple vehicles and (ii)
global map estimates obtained by merging the local map
estimates of multiple estimates and a prior map. Locally, a
vehicle estimates both its vehicle position and its surrounding
map simultaneously, which are subsequently crowdsourced.
Globally, the local estimates are fused together to provide
an updated global map. The method assumes that the local
estimator executed in the vehicles is able to output the first
two moments (i.e., mean and covariance) of an estimated
distribution. We envision a global map-monitoring solution
that can provide more frequent map corrections than what
an MMS is capable of. This can have implications related to
route planning and high-level navigation systems. Optionally,
the global map corrections can be transmitted back to the
local vehicles, which can have implications for lower-level
control such as motion planning and ADASs. However, we
focus on data fusion in this paper, implying that we fuse the
estimates globally without updating the internal memory of
the local estimators.

Notation: Throughout, x ∼ N (µ,Σ) indicates that the
vector x ∈ Rnx is Gaussian distributed with mean µ and
covariance Σ. The associated probability density function
is denoted by N (x|µ,Σ). Here, [x]i indicates the ith el-
ement of the vector x, and matrices are written in capital
bold font as X with elements Xij . We let x̂j|m denote
the estimate of x at time step j given the measurement
sequence y0:m = {y0, . . .ym}. With p(xk|y0:k), we mean
the posterior density function of the state xk given y0:k

from time step 0 to time step k. The concatenation of two
vectors x ∈ Rnx and y ∈ Rny is [x;y] = [x⊤,y⊤]⊤ ∈
Rnx+ny . Furthermore, In is the n × n identity matrix. We
let f ∈ Cn(A,B) denote functions f : A 7→ B whose first n
derivatives are continuous. Finally, vec(S) denotes a vector
representation of an arbitrary collection of points S, vec(·)
is the vectorization operator, and blkdiag(A,B) generates
a block-diagonal matrix of the inputs A and B.
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Fig. 1. The relation between the vehicle frame OE , the camera frame OC ,
the road frame of the left lane, OR,l, and the world frame OW . The distance
between the vehicle’s longitudinal X-axis and the left lane boundary is lL,
and the shaded circle depicts the road curvature (here exaggerated) at the
origin of OR,l. The lines in red dashed indicate measurements that can be
obtained by the camera, which is located in OC , for a given lookahead.
The definition of OR,r is analogous to that of OR,l.

II. VEHICLE AND SENSOR MODELING

Fig. 1 shows the different coordinate frames used in this
paper. The vehicle yaw angle ψ describes the rotation of
the vehicle frame OE relative to the world frame OW by
the standard planar rotation matrix. In [7], we showed that
for estimation purposes under normal driving conditions
(i.e., not at-the-limit maneuvers), a kinematic single-track
model performs similar to a dynamic equivalent. Hence, we
consider a kinematic model but our method straightforwardly
extends to more complicated vehicle models.

The kinematic single-track model has three states, being
the global (planar position) and the heading angle, z =
[pX , pY , ψ] ∈ Rnz , nz = 3. The wheel-speed measurements
directly provide the vehicle velocity. In continuous time,

ż =

vX cos (ψ + β)/ cos(β)
vX sin (ψ + β)/ cos(β)

vX tan (δf )/L

 , (1)

where L = lf+lr, β = arctan(lr tan(δ)/L) is the kinematic
body-slip angle, and the velocity is related to the wheel
speeds by vX = Rw

2 (ωf + ωr). After time discretization,
we write (1) concisely as

zk+1 = g(zk,uk) +wz
k , (2)

with Gaussian process noise, wz
k ∼ N (0,Qz), and uk

denotes the control input at time step k.

A. Road Model

There are multiple ways in which a road map can be rep-
resented. Several previous works have employed a clothoidal
representation [3], [4]. However, it is appealing to consider
lower-dimensional Bézier curves forming a spline and im-
plicitly enforce continuity at the endpoints of the curves [5,
Proposition 1], as Bézier curves are more expressive than
clothoids. Consequently, we consider Bézier curves for the
construction of probabilistic road map distributions.

Definition 1 (Bézier curve) A Bézier curve of degree n
denoted by b : [0, 1] 7→ Rd is defined by n+1 control points

Pm = {cm,i ∈ Rd : d > 1, i ∈ [0, ..., n]} as an interpolation

b(λ,Pm) =

n∑
i=0

(
n
i

)
(1− λ)(n−i)λicm,i (3)

where λ ∈ [0, 1]. We build the maps using two such curves:
• One of degree n = 3, dimension d = 2, with points
Pm = {cm,0, cm,1, cm,2, cm,3}. This curve is denoted
by cm(λ) = b(λ,Pm) and represents the center lane;

• The other curve represents the half-width of the lane.
This curve is denoted by wm(λ) = b(λ,Wm), is of
degree n = 1, d = 1, andWm = {wm,0, wm,1}. If there
are multiple lanes, the dimension d can be increased.

In the following, rm = [cm;wm] : [0, 1] 7→ R2 × R>0 is
a three-dimensional curve, and r = [c;w] : [0,M − 1] 7→
R2×R>0 denotes M − 1 consecutive such curves such that

r(s) =

{
rm(s−m+ 1) if s ∈ (0,M − 1]

r1(0) if s = 0
, (4)

where m = ⌈s⌉. We can express a normal direction as
n(s) = R(π/2)c′(s)∥c′(s)∥−1

2 , where R denotes the 2D
rotational matrix. The left and right lane boundaries are
defined as c(s)± n(s)w(s). The map parameters are

γ̄=[vec(P1);...; vec(PM−1); vec(W1);...; vec(WM−1)]. (5)

The problem with this representation is that the lane bound-
aries need not be continuous for an integer s unless we
impose constraints on γ̄. To achieve continuity of the lane
boundaries, which is necessary for the algorithms proposed
in this paper, we require c ∈ C1([0,M − 1],R2) and w ∈
C0([0,M − 1],R>0).

To this end, we consider a representation with M general-
ized endpoints (GEPs), denoted by {γm}Mm=1, which relate
to the set of control points {(Pm,Wm)}M−1

m=1 as

[γm]1 = xm = [cm,0]1 = [cm−1,n]1, (6a)
[γm]2 = ym = [cm,0]2 = [cm−1,n]2, (6b)

[γm]3 = ϕm = arctan(
[cm,0−cm−1,2]2
[cm,0−cm−1,2]1

), (6c)

[γm]4 = rm = ∥cm,1 − cm−1,n−1∥2/2, (6d)
[γm]5 = w̄m = wm,0 = wm−1,1, (6e)

for all m = 2, ..,M−1, with γ1 and γM defined analogously.
Expressing the segment rm in (γm,γm+1) ensures that c ∈
C1([0,M − 1],R2) and w ∈ C0([0,M − 1],R>0), see [5].

Remark 1 As the center lane c(s) is linear in the map
parameters (5), it is possible to formulate constrained linear-
regression problems that fit a road-map representation to
a collection of data points D = {(cj , sj)}Jj=1 assuming a
measurement model cj ∼ N (c(sj), σ

2I2). Such points can
be sampled from high-definition maps, or simulators. Hence,
we map a solution of the regression problem to the GEP-
representation by (6) and use it as a filtering prior.

In the following, we denote the map parameters in a GEP
representation by γ = [γ1; ...;γM ] and introduce uncertainty
in the map by assigning a Gaussian prior on each γm,



as γm,0 ∼ N (mγ
m,0,Σ

γ
m,0) as per Remark 1. The time

evolution of γ is hard to model from physical reasoning,
as road maps are mostly constant over long time spans but
change abruptly during road maintenance. Assuming slow
changes in the map we use a nearly-constant position model,

γk+1 = γk +wγ
k , wγ

k ∼ N (0,Qγ). (7)

In summary, the prediction model (1) and (7) is

xk+1 = [g(zk,uk);γk]︸ ︷︷ ︸
≜f(xk,uk)

+wk, wk ∼ N (0,Q), (8)

where w = [wz;wγ ] and Q = blkdiag(Qz,Qγ) ≻ 0.

B. Measurement Model

We consider the GNSS position measurements yp
k gener-

ated by an estimator using code and carrier-phase measure-
ments, for example, by the methods in [8]–[10]. We assume
the position measurements to be unbiased and Gaussian
distributed. Because the estimation quality will continuously
change with environmental conditions and receiver move-
ments, both the mean µp

k and covariance Rp
k are considered

to be time varying, resulting in yp
k ∼ N (µp

k,R
p
k). For

simplicity but without loss of generality, we let yp ∈ R2.
The camera and a computer-vision (CV) algorithm pro-

vide measurements of the road geometry and the relative
vehicle position. We assume intermediary processing such
that the distance from OC and the left/right lane boundaries,
lL, lR, and a polynomial approximation of the lane markings,
fL, fR, in front of the vehicle for a look-ahead, see Fig. 1.

To use the polynomial approximation for inference, the
measurement equation needs discrete values. Hence, we
sample the polynomials uniformly at ns points over their
domain defined in s, {siL, siR}ns

i=1. This gives

hc = [lL, lR, fL(s
1
l ), · · · , fL(sns

L ), fR(s
1
R), · · · , fR(sns

R )]⊤.
(9)

The camera measurements yc
k are assumed Gaussian dis-

tributed according to yc
k ∼ N (µc

k,R
c
k), where, similarly to

the GNSS measurements, both the mean and covariance are
time varying. The complete measurement model is

yk = h(xk,uk) + ek ∈ Rny , (10)

where yk = [yp
k;y

c
k] ∈ R4+2ns and ek is zero-mean Gaus-

sian distributed with a block-diagonal covariance matrix.

Remark 2 As the GNSS provides global position measure-
ments of the vehicle and the camera provides map measure-
ments relative to the vehicle, the model (8) in combination
with (10) renders xk locally observable.

III. DISTRIBUTED MAP UPDATES BY ESTIMATE FUSION

We propose a distributed approach to road mapping where
to increase the map accuracy we fuse the mean and covari-
ance of the GEP map parameters from different vehicles
that independently estimate segments of the same map. Each
vehicle estimates the vehicle state z and map parameters
γ using the IMM-LRKF with GEPs developed in [5], [7],
which Sec. III-A briefly summarizes.

A. Joint Vehicle State and Map Estimation for Single Vehicle

The estimation model consisting of (2), (8), and (10)
contains multiple nonlinearities, both as a result of the
vehicle model but also as a result of the map model. Hence,
an analytic solution to the estimation problem does not
exist. In fact, not even the Jacobians of the measurement
equation are known in closed form and therefore have to be
numerically approximated if used.1 We therefore consider
LRKFs, which we embed in an IMM framework.

1) Linear-Regression Kalman Filter: For each LRKF, we
approximate the posterior density by its first two moments,

p(xk|y0:k) ≈ N
(
xk|x̂k|k,Pk|k

)
. (11)

Given (11) at time step k, the state-prediction distribution
at time step k + 1 is approximated by

p(xk+1|xk,y0:k) ≈ N
(
xk+1|x̂k+1|k,Pk+1|k

)
, (12)

by direct evaluation of the associated moment integrals. Us-
ing the LRKF framework [11], we transform the coordinates
ξk = L−1

k|k(xk − x̂k|k) using the Cholesky factorization of
the covariance matrix Pk|k = Lk|kL⊤

k|k, and approximate
the transformed integrals by evaluating the nonlinearity (8)
in a set of integration points {(ωi, ξi)}Nint

i=1 , as

x̂i
k+1|k = f

(
x̂k|k +Lk|k ξ

i
)
, (13)

leading to the predicted sufficient statistics as the weighted
average of the mean and covariance. For the measurement
update, the joint density is approximated using the same
integration techniques, resulting in a similar expression for
the measurement update (see [5]) and associated expressions
ŷ, P xy , and P y . This leads to the usual Kalman filter
update, where the update is done with respect to the vehicle
state and the map parameters associated with the Bézier
curves currently being measured by the camera.

2) Interacting Multiple-Model LRKF: The reliability of
both the GNSS measurements and camera-based measure-
ments vary in time. We therefore implement the LRKF in an
IMM framework [12], [13], where we have a set of Nmod

models that differ only in their measurement-noise charac-
teristics. At each time step k, the IMM assigns a weight
qk to each model reflecting its probability of explaining the
measurements. In this framework,

xk+1 = f(xk,uk) +wk, wk ∼ N (0,Qk), (14a)

yk = h(xk,uk) + ek(θk), ek ∼ N (0,Rθk
k ), (14b)

where the mode parameter θk ∈ [1, Nmod] ⊂ N evolves
according to a finite-state Markov chain with transition
probability matrix Π ∈ [0, 1]Nmod×Nmod . For every possible
θk, we assign a unique measurement noise covariance matrix
from {Rθk ∈ Rne×ne |Rθk = (Rθk)⊤,Rθk ≻ 0}Nmod

θk=1 .
At each time step, the IMM uses the transition matrix Π to

perform a mixing of the Nmod model estimates and weights.

1For instance, given (pX , pY , ψ) and γ̄, the distance lL in (9) is found
by applying a univariate Newton method to compute a path length s⋆L
corresponding to the origin of OR,l in the global frame, before evaluating
lL. As such, lL is a function of x̄, but this function is not differentiable.



Next, the IMM runs a filter bank of Nmod LRKFs to find the
estimate of xk, where the jth LRKF executes using Rj . The
state posterior is expressed using the law of total probability
as a Gaussian mixture of Nmod components,

p(xk|y0:k) ≈
Nmod∑
j=1

qjkN (xj
k|x̂

j
k|k−1,P

j
k|k−1), (15)

where

qjk ∝ N
(
yk|ŷj

k|k−1,P
y,j
k|k−1

)
q̄jk, ∀j ∈ [1, Nmod]. (16)

The mean ŷj
k|k−1 and covariance P y,j

k|k−1 are determined by
the corresponding LRKF. The state estimate is the weighted
average of the involved LRKFS.

B. Distributed Map Fusion

There are myriad methods that may be used for decentral-
ized fusion of the local road maps when represented in the
implicitly continuous form with Gaussian distributions over
the map parameters. This includes covariance intersection
(CI) [14], inverse CI (ICI) [15], ellipsoidal intersection (EI)
[16], and many others. In this paper, we primarily consider
ICI, as the method comes with proofs of consistency and
is generally less conservative than CI [14]. We denote an
estimate of the map in the ith vehicle as γ̂i

k|k ∼ N (mi
k,Σ

i
k),

which can be extracted from the corresponding state estimate.
The fusion of N such PDFs is denoted by

N (mf
k ,Σ

f
k)← fuse({N (mi

k,Σ
i
k)}Ni=1). (17)

While methods such as CI can be formulated in a central
manner, that is, fusing all of the estimates at once, ICI cannot.
Consequently, to make use of ICI and facilitate a distributed
implementation, (17) is implemented in a nested manner,
operating on pairs of information items in the spirit of [15].
Furthermore, we do so independently over the generalized
endpoints in the implicitly continuous map representation, as
a block-structured covariance matrix is explicitly enforced
in the IMM-LRKF implementation [5]. For a map with
M endpoints, we let N (mi

m,k,Σ
i
m,k) denote the estimate

associated with the mth endpoint in the ith vehicle, and we
apply the fusion method outlined in Algorithm 1.

Algorithm 1 Fusion by pairwise application of a fusion rule.

1: N (mf
k ,Σ

f
k)← N (m1

k,Σ
1
k)

2: for i = 2, . . . , N do
3: for m = 1, . . . ,M do
4: N (mf

m,k,Σ
f
m,k)←

fuse({N (mi
m,k,Σ

i
m,k),N (mf

m,k,Σ
f
m,k)})

5: end for
6: end for
7: return N (mf

k ,Σ
f
k)

Algorithm 1 can be implemented in a distributed manner
and effectively implies that N − 1 of the vehicles receive a
fused PDF, apply the fuse operation with respect to its own
estimate, before passing along the resulting PDF to the next

vehicle. In the following, we implement ICI for the fuse
operation of two densities N (m1

k,Σ
1
k) and N (m2

k,Σ
2
k)

Mk = (w1Σ
1
k + w2Σ

2
k)

−1, (18a)

(Σf
k)

−1 = (Σ1
k)

−1 + (Σ2
k)

−1 −Mk, (18b)

mf
k = Σf

k

( 2∑
i=1

[(Σi
k)

−1 − wiMk]m
i
k

)
, (18c)

where the weights w1, w2 > 0 sum to 1.

IV. SIMULATION STUDY

In this section, we present results from a simulation study
utilizing CarSim [17] and its sensor package.

In the following, we consider a five-lane highway, with
14 vehicles in different lanes starting from different initial
positions. We use the Cubature rule for assigning integration
points in the LRKFs [18] the common weighting heuristic

wi = Tr(Σi
k)

−1/(Tr(Σ1
k)

−1 +Tr(Σ2
k)

−1), i = 1, 2 (19)

for the ICI, which, in the context of Algorithm 1, is im-
plemented such that different weights are computed for the
fusion of different generalized endpoints in the map. The
sensor measurements, that is, camera and GNSS, are logged
for five of the vehicles and the estimation is done offline.
The exact models used in CarSim [17] are of higher fidelity
than those assumed in Sec. II. The true map used in CarSim
is sampled in a set of points, corresponding to the output of
an MMS, and the implicitly continuous map is regressed to
this data (see Remark 1). We regress two maps; one with
very little noise associated with the HD map represented as
γt ∼ N (mt,Σt), which serves as ground truth (σ = 1cm),
and one with greater variance associated with the HD map
(σ = 10cm), which serves as a prior for the road-map
estimation, γ̂0|0 ∼ N (m0,Σ0), common for all cars. Hence,
when assessing the estimation performance, we compare the
root mean-square error (RMSE) of the map parameters of an
estimate γ̂i

k|k ∼ N (mi
k,Σ

i
k) and the true map γt. We do

this in a set of NMC Monte-Carlo (MC) simulations, where
the super-index (·)(n) denotes the nth simulation.

A. Simulation With Nominal Prior Map

For the first simulation, five vehicles are initialized from
different positions and different lanes on the same map. Each
vehicle runs the IMM-LRKF described in Sec. III and com-
municates its estimate to a neighbor (or a cloud) in real-time.
Specifically, the first two moments of the map parameter
distribution estimated in each vehicle is communicated, and
a fused estimate is computed using (18) and the weight rule
defined in (19) in a distributed manner (see Algorithm 1).

In each simulation, the measurements are generated in Car-
Sim, but additional noise is added to simulate outlier events.
Specifically, noise is added to the GNSS measurements with
covariance Rp and to the camera measurements with covari-
ance Rc = diag(Rc

lane,R
c
poly), distinguishing between the

orthogonal lane measurements and the measurements of the
polynomial approximation of the lane boundary ahead. The
IMM uses seven models for estimation.
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Fig. 2. Results from the MC simulations showing the RMSE and
Frobenious error of the map parameters estimated locally in each vehicle
i = 1, ..., 5 as well as the fused map (black).

For every 300m, there is 240m of road without outliers,
30m of camera outliers and another 30m of GNSS outliers.
These segments are fixed to specific intervals in the path
variable s of the map, corresponding to a tunnel or lack
of lane markings that therefore equally affect all vehicles
passing a specific portion of the map. Note that none of
these simulation models exists in the set of estimation models
defining the IMM-LRKFs, and that we generally model
slightly higher measurement noises in the filters. This is
because the measurements generated by CarSim include
additional errors than the the simulation models.

Fig. 2 compares the resulting estimated map for each
vehicle with the fused estimates in terms of RMSE. In
the first subplot, we note a quick initial decrease in the
RMSE, which is due to the vehicles residing in different
spatial locations. Thus, the map is rapidly improved in
their respective local surroundings. Both the RMSE and the
Frobenious error also decrease with time, indicating that we
find a map that is indeed closer to the true map used in
CarSim. There is a significant improvement in using multiple
vehicles and the fusion rule in (18) with the weight update
in (19), compared with each individual vehicle.

B. Map Evaluation with Different Number of Vehicles

To further highlight the benefits of cooperative mapping,
we explore how the RMSEs of the fused estimates depend
on the number of vehicles included in the fusion. Specif-
ically, we study the RMSE over some time interval k ∈
[kmin, kmax]. Fig. 3 shows the results for the worst vehicle (in
expectation) and the best vehicle (in expectation) along with
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Fig. 3. RMSE per time step over all time steps (top) and the last 20% of
time steps (bottom).

the fused results. Again, we consider a maximum of N = 5
vehicles, which means that there are

(
N
Nf

)
∈ {10, 10, 5, 1}

unique ways of choosing Nf ∈ {2, 3, 4, 5} combinations of
vehicles from the set of all vehicles. In the MC study, which
includes NMC = 50 simulations, the statistics are aggregated
over all these combinations; that is, for the case Nf = 3, we
use 10× 50 estimates per time step to compute the RMSE.

In this study, we observe a significant improvement in
RMSE of the map parameters as a function of the number
of vehicles used in the fusion, but diminishing returns as the
number of vehicles increases. When considering all of the
time steps, the difference in using one or many vehicles is
clear but less pronounced, as we are effectively considering
all of the time steps at once in the previous example. A
vast majority of these estimation errors will simply be those
induced by the prior. More interestingly, when considering
the last 20% of the time steps, there is a clear improvement
in RMSE of the map parameters, both with respect to the
best and the worst performing single vehicle.

C. Simulation with Erroneous Prior Map

It is relevant to analyze what effects systematic errors in
the map prior have on the estimation performance, and if
the proposed method can adapt when using information from
multiple vehicles. To this end, we consider a simpler setting
with a single-lane road where an IMM-LRKF is run over a
stretch of K = 400 time steps. In total, we let 20 vehicles
pass the same portion of the map. After each simulation, the
terminal map estimate of the most recent simulation is used
as the prior map in the next. Here, we introduce systematic



Fig. 4. Representation of the maps as parametric curves corresponding
to the center of the lane c(s) and the left and right lane boundaries. A
subsection of the map (top) and a zoom on the location where the errors
are introduced (bottom). The true map γt (magenta) differs significantly
from the map prior γ̂0|0 (green) but when driving a large number of cars
over the bump (here 20), the resulting map evaluated in γ̂K|K (black)
approaches the true map (magenta).

errors by modifying the true map γt ∼ N (mt,Σt), such
that the resulting center lane deviates from the center lane
computed with the filter prior by as much as 1m laterally.
This error is introduced in the MMS points prior to a
regression in line with Remark 1. In addition to this, we
introduce systematic errors in the lane width of 2m in two
consecutive GEPs,

[γ̂0|0]15 ← [γ̂0|0]15 − 2, (20a)
[γ̂0|0]20 ← [γ̂0|0]20 + 2. (20b)

Due to these substantial errors, we introduce additional
process noise in the map. For illustration purposes, we inflate
the map prior covariance slightly prior to each simulation.
Note that the same trends hold even if this inflation is not
done, but more simulations are required.

Fig. 4 illustrates the result, with the true map (magenta);
the prior of the first vehicle (green); and the estimate of the
20th vehicle (black). The bump in the true map is clearly
visible in the center lane (full, green vs magenta), and the
modifications to the lane width prior in (20) are visible in
the lane boundaries (dashed/dotted, green vs magenta). This
is a significant and systematic error in the map estimates,
corresponding to scenarios such as sudden changes due to
road construction. Despite these large errors, the algorithm
converges to a map that is reasonably close to the true map
after 20 vehicles have passed the portion of the map. This
highlights the efficacy of the proposed method to poorly
specified MMS maps, and demonstrates that the IMM-LRKF
with the proposed map representation is robust.

V. CONCLUSIONS

We proposed a distributed localization and road mapping
framework that utilizes crowdsourced data. We provided a
detailed formulation of a road model constructed with Bézier
curves in an implicitly continuous GEP representation, ex-
plained how this is amenable to IMM-LRKF estimation, and
showed how the resulting local estimates can be used for
distributed map fusion. The Monte-Carlo analysis implies
that our algorithm not only achieves higher mapping accu-
racy under normal noise levels but also effectively handles
large road modifications caused by external effects, such as
road maintenance. Furthermore, the impact of the number
of agents on map improvement shows a 14% reduction of
RMSE using 5 agents.
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