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Decoupled Trajectory Planning for
Monitoring UAVs and UGV Carrier by Reachable Sets

Taewan Kim, Abraham P. Vinod and Stefano Di Cairano

Abstract— We consider the trajectory generation for a UGV
and multiple UAVs that are tasked with monitoring certain
specified target areas, where the former carries and re-charges
the latter ones. We decouple the motion planning of UGVs
and UAVs using reachable sets constructed from Lyapunov
functions. The reachable sets are used as constraints for
UGV trajectory generation resulting in existence guarantees
of feasible UAVs trajectories with respect to flight and energy
constraints. The reachable sets also provide an initial trajectory
for UAVs rendezvous from and launch to the targets, which may
be refined by optimization. We show simulation results of a case
study with multiple UAVs monitoring multiple target sites.

I. INTRODUCTION

Coordinated operation of heterogeneous autonomous ve-
hicles, such as unmanned ground and aerial vehicles (UGVs
and UAVs, respectively) may automate many tasks that are
time consuming, expensive, and tiring or dangerous for
humans. One such tasks is monitoring [1] of distributed
infrastructure, such as power lines, gas and oil pipelines,
and of the environment, such as forests, water networks
and farming areas, for preventive maintenance and risk
mitigation. Monitoring often requires operating in remote
or impervious areas, possibly for long periods of time, and
the amount of collected information on the targets usually
depends on how and for how long the targets are monitored.

Here, we consider motion planning for an UGV and
multiple UAVs to monitor a sequence of targets. The plans of
UGV and UAVs are correlated because the UAVs depart from
and rendezvous with the UGV for long distance transport, re-
charging, and possibly data dumping. Thus, while the UGV
does not need to visit the targets itself, it needs to follow
a plan that allows for recovery of UAV within the battery
range and in a suitable time interval.

Even when the sequence of targets is assigned, e.g., by [2],
and the references therein, the UGV and UAV planning
problem presents multiple challenges: (i) the time scales,
ranges, and capabilities of UGV and UAVs are significantly
different; (ii) the computational resources required to solve
the problem increase with the number of UAVs; (iii) for
determining the UAV range, the energy consumption during
flight can be estimated precisely given the flight profile,
but the time and energy consumption during information
acquisition and transmission, which are significant for small
UAVs, are hard to predict.
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Fig. 1. Scenario of monitoring by UGV carrying multiple UAVs. Targets
(stars), non-traversable terrain (green-brown), non-crossable river (blue),
UGV path (orange), UAV launch (blue) and return (red) paths. UGV and
UAVs positions shown at different time instants.

In recent years [3], coordination of UGVs and UAVs
is becoming an active research area. Prior research on
coordinating task-executing UAVs with re-charging UGVs,
see, e.g., [3]–[7] focuses on grid environments, uses graphs
methods, e.g., the generalized traveling salesman problem
(GTSP), by discretizing the space, and often ignores the
UAVs and UGVs dynamics and constraints. The UGV is
often considered only as a mobile charging station, and the
energy/range depletion models are usually perfectly known.

In this work we consider the generation of trajectories for
an UGV carrying and re-charging multiple UAVs tasked with
acquiring monitoring information from multiple targets. We
account for UGV and UAVs dynamics and operational con-
straints. We only use an UAV energy depletion model during
flight, because during monitoring the energy consumption
depends on sensing and transmission and is hard to predict.
Since we do not rely on energy consumption models during
monitoring and to address time-scale separation and compu-
tational burden, we decouple the UGV and UAV trajectory
generation while ensuring satisfaction of constraints, energy
budget, and rendezvous using reachable sets constructed
from sublevel sets of Lyapunov functions [8]. The obtained
UAV launch and recovery trajectories may be further refined
by separately optimizing each one.

In what follows, Section II formulates the planning prob-
lem, Section III designs constraints that ensure feasible UGV-
UAV rendezvous, Section IV and Section V describe UGV
trajectory generation and optimization of each UAV launch
and recovery trajectories, respectively. Section VI reports a
case study and Section VII summarizes the conclusions.

Notation: R (Z), R0+ (Z0+), R+ (Z+) are the sets of real



(integer), nonnegative real (integer), positive real (integer)
numbers. Intervals are denoted by Z[a,b) = {z ∈ Z : a ≤
z < b}, I is the identity matrix, 0 an “all-zeros” matrix of
appropriate dimensions, and Q ≻ 0, (Q ⪰ 0), a positive
(semi) definite matrix. For vectors x, y, the stacking is
(x, y) = [x⊤ y⊤]⊤. We denote the 2-norm by ∥ · ∥.

II. MODELING AND PROBLEM FORMULATION

We consider the motion planning of one UGV, with state
vector xg ∈ Rng , and Na UAVs, with state vectors x

(i)
a ∈

Rna , i ∈ Z[1,Na]. The UGV motion model is

ẋg(t) = fg(xg(t), ug(t)) (1a)
pg(t) = hg(xg(t)), (1b)

where ug ∈ Rmg is the input vector and pg ∈ R2 is
the position vector in global coordinates. The choices for
the UGV motion model include linear double integrators,
unicycle, and bicycle. The UGV is subject to constraints

xg ∈ Xg, ug ∈ Ug, (2)

where Xg ⊆ Rng , Ug ⊆ Rmg , are sets defining the
admissible state and input vectors, respectively.

We consider quadrotor UAVs with linear motion model

ẋ(i)
a (t) = Ax(i)

a (t) +Bu(i)
a (t), (3a)

p(i)a (t) = Cx(i)
a (t), (3b)

where u
(i)
a ∈ Rma is the input vector and p

(i)
a ∈ R2 is the

UAV position vector in global coordinates, for all i ∈ Z[1,Na].
Here, (3) consists of two double integrators, na = 4, ma = 2,

A =

[
0 I
0 0

]
, B =

[
0
I

]
, C =

[
I 0

]
,

and x
(i)
a = [p

(i)
a,x, p

(i)
a,y, v

(i)
a,x, v

(i)
a,y]⊤, u(i)

a = [a
(i)
a,x, a

(i)
a,y]⊤. For

shortness, p(i)a = (p
(i)
a,x, p

(i)
a,y), v

(i)
a = (v

(i)
a,x, v

(i)
a,y), and a

(i)
a =

(a
(i)
a,x, a

(i)
a,y) denote the position, velocity and acceleration

vectors, respectively. The UAVs are subject to constraints on
velocity and acceleration, ∥v(i)a ∥ ≤ vmax, ∥aa∥(i) ≤ amax,
for all i ∈ Z[1,Na] that can be written as

x(i)
a ∈ Xa, u(i)

a ∈ Ua, (4)

where Xa ⊆ Rna , Ug ⊆ Rma are the sets of admissible UAVs
state and input vectors, respectively. Here, we consider the
UAVs to be faster than the UGV.

Remark 1. For simplicity, we model the motion of the
UAVs in 2D, i.e., with a constant flight altitude, but all out
developments translate immediately to the 3D case, where a
third integrator is added for the altitude dynamics.

The range of the UGV is assumed to be significantly
longer than what needed for the task to be executed, while the
UAVs are battery powered and have limited range. For energy
consumption during flight, the spent battery energy changes
according to Ė(t) = c2(v

(i)
a (t))2 + c1(a

(i)
a (t))2, where we

model the dominant effects of airdrag as proportional to the
square of the velocity, and losses, mechanical and electrical,

in accelerating as proportional to the squared acceleration.
Thus, the consumed energy evolves as

Ė(i)(t)=x(i)
a (t)⊤Qex

(i)
a (t)+u(i)

a (t)⊤Reu
(i)
a (t), (5)

and the energy capacity constraint E(i)(t)(i) ≤ Emax for
i ∈ Z[1,Na] must be satisfied, where Emax is the maximum
usable energy. During monitoring operation, a major source
of energy consumption is due to sensors, from processing
acquired information, and possibly from communicating data
to the UGV acting as base station. A prediction model for
such consumption is hard to develop, and hence here we do
not rely on it, as it will become clear later.

Remark 2. In model (5) we are ignoring the idling and
stationary flight energy consumption, since we focus on the
mission phases when the UAVs are moving. These may be
included as constants or ignored if we allow the UAV to
land and stop the propellers.

While the UAV has limited range, it is unaffected by
ground obstacles, which impose constraints on the UGV. The
exclusion constraints on the UGV are

pg /∈ O(o), o ∈ Z[1,NO], (6)

where No is the number of obstacles, and O(o) is the
collision region for obstacle o, i.e., the set of UGV positions
pg for which a collision may occur, accounting for the
physical shapes of both, obstacle and UGV.

The objective of the UGV and UAVs is to acquire infor-
mation about a set of targets, j ∈ Z[1,Nm] located a known
positions p(j)m = (p

(j)
m,x, p

(j)
m,y). For that the UGV releases the

UAVs carrying the sensors and communication to fly at the
monitoring location, acquire data with sensors, process them
and send the raw and/or processed data back to the UGV
for storage or long distance transmission. We assume that
the sequence in which targets are to be visited is assigned,
e.g., by [2], and are clustered in groups with know maximum
number of elements per cluster.

Problem 1. Given initial time instant T0, Nm monitoring
targets with positions p

(j)
m = (p

(j)
m,x, p

(j)
m,y), j ∈ Z[1,Nm], NO

obstacle collision sets O(o) ⊆ R2, o ∈ Z[1,NO], a UGV with
motion model (1) subject to (2), (6), initial state xg(T0) =
xg,s and desired final state xg,f , and Na UAVs with motion
model (3), energy depletion model (5), subject to (4) and
initial states x

(i)
a,s = xg,s for i ∈ Z[1,Na], determine

i) a terminal time instant Tf > T0

ii) time instants tli,j , tbi,j , tei,j , tri,j , j ∈ Z[1,Nm], i ∈ Z[1,Na],
iii) commands ug(t) for t ∈ [T0, Tf ], u

(i)
a (t) for t ∈⋃Nm

j=1[t
l
i,j , t

b
i,j ] ∪ [tei,j , t

r
i,j ], i ∈ Z[1,Na],

such that:
1) (Timing) tli,j ≤ tbi,j ≤ tei,j ≤ tri,j for all i, j, tli,j+1 ≥ tri,j

for all j ∈ Z[1,Nm−1], i ∈ Z[1,Na], t
l
i,1 ≥ T0, tri,Nm

≤
Tf , for all i ∈ Z[1,Na]

2) (UAV trajectory) xa(t
l
i,j) = xg(t

l
i,j), E(tli,j) = 0,

xa(t
r
i,j) = xg(t

r
i,j), E(tri,j) ≤ Emax, for all j ∈ Z[1,Nm],

i ∈ Z[1,Na], and (4) is satisfied.



3) (Monitoring) for all j ∈ Z[1,Nm], there exists i ∈ Z[1,Na]

and tmi,j such that p(i)a (t) = p
(j)
m , for all t ∈ [tbi,j , t

e
i,j ].

4) (UGV trajectory) xg(Tf ) = xg,f and (2), (6) are
satisfied

In Problem 1 the time instants tli,j , tbi,j , tei,j , tri,j are the
launch, beginning of the monitoring, end of the monitoring
and recovery time of UAV i to target j, respectively. For
notational simplicity we determine such time instants for
all UAVs to each target, but we only require one UAV to
actually reach the target for monitoring, that means that the
launch, monitoring (beginning and ending), and release time
for all the others may be set equal, and hence ignored.
We determine UAV commands only between launch and
beginning of monitoring, and between end of monitoring and
recovery. Between recovery and the next launch the UAVs
will be docked with the UGV, and during monitoring the
UAVs are considered stationary, though practically they will
use a separate motion strategy to optimize data acquisition.

In practice, to solve Problem 1 as a whole may be
challenging due to the different time-scales of UGV and
UAVs motions, the hybrid nature of the decision variables,
i.e., continuous control signals and discrete events such
as launch and recovery, and the possibly large number of
variables when many UAVs are considered. In what follows
we develop a method to decouple the motion planning for
UGV and UAVs while ensuring that recovery can be achieved
within the UAV range and safe flight envelope.

III. DECOUPLING UGV AND UAV PLANNING
USING REACHABLE SETS

In order to decouple the planning of UGV and UAVs we
need to ensure that after launch from the UGV, the UAVs can
accomplish their mission and return to the UGV within the
available battery energy and flight envelope constraints. In
what follows we focus on the recovery phase, when the UAV
must rendezvous with the UGV, before its battery depletes.
The method is also applicable to the launch phase, when
the UAV reaches the target launching from the UGV, yet
we focus on the recovery because then range is a critical
constraint. In what follows we refer to a generic UAV and
monitoring target, so we drop the indices i, j for simplicity.

As mentioned in Section II, the energy usage during
flight is known fairly precisely1, but during monitoring it
is hard to predict. Thus, we determine the set of states
that are reachable from a monitoring target position pm,
while satisfying flight envelope constraints, for a given return
energy budget γe < Emax,

R(pm,γe) = {x̄a ∈ Rna : ∃tf < ∞, ua : [0, tf ]→Rm,

xa(0)=(pm, 0), E(0)=0, xa(tf ) = x̄a, E(tf )≤γe,

xa(t)∈Xa, ua(t) ∈ Ua,∀t ∈ [0, tf ]}. (7)

Then, by imposing the UGV position position constraint

(pg(t), 0) ∈ R(pm, γe),∀t ∈ [t1, t2], (8)

1It is precisely computed from data on aircraft’s pilot operating handbook
(POH) by the flight computer or manually using charts.

where t1, t2 ∈ R+ are given, we guarantee that if the UAV
starts in an appropriate time interval and with remaining
energy at least γe, it can execute a rendezvous trajectory
from the monitoring target to a stationary flight at the UGV
position.

The general reachable set (7) may be challenging to
compute, and imposing the resulting constraint (8) in an
optimal control problem may make its solution challenging.
Thus, we build sets that are more conservative but easier to
compute and use in optimization.

A. Reachable set construction

Reachability can be computed efficiently for several set
classes, e.g., polyhedra, ellipsoids, zonotopes [9]–[11]. El-
lipsoids have a compact representation as a single convex
constraint, which makes them suitable for optimization. To
implement (7) by ellipsoids, we consider a fixed linear UAV
control law

u = Kδxa, δxa = (xa−xs), (9)

where xs = (ps, 0) is the desired equilibrium, resulting in
the asymptotically stable closed-loop dynamics

δẋa(t) = (A+BK)δxa = Aclδxa. (10)

Constructing the reachable set proceeds in two steps: (i)
building a stabilizing control law (9) and Lyapunov function
Vc that results in a sublevel set Sc where the constraints are
satisfied; (ii) building a Lyapunov function Ve that results
in the reachable set within a given energy budget γe as a
sublevel set Se for the obtained closed-loop dynamics.

We construct and K in (9) such that the closed-loop (10)
is exponentially stable and Vc(δxa) = δx⊤

a Pcδx
⊤
a , Pc ≻ 0

is a corresponding Lyapunov function (10),

V̇c(δxa(t)) ≤ −αVc(δxa(t)), (11)

with a decay rate α ∈ R+. Pc and K can be easily
computed by a semidefinite program [12]. Let the sublevel
set Sc = {δxa : Vc(xa) ≤ 1} satisfy Sc ⊆ {δxa : δxa ∈
Xa, Kδxa ∈ Ua}, then

Rc(pm) = {xa = (pa, 0) : (x− xa)
⊤Pc(x− xa) ≤ 1,

x = (pm, 0)}, (12)

is the set of equilibria (pa, 0) that are reachable from initial
state (pm, 0) by control law (9) without violating state or
input constraints2.

For computing the reachable set within a given energy
budget, the energy consumed by the closed-loop dynam-
ics (9) to reach a given equilibrium xs from initial state
xa is

Ve(δxa) =

∫ ∞

0

Ė(t)dt ≤ γe. (13)

Then, the sublevel set Se = {δxa : Ve(δxa) ≤ γe}
includes trajectories with energy usage less than γe. It is

2The constraint sets Xa, Ua do not change when considering the error
state δxa because they do not include constraints on position. Otherwise,
an augmented state vector will be needed.



straightforward that for (5), (10), Ve(δxa) = δx⊤
a Peδxa

where Pe ≻ 0 is the solution of Pe(A + BK) + (A +
BK)⊤Pe = −(Qe +K⊤ReK). Thus,

Re(pm, γe) = {xa = (pa, 0) : (x− xa)
⊤Pe(x− xa) ≤ γe,

x = (pm, 0)}, (14)

is the set of equilibria reached from initial state (pm, 0) by
control law (9) with energy expenditure less than γe.

Finally, consider the set

RK(pm, γe) = Re(pm, γe) ∩Rc(pm), (15)

which is invariant, since for any δxa ∈ Sc ∩ Se,
Vc(Aclδxa) ≤ Vc(δxa), and Ve(Aclδxa) ≤ Ve(δxa) due to
the integral in (13), so that Aclδxa ∈ Re(pm, γe)∩Rc(pm).
Then, the constraint

(pg, 0) ∈ RK(pm, γe), (16)

determines a set of rendezvous positions for the UAV with
the UGV, such that the UAV trajectories from stationary
flight at the monitoring target position pm to equilibria in
such positions satisfy flight envelope constraints and energy
budget. In (16) we consider only the rendezvous position
and ignore velocity, as the UGV velocity may briefly stop
to allow landing, or the UAV may simply perform a landing
on a (slowly) moving platform.

Using the exponential stability of Vc from (11), we can
bound the time for the UAV to reach a neighborhood
of the equilibrium, where the rendezvous occurs. Since
δxa(t)

⊤Pcδxa(t) ≤ 1 for all t ∈ R0+, Vc(δxa(t)) ≤
Vc(δxa(0))e

−αt ≤ e−αt. Then, for any ϵ ∈ R(0,1)

Trec = −α−1 ln ϵ, (17)

is the upper bound to the time to achieve Vc(δxa) ≤ ϵ, that
defines the acceptable rendezvous region for ϵ small enough.

IV. TRAJECTORY OPTIMIZATION FOR UGV

Leveraging the reachable set constraints (16) developed in
Section III, we can formulate the UGV trajectory generation
separately from the UAVs, while ensuring that rendezvous
can occur within the range constraints.

As UGV model (1), we use the kinematic bicycle model

ṗxg = vg cos θg (18a)

ṗyg = vg sin θg (18b)

θ̇g =
vg tan(δg)

L
(18c)

v̇g = ag, (18d)

where (pxg , p
y
g) is the position, θg is the yaw angle, vg is

the velocity, ag is the acceleration, δg is the front-steering
angle, and L is the wheelbase. The state and input vectors
are xg = [pxg , p

y
g , θg, vg]

⊤, ug = [ag, δg]
⊤, respectively.

For the UGV constraints (2), we consider

Xg = {xg : 0 ≤ vg ≤ vgmax}, (19a)
Ug = {ug : |ag| ≤ agmax, |δg| ≤ δgmax}. (19b)

The achievable rendezvous constraint that enforces the UGV
to remain inside the reachable set RK(pm, γe) of the UAV
for a time interval is

∃t(j)1 , t
(j)
2 ∈ [T0, Tf ] s.t. (pg(t), 0) ∈ RK(p(j)m , γ(j)

e ),

γ(j)
e ≤ γmax, t

(j)
2 − t

(j)
1 ≥ Tmin,∀t ∈ [t

(j)
1 , t

(j)
2 ], (20)

where Tmin ∈ R+ is the minimum duration of the ren-
dezvous window. The upper bound to the energy budget for
rendezvous γmax < Emax/2 is chosen to leave enough energy
for launch and monitoring.

Summarizing, the free-final-time optimal trajectory gen-
eration problem for the UGV that ensures feasibility of the
rendezvous is formulated as

max
ug(·),γ(j)

e ,Tf

∫ Tf

T0

J(xg(t), ug(t))dt+ wgγ

Nm∑
j=1

γ(j)
e (21a)

s.t. (18), (19), (6), (20), j ∈ Z[1,Nm], (21b)
xg(T0) = xg,s, xg(Tf ) = xg,f . (21c)

The cost function J : Rng × Rmg → R includes the
completion, i.e., final, time and the input energy,

J(xg) = wgt + wgeu
⊤
g ug,

where wgt, wge, wgγ ∈ R+ are user-defined weights.
In order to solve (21b) numerically, we discretize it with

time scaling. We use a multiple shooting parameteriza-
tion [13] with the adaptive time-mesh

T0 = t0 < t1 < · · · < tN = Tf ,

where N ∈ N is the number of sub-intervals [tk, tk+1] for
k ∈ Z[0,N−1], and we introduce time-scaling variables

sk = tk+1 − tk. (22)

By parametrizing the control as a first order hold and
integrating in the intervals, the dynamics are

xk+1 = f (d)
g (xk, uk, uk+1, sk). (23)

and the constraints (2), (6) are enforced at node points,

xk ∈ Xg, uk ∈ Ug, pg,k = hg(xk, uk) /∈ O(o), (24)

where xk ≜ xg(tk), uk ≜ ug(tk), To implement the
rendezvous constraint (20), we first assign consecutive node
points {k(j)1 , k

(j)
1 + 1, . . . , k

(j)
2 } to each monitoring target

j ∈ Z[1,Nm]. Then, we formulate (20) as

k
(j)
2 −1∑

k=k
(j)
1

sk ≥ Tmin, γ(j)
e ≤ γmax,

(pg,k, 0) ∈ RK(p(j)m , γ(j)
e ), k ∈ Z

[k
(j)
1 ,k

(j)
2 ]

. (25)

In (20), even if k(j)1 , k(j)2 are specified, the time instants t
(j)
1

and t
(j)
2 are not fixed, since sk is a decision variable.



Thus, the discrete-time formulation of (21) is

max
uk,sk,{γ(j)

e }j

wgt

N−1∑
k=0

sk + wge

N∑
k=0

u⊤
k uk + wgγ

Nm∑
j=1

γ(j)
e

(26a)
s.t. (23) (24) (26b)

(25), k ∈ Z
[k

(j)
1 ,k

(j)
2 ]

, j ∈ Z[1,Nm], (26c)

x0 = xg,s, xN = xg,f . (26d)

which can be solved by algorithms such as [14].

V. LAUNCH AND RECOVERY TRAJECTORY
OPTIMIZATION FOR UAVS

Besides for generating the UAV recovery trajectories, the
control law (9) in Section III can be used to compute the
launch instants and launch trajectories, by defining the energy
budget to travel to the target and using the monitoring
target position p

(j)
m as equilibrium of the Lyapunov function.

However, we see that as less critical because at launch the
UAVs have full energy.

In practice, it is convenient to further optimize both launch
and recovery the UAV trajectories which provide additional
time/energy for the monitoring activities, and/or less time for
re-charging at the UGV. Thus, we formulate optimal control
problems for launch and recovery that are guaranteed to be
feasible since (16) holds the trajectory generated by (9) is
feasible, and it can be used both as initial guess and as
backup, should the optimization not converge in the available
time or encounter numerical issues.

A. Optimization of UAV recovery trajectory

The recovery trajectory planning computes the trajectory
of the UAV for returning to the UGV from the monitoring
target position. Due to the construction in Section III such
trajectory can be generated easily using the linear control
law (9). Let tri,j ∈ [t

(j)
1 , t

(j)
2 ], where t

(j)
1 , t

(j)
2 are as in (20),

the recovery trajectory is generated as the output of

ẋ(i)
a (t) = (A+BK)x(i)

a (t)−BK(pg(t
r
i,j), 0) (27a)

u(i)
a (t) = BK(x(i)

a (t)− (pg(t
r
i,j), 0)) (27b)

x(j)
a (tei,j) = (p(j)m , 0) (27c)

until t = tri,j , where tei,j = tri,j −Trec is computed according
to (17). The monitoring operation continues until either t <
tei,j or the remaining energy reaches γ

(j)
e , where, if the latter

occurs sooner than the former, the UAV hovers until tei,j
at the monitoring target, or starts the return trajectory earlier
than tei,j and hovers, or wait on the ground, at the rendezvous
location pg(t

r
i,j).

Due to the construction of the control law (9) and imposing
of constraint (20) on the UGV, the recovery trajectory is
guaranteed to achieve the rendezvous condition Vc(xa −
(pg, 0)) ≤ ϵ, while satisfying the flight envelope constraints
and within the energy budget γ(j)

e .
Further optimization of the recovery trajectory can be

achieved to possibly delaying the departure time and/or

minimizing the used energy, hence leaving more time/energy
for the monitoring operation. We can generate the optimized
trajectory by solving

min
ua(t),t̃ei,j

− wr
t t̃

e
i,j + wr

eE(tri,j) (28a)

s.t. t̃e ≥ te (28b)
(3), (4), (5) (28c)

x(i)
a (t̃e) = (p(j)m , 0) (28d)

Vc(x
(i)
a (tri,j)− xg(t

r
i,j)) ≤ ϵ (28e)

E(t̃ei,j) = 0, E(tri,j) ≤ γ(j)
e , (28f)

where wr
t , w

r
e ∈ R++ are user-defined weights. Problem (28)

is guaranteed to be feasible because the solution from (27) is
feasible, with t̃ei,j = tei,j . With the newly computed departure
time t̃e and energy E(tr), the UAV can operate for longer at
the monitoring location.

B. Optimization of UAV launch trajectory

The launch trajectory for the UAV starts from the UGV
position pg , reaches the target position p

(j)
m and its energy

usage must be smaller than Emax−γmax, to save some energy
for monitoring. This may be achieved by choosing tl to avoid
releasing the UAV when too far from target, e.g., according
to the scenario and UGV trajectory, or by the results of
Section III.

Given the launch time tli,j , the optimization of the launch
trajectory is formulated as

min
xa(·),ua(·),tbi,j

wl
tt

b
i,j + wl

e

∫ tb

tl
Ė(t)dt (29a)

s.t. (3), (4), (29b)

xa(t
l
i,j) = (pg(t

l
i,j), v(t

l
i,j)), (29c)

xa(t
b
i,j) = (p(j)m , 0), (29d)

where v = (vg sin θg, vg cos θg) is the UGV velocity vector.
The cost function (29a) aims at minimizing the flight time
and the energy with user-defined weights wl

t, w
l
e ∈ R+. The

problem in (29) is a free-final-time optimal control problem
subject to convex state and input constraints.

C. Trajectory generation and execution summary

The approach for solving the UGV-UAVs trajectory gen-
eration Problem 1 with the method proposed in this paper
and the execution of the UGV and UAVs trajectories is
summarized in Algorithm 1.

VI. CASE STUDY

We consider a case study for validating the proposed
method, where we use the following parameters:

c1 = 0.2, c2 = 1, α = 0.025, ϵ = 10−4,

vmax = 25m/s, amax = 10m/s2, γmax = 6000,

Tmin = 600s, wgt = 1, wge = 0.02, wgγ = 200,

wr
t = 1, wr

e = 0.1, wl
t = 1, wl

e = 0, L = 2, N = 34,

vgmax = 10m/s, agmax = 1m/s2, δgmax = 5deg.



Algorithm 1 Decoupled UGV and UAVs Trajectory Planning
Parameters: γmax, c1, c2, Xg,Ug,Xa,Ua

Data: p
(j)
m for all j ∈ Z[0,Nm], O(o), for all o ∈ Z[0,No],

xg,f , T0, xg(T0) = x
(i)
a (T0) = xg,s for all i ∈ Z[0,Na],

Trajectory Generation:
1: Construct RK , Trec,K by (15),(17)
2: Compute Tf , γ(j)

e , tri,j for all j ∈ Z[1,Nm], i ∈ Z[1,Na],
(xg(t), ug(t)) by (21) for t ∈ [T0, Tf ]

3: Compute updated γ
(j)
e , tei,j and (x

(i)
a (t), u

(i)
a (t)) for t ∈

[tei,j , t
r
i,j ], for all j ∈ Z[1,Nm], i ∈ Z[1,Na] by (28)

4: Compute tli,j , tbi,j and (x
(i)
a (t), u

(i)
a (t)) for t ∈ [tli,j , t

b
i,j ],

for all j ∈ Z[1,Nm], i ∈ Z[1,Na] by (29)
Trajectory Execution:

5: Execute UGV trajectory xg(t) for t ∈ [T0, Tf ]
6: for i = 1 : Na do
7: for j = 1 : Nm do
8: Launch UAV i to target j at tli,j and execute

x
(i)
a (t) for t ∈ [tli,j , t

b
i,j ]

9: while t ∈ [tli,j , t
b
i,j [ and E(i) ≤ Emax − γ

(j)
e do

10: Monitor target j with UAV i
11: end while
12: Return UAV i to UGV by x

(i)
a (t) for t ∈ [tei,j , t

r
i,j ]

13: end for
14: end for

We construct the sets using MOSEK to obtain Pc and K,
and solve the optimal trajectory generation for UGV (26) and
UAVs (28), (29) by the PTR method [15] using GUROBI from
MATLAB. The computation of the UGV trajectory from (26)
takes less than 6s and the computation of the optimized
recovery and launch trajectories from (28) and (29), respec-
tively, take less than 0.5s on an 2023 14” MacBook Pro M2
laptop with 64GB Ram running Matlab 2021b (non-native
for M2).

The reachable set RK of the UAV is shown in Fig. 2,
where we confirm the constraint satisfaction of the reachable
set by showing the projections of Rc in the velocity and
acceleration planes. Fig. 2 also shows the recovery trajectory
by linear control (27) and the optimized one (28) with
the highlighted corresponding linear (Trec) and optimized
(T̃rec) recovery instants. The comparisons between energy
consumption of linear (27) and optimal (28) recovery tra-
jectory are obtained from an initial point on the border of
RK . Clearly, the energy consumption and the recovery time
T̃rec are improved by the refinements in Section V, which
provides longer time for monitoring, or a shorter re-charge
period at the UGV carrier.

Fig. 3 shows the results for the UGV trajectory, where
the optimized completion time is Tf = 105m, 47s. In the
environment, there are 18 monitoring targets (Nm = 18),
clustered in groups of at most 5, which determines the
maximum number of UAVs operating concurrently, and 3
ellipsoidal obstacles (No = 3). For the rendezvous constraint
(25), we specify (k

(j)
1 , k

(j)
2 ) such that ki2−ki1 = 2, i.e., three
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Fig. 2. Reachable set RK of the UAV. Top left: constrained feasible set
Rc(0), energy bound set Re(0, γmax) and recovery trajectories computed
from linear control (LC) and optimal control (OC). Top right, middle
right: Rc projected onto the velocity and acceleration planes, respectively.
Bottom: cumulative energy consumption for LC and OC trajectory, and
corresponding recovery trajectory durations Trec, T̃rec.
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Fig. 3. Trajectories of UGV and UAVs. Circular markers on the trajectory
of the UGV represent node points.

consecutive nodes are assigned to each target j in Z[1,Nm],
and hence two arcs of the UGV trajectory remain within the
set RK centered at the target, see in Fig. 3.

The launch and recovery trajectories of the UAVs are
also shown in Fig. 3. While in an actual mission the end
time of monitoring te varies due to factors such as acquired
information and remaining energy, in the simulations te is
such that the rendezvous time tr occurs when the UGV is
at the exiting border of the RK sets, i.e., t2 in (20). This
allows the UAV to stay the longest at the monitoring target.
Fig. 3 shows that rendezvous always occur in the reachable
sets of the UAV, and hence, according to Fig. 2, flight
envelope and range constraints are satisfied. Fig. 4 shows
some zoomed-in views of the operations for two targets, and
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Fig. 4. Zoom-in on parts of Fig. 3. Monitoring missions for two targets,
with the corresponding UGV and UAVs trajectories and time instants
tl, tb, te, tr, t1, t2.
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Fig. 5. (a) Time history of the UGV velocity (blue) during the entire tra-
jectory shown in Fig. 3, velocity constraints (red dash), discretization nodes
(circles), t(j)1 (dot-dash), t(j)2 (dash). (b) Time history of the UAV velocity
vector norm (blue) during the monitoring mission shown in Fig. 4-top, and
velocity constraints (red dash).

the corresponding time instants tl, tb, te, tr, t1, t2. Fig. 5(a)
shows that the velocity of the UGV satisfies constraints
at nodes, yet small violations may occur between nodes,
which may be removed by the method in [16]. Fig. 5(b)
shows the norm of the velocity vector of the UAVs during
an entire monitoring mission for a single target, including
launch, monitoring, and recovery. For the launch trajectory,
the primary objective is to minimize the time, while for
the recovery trajectory, the primary objective is to minimize
the energy usage. During monitoring, the UAV is shown as
stationary, though in reality it will move with a separated
strategy to optimize information acquisition, which further
motivates the setting of an energy recovery budget, to trigger
the return to the UGV.

VII. CONCLUSIONS

We have presented a method for generating trajectories
for a UGV carrying multiple UAVs for monitoring tasks

that allows for decoupling UGV and UAVs planning, while
guaranteeing recovery satisfying flight envelope and energy
range constraints. The method uses Lyapunov functions to
build reachable sets where the constraints are satisfied, and
then use those within the UGV trajectory generation problem
to ensure feasibility of UAVs rendezvous, possibly extended
to launch. The method provides candidate UAV trajectories
for recovery and launch, which may be improved by optimal
trajectory generation. Future works will consider the recharge
period and possibly modifications to the monitoring targets
sequence to further optimize the overall mission, the usage of
different sets for reachability, and the optimization of motion
for information acquisition during monitoring [17].
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