
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Memory-Based Global Iterative Linear Quadratic Control
Nikovski, Daniel; Zhong, Junmin; Yerazunis, William S.

TR2024-089 July 02, 2024

Abstract
We propose a method for designing global nonlinear controllers based on the application of
memory-based learning schemes for the purpose of aggregating multiple solutions produced
by optimal control algorithms based on differential dynamic programming. The method
leverages the fact that these optimal control algorithms produce not only nominal state
and control trajectories, but entire full-state feedback (FSF) controllers, and the combined
controller effectively switches between these multiple FSF controllers. Empirical verification
demonstrates that it can be very effective in solving difficult benchmark control problems at
high control rates.

10th International Conference on Control, Decision and Information Technologies CoDIT’24
2024

c© 2024 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Memory-Based Global Iterative Linear Quadratic Control

Daniel Nikovski, Junmin Zhong and William Yerazunis†

Abstract— We propose a method for designing global nonlin-
ear controllers based on the application of memory-based learn-
ing schemes for the purpose of aggregating multiple solutions
produced by optimal control algorithms based on differential
dynamic programming. The method leverages the fact that
these optimal control algorithms produce not only nominal state
and control trajectories, but entire full-state feedback (FSF)
controllers, and the combined controller effectively switches
between these multiple FSF controllers. Empirical verification
demonstrates that it can be very effective in solving difficult
benchmark control problems at high control rates.

Index Terms— Learning control, memory-based learning,
optimal control, dynamic programming

I. INTRODUCTION

Computing an optimal feedback controller for an arbitrary
nonlinear system is very difficult in the general case, and
usually various custom solutions are employed for specific
classes of nonlinear systems. In some cases, an optimal
trajectory can be computed for a given initial and goal
state, and executed in open-loop. This would not work well
when disturbances are present, but if the optimal trajectory
is re-computed quickly, and only the first control from it
applied at each control step, a form of closed loop control
can be achieved (commonly called model-predictive control,
MPC). However, the success of such MPC schemes often
depends on the length of the predictive horizon over which
trajectories are computed. For some systems, relatively short
horizons are sufficient, but for others, such as non-minimum
phase systems where the controller needs to move away
from the goal state initially and approach it only later, the
recomputation of the entire trajectory to the goal at each
control step might be necessary, placing big demands on
computing power and effectively reducing the achievable
control rate. This limits the applicability of such entirely
online methods (also called implicit MPC schemes).

Another, very different approach is to use model-free
reinforcement learning algorithms to compute off-line a true
universal feed-back control policy by means of repeated trial
and error, and execute the policy online. This approach is also
known as explicit MPC in the control systems community. A
recent incarnation of this idea, known as deep reinforcement
learning (DRL) uses deep-neural nets to store the control
policy (and possibly, the value function) in a deep neural net,
significantly increasing the dimensionality and complexity
of problems that can be solved this way. Major recent
algorithmic advances in DRL have largely eliminated one of

†All authors are with Mitsubishi Electric Research
Laboratories (MERL), Cambridge, MA, USA 02139
{nikovski,jzhong,yerazunis}@merl.com

the traditional weaknesses of RL – the inability to deal with
continuous state and control spaces, and recent algorithms
such as DDPG, TRPO, SAC, A3C, etc. are fully capable
of finding good control policies in continuous state and
control spaces [1]. The computed policies that are stored
in deep neural nets can typically be executed very quickly,
allowing for very high control rates. However, this approach
has a number of significant shortcomings, too. First, when
model-free algorithms are used, the resulting derivative-
free optimization methods for finding the optimal policy
are excruciatingly slow and data inefficient. Furthermore,
computing optimal decisions for all parts of the state space
might not even be necessary, depending on how the controller
will be used.

A very useful middle ground is occupied by algorithms
that make full use of model derivatives to compute optimal
state and control trajectories, but in addition also compute
locally optimal control laws that are valid in the vicinity
of the optimal trajectory, so they are, in fact, closed-loop
controllers. Examples of such algorithms are the Differential
Dynamic Programming (DDP) algorithm ([2]) and its more
modern and computationally efficient variant the Iterative
Linear Quadratic Regulator (iLQR) algorithm ([3]). How-
ever, their control laws are valid only in a relatively small
part of the state space and risk losing control. To combat
this, DDP and iLQR can be executed in implicit MPC style,
continuously recomputing the trajectory to the goal state,
which is still very computationally heavy [4].

To address the shortcomings of both general DRL algo-
rithms and those based on DDP, the Guided Policy Search
(GPS) algorithm ([5]) uses a combination of the two that
leverages both the fast computation of DDP/iLQR as well
as the expressive power and generalization abilities of deep
neural networks. The GPS algorithm does this by solving
an iLQR problem from multiple starting points, generating
a number of training examples matching state to control
from these solutions, and loading these examples into a deep
neural net by training the net to match the states (or, higher-
dimensional observations, if states are not directly observable
at run-time), to controls. By leveraging the generalization
(essentially, interpolation) abilities of neural nets, a full
control policy can be computed over the entire part of the
state space covered by the examples. However, using neural
nets has the associated problems of long training times and
lack of guarantees about convergence. Furthermore, neural
nets do not enforce consistency between examples.

The current paper proposes an alternative method for
combining multiple local iLQR solutions into one global
policy. The method is described in Section II, and its empir-

ical verification on a test problem is described in Section
III. Section IV discusses ideas for extending the method
further and concludes the paper. The main benefit of the
proposed method is that a full global control policy can
be constructed from relatively few solutions from specific
starting states, requiring much less computation than typical
DRL algorithms.

II. MEMORY-BASED LEARNING FOR CONSTRUCTING
GLOBAL NONLINEAR CONTROL POLICIES

A. Problem Statement

We consider the problem of stabilizing a fully observable
nonlinear time-invariant dynamical system described by the
discrete state dynamics equation xk+1 = f(xk,uk), where x
is a multidimensional continuous state space, u is a continu-
ous control vector, and f is a nonlinear time-invariant vector
field. We are primarily concerned with control problems
where the objective is to bring the system from an initial state
x0 to a goal state x(G) in some optimal way. This formulation
of the control problem corresponds to both stabilization prob-
lems, where x(G) is a set-point, as well as planning problems,
where x(G) is possibly quite far from the initial state x0, and
reaching the goal cannot always be computed by gradually
reducing the feedback error x(G)−xk, but requires traversing
a complicated trajectory that might temporarily increase the
feedback error before bringing it to zero. Instances of such
planning problems arise when the system has unstable open-
loop dynamics, for example is non-minimum phase, or is
underactuated due to control limits or reduced number of
control inputs. Computing control laws for such systems
has long been studied both in the fields of control systems
engineering as well as artificial intelligence and robotics.

The desired optimality of the computed control law is
expressed by means of a cumulative cost J0 that is the sum
of running (stage) costs lr and a final cost lf , where the
summation is computed over a sequence of control steps:

J0(x0, U) =
H−1∑
k=0

lr(xk,uk) + lf (xH), (1)

where the states xk, k > 0 follow the dynamics defined
above starting from x0, and U = {u0,u1, . . . ,uH} is the
control sequence applied over a finite horizon of length H
time steps. Here, a finite horizon is needed to avoid infinite
cumulative costs. (In contrast, DRL algorithms typically use
infinite discounted cumulative costs/rewards.) By providing
suitable positive running costs lr, desired minimum-time
objectives can be achieved. The problem of trajectory opti-
mization is usually meant to consist of finding an optimal
sequence of controls U∗ = argminU J0(x0, U) from a
specific starting state x0, and not from every state within
the state space of the system.

B. Trajectory Optimization Based on Differential Dynamic
Programming

The DDP and iLQR algorithms solve this trajectory opti-
mization problem very efficiently when the dynamics f and

stage costs lr are differentiable ([3], [6]). Starting from an
initial guess for the optimal control trajectory, they compute
the resulting state trajectory by rolling out the dynamics
forward, and then employing Bellman’s principle of opti-
mality to compute the optimal controls and partial costs-to-
go starting from the goal state and proceeding backwards
in time. (This use of back-to-front dynamic programming
is the key to the computational efficiency of the procedure,
and contrasts with the asynchronous and directionless way
Bellman back-ups of the value function are computed in most
DRL algorithms.) Once a new improved control sequence
is computed, the forward and backward passes are iterated
until convergence. This convergence is typically fast, but
necessarily only to a local minimum of the cumulative cost.
This, in its turn, contrasts with the convergence properties
of algorithms such as value and policy iteration, which are
guaranteed to converge to a global optimum, at least when
the value function and policy are represented in a tabular
format [7]. (Although, when deep neural nets are used to
represent them, as is the case with modern DRL algorithms,
such global convergence can hardly be guaranteed, either.)

As noted above, even though DDP and iLQR computation
is fast, it is usually not fast enough for real-time control, if
the entire trajectory has to be recomputed at every control
step. The highly influential GPS algorithm ([5]) deals with
this problem by using iLQR to precompute a large number
of trajectories, starting from many initial states, and then
using supervised machine learning to learn the mapping u =
µ(x) from states x to controls u that effectively constitutes
a complete policy, that is, a global control law.

This approach combines the remarkable approximation
and generalization properties of deep neural nets with the
high-speed of trajectory optimization based on differential
dynamic programming. However, such approximation power
does not come without perils. Supervised machine learning
algorithms typically minimize the mean squared error (MSE)
over the training set and have the unfortunate property of
averaging the outputs of two training examples that happen
to have the same input. That is, if the training algorithm sees
two pairs of states and controls (xi,ui) and (xj ,uj) such
that xi = xj , but ui ̸= uj , then the best prediction for that
state that minimizes the MSE would be (ui+uj)/2. It might
well be the case, though, that the two examples come from
different trajectories, and even though both ui and uj can
be suitable controls for this state, their average might not be.
For example, one control might prescribe going to the left of
an obstacle, the other might prescribe going to the right of
it, but their average would mean colliding with the obstacle,
and is thus not a good solution.

C. A Memory Based Method for Combining Multiple iLQR
Solutions

The proposed method follows the same general idea as that
of the GPS algorithm: use multiple iLQR solutions from a
representative number of starting states, and fuse them into a
global policy by means of a machine learning approximator.
Where our method differs from GPS is in which machine

learning method is employed, as well as what components
of the iLQR solutions are used.

Instead of using deep neural networks for combining
the multiple iLQR solutions, we propose to use a class
of memory-based learning (MBL) algorithms that are also
often referred to as non-parametric methods in the field of
statistics. These methods include the k-nearest neighbor (k-
NN), locally weighted learning (LWL), and locally weighted
regression (LWR) algorithms that have already found success
in the field of learning control ([8]). They also have the
distinct advantage that no computational effort needs to be
spent on training – rather, all the training data is simply
stored in memory, and a local predictive model is quickly
constructed for a specific query point (model input) only
after this query point has been identified.

The training data set D is organized as a large collection
of input-output pairs D = {(xi,yi)}Ni=1 obtained from all
time steps of all iLQR solutions. (If I iLQR solutions have
been computed, each of length H time steps, then the data
set will contain N = IH examples.) The inputs are states
x obtained from the states of all iLQR solutions, and the
outputs y contain other elements of those solutions. One
possibility is that y = u, i.e. the output of the MBL model
is directly the control to be applied when the system is in
state x. This arrangement of the training data is often called
direct inverse control in the field of learning control [8].

Given a training data set D stored in memory and a
new query state x, we make a prediction ŷ(x) = g(x) by
constructing a local model g specifically for the new query
point x. Most MBL algorithms start with computing the
Euclidean distance di = ||x − xi||2 between the new query
state x and the inputs xi, 1 ≤ i ≤ N of all the examples
in the database. (The Euclidean distance can be weighted
according to the scales of the individual components of the
state space, if the scales differ.) Different MBL algorithms
use this distance information differently, for example:

• The k-NN algorithm’s prediction is the average of the
outputs of the k closest points: ŷ(x) = gkNN (x) =∑k

i=1 y
(i)/k, where y(i) is the output of the i-th closest

example.
• In locally-weighted learning (LWL), ŷ(x) =

gLWL(x) =
∑N

i=1 yiC(di)∑N
i=1 C(di)

, where C(d) is a suitably
chosen kernel, typically rapidly decreasing as the
distance d increases [8].

• In locally-weighted learning (LWR), a local regression
model of desired order (e.g., linear, quadratic, etc.) is
fitted around the query point by weighting the predic-
tion error on all examples according to the computed
distances di and using a suitable estimation algorithm,
such as weighted least squares [8].

Various MBL algorithms provide various trade-offs be-
tween prediction accuracy and computation time. Of partic-
ular interest as regards our application of MBL to global con-
trol policy construction are k-NN methods, due to their fast
computation. Data structures such as k-d trees can be used
for fast retrieval of the closest neighbors to a query point,

and are particularly effective in low- to medium-dimensional
query spaces, as their retrieval time scales logarithmically in
the number of examples N [9].

Another favorable property of specifically the 1-NN ver-
sion is that by finding the closest state in any iLQR solution,
it will always execute the action for that solution, thus
avoiding the averaging problem associated with many other
ML algorithms, as discussed above.

If we use as outputs y only the controls u from the iLQR
solutions, we call this method MBiLQR-A, for Memory-
Based iLQR with nearest Action. This method, just like
GPS, would have to rely on the approximation abilities of
the chosen ML scheme to smoothly approximate between
neighboring solutions. An alternative is to make use of the
fact that the DDP and iLQR algorithms compute actual
feedback controllers of the form û = uk + Kk(x − xk),
where Kk are feedback gains specifically appropriate for
time step k of the particular iLQR solution. When this
controller is executed, if the state x follows the nominal
trajectory xk, the computed control û will also follow exactly
the nominal control trajectory ûk. However, when x deviates
from the trajectory xk, for example due to disturbance or
real-world dynamics that differ from the model dynamics
f(xk,uk) used by the algorithm, the controller will act to
bring the system’s state to the nominal trajectory through the
gains Kk. This controller is valid typically only in the local
neighborhood of the state space trajectory, but this matches
very well the principle of operation of MBL schemes: they
build a predictive model only in the local neighborhood of
a query point.

Based on this reasoning, we propose a second variation
of the control construction method, where the outputs y of
the data set D consist of not only the control u associated
with a particular state x in an iLQR solution, but also the
control gains K associated with that state: y = [u,K]. As
MBL methods predict each of their outputs independently,
and most of their computational effort is in computing
the distances to the training examples, the addition of the
gains K among the model’s outputs does not change the
computational complexity of the method. We call this version
of the controller MBiLQR-C, for nearest Controller.

However, when combining several trajectories generated
by the iLQR method, the MBiLQR-C controller may en-
counter difficulties at specific junctions due to abrupt changes
and lack of smoothness in the transitions between trajecto-
ries. For instance, within a small area around certain points,
the control inputs might be contradictory. One remedy to this
issue is to ensure that each reference point is chosen only a
single time during a single control run. Another approach,
described below, is to remove the explicit dependency of the
iLQR solution on time, so that nearest-neighbor searches in
space will choose between comparable solution elements.

D. Time-Independent Solution of MBiLQR

For finite horizon problems, the optimal control of the
LQG problem is linear in the state via a gain matrix, but this
gain matrix is time-dependent [10]. This gain matrix can be

computed from the value function, which is time-dependent,
too. Consider the linear time-invariant (LTI) discrete dynamic
system of the form:

xk+1 = Axk +Buk (2)

with stage cost 1
2u

T
kRuk + 1

2x
T
kQxk, 0 ≤ k < H and

final cost 1
2x

T
HQHxH . The value function for each state is a

solution to the Riccati equation, which is solved iteratively,
back to front. For finite horizon problems, the solution of
the value function Vk is

Vk = Q+ATVk+1A−ATVk+1B(R+BTVk+1B)−1BTVk+1A (3)

The result is a sequence of quadratic forms for the value
function, each valid everywhere in state space (for LTI
systems), but different across time. The optimal control law
is written as

uk = −Kkxk (4)

where Kk = (R + BTVk+1B)−1BTVk+1A. Through the
time-varying value function Vk, the gain matrix Kk and
the reference trajectory uk are also time-varying, producing
different controls for the same state x at different time steps
k. (As is well known, for infinite-horizon problems on LTI
systems, the value function is constant for all time steps, that
is Vk = Vk+1 for all k ≥ 0, and this property is used to find
it and the associated feedback gains by solving Equation 3
at a fixed point; this is the foundation of the fundamental
LQR method [10].)

The iLQR algorithm operates similarly to the finite-
horizon version of the LQR algorithm, iteratively computing
the value function back from the terminal state, but using
different local dynamics for each time step resulting from
local linearization around the state for that time step. It is
applicable only to the finite-horizon setting, because it solves
the problem numerically over a fixed horizon. However, even
if it was possible to solve it in the infinite horizon setting,
there will be different value functions around every state, be-
cause the dynamics change over the state space. Furthermore,
the optimal control for the same state at different times do not
have to be consistent, because the policy is time dependent.
Consider the feedback controller of MBiLQR û = uk +
Kk(x − xk). For the same system state x, differences in
the reference control trajectory uk, reference state trajectory
xk, and gain matrix Kk may arise across different solution
trajectories. This variation implies that MBiLQR’s output
û(x) at state x could vary abruptly when switching from one
controller to another, introducing potential challenges regard-
ing the system’s stability, robustness, and convergence. These
inconsistencies, stemming from the solution’s time-varying
nature across different trajectories, could significantly impact
MBiLQR’s performance and reliability.

One possible solution involves integrating the iLQG al-
gorithm’s finite-horizon path from the initial to the goal
state with the classical LQR method for infinite-horizon
objectives at the goal state. The solution consists of lineariz-
ing the dynamics around the goal state and assuming that

the terminal value function VH of the iLQR solver is the
solution of the infinite horizon LQR regulation problem for
the LTI system with these linearized dynamics. Essentially,
the proposed solution constructs an infinite-horizon optimal
control problem consisting of two parts: the first part starts
at the initial state and spans the first H steps, and the second
part consists of stabilizing the system linearized around the
goal state from time step H +1 to infinity. By doing so, we
are modifying the iLQR algorithm to essentially compute
a time-invariant solution of the optimal control problem; if
it operates on an LTI system to begin with, it will simply
compute (iteratively) the constant value function and gain
matrix that the LQR method computes analytically. This
strategy is predicated on the assumption that the goal will be
reached within a period no longer than H steps, after which
it will be perpetually maintained. In practice, to convert time-
dependent gains to time-invariant ones, the following steps
are taken:

• Execute the original iLQR algorithm to compute a
trajectory xk, 0 ≤ k ≤ H such that the final state xH

necessarily reaches (the neighborhood of) the goal state
x(G).

• Linearize the dynamics around the goal state x(G),
producing matrices AG and BG, and cost functions QG

and RG.
• Compute analytically the steady-state value-function VG

of the corresponding LQR problem with matrices AG

and BG and cost functions QG and RG, for example
by solving Equation 3 for VG = Vk = Vk+1, plugging
it on both sides of the equation.

• Conduct an additional backward recursion step of iLQR
by setting the iLQR final cost VH = VG.

III. EMPIRICAL EVALUATION

A. Torque-Limited Pendulum (TLP) benchmark

In this section, we evaluate empirically the performance of
some of the variants of the proposed method on a classical
benchmark problem from the control systems literature: the
task of swinging up and stabilizing a torque-limited pen-
dulum (TLP) to and around its upper unstable equilibrium.
The low dimensional state space of the task is suitable
for visualizing the computed control policies, and the need
for reaching and stabilizing around an unstable equilibrium
makes the task quite difficult for traditional control methods.

The pendulum, shown in Fig. 1, is governed by the
equation mLθ̈ = −mg sin θ−bθ̇+τ , where θ is its angle with
respect to the stable vertical hanging position, m is the mass
of its bob, L is its length, g is Earth’s gravity, b is a viscous
friction coefficient, and τ is the applied torque about the
point the pendulum is suspended from. The goal is to swing
it up from hanging position in the neighborhood of its lower
stable equilibrium θ = 0 to its upper unstable equilibrium
θ = π and balance it there. Given enough torque, this is not
difficult, as the torque can be applied against gravity. Once
the pendulum reaches the unstable upper equilibrium, it can
be stabilized there by a linear feedback controller, such as a

Fig. 1. Torque Limited Pendulum

PID controller or an LQR controller based on a linearization
of the dynamics around the upper equilibrium.

However, when the torque is limited, the controller must
pump enough energy into the pendulum by swinging it back
and forth one or more times. This essentially turns the
problem into a planning one. The analytical construction of
such a controller/planner is not trivial, and insights into the
physics of the system are necessary for a successful solution
[11]. This makes it a suitable benchmark for general-purpose
controller-design methods such as the one proposed in this
paper.

We verified the algorithm on a TLP simulated in the
MuJoCo physics engine [12]. The detailed simulation pa-
rameters of the TLP are shown in Table I.

B. Computation of Nominal iLQR Solutions

The first step in all variations of the proposed algorithm is
to compute a set of I nominal iLQR solutions starting from
multiple starting states. The success of the global control
method we propose (and also of the GPS algorithm, for that
matter) critically depends on the ability to find these local
solutions reliably. The starting states were sampled from the
subset of the state space such that −π/2 ≤ θ ≤ π/2 (rad)
and −3 ≤ θ̇ ≤ 3 (rad/s), reflecting that the objective of the
task is to swing up the pendulum from a position generally
below its suspension point.

Following the popular practice in the field of learning
control when learning models of systems with rotational
degrees of freedom expressed by angles, we represent the
pendulum’s angle θ with its sine and cosine. This avoids
angle wrap-around at θ = ±π and ensures continuity of
functions on the angle there, which is assumed by most ML
methods. As a result, the state space used by the iLQR
algorithm is three dimensional: x = [sin θ, cos θ, θ̇]. The
control space is one-dimensional: u = τ .

Each execution of the iLQR algorithm consisted of 100
iterations of the algorithm, initialized with a completely
random guess for the nominal control trajectory u[k], 0 ≤
k ≤ H − 1, where H = 200 time steps. We used quadratic
running and terminal costs: l(x,u) = (x − xg)

TQ(x −
x(G))+uTRu and lf (xH) = (xH −x(G))TQf (xH −x(G)),
where the goal state, corresponding to the upper unstable
equilibrium is x(G) = [sin(π), cos(π), 0] = [0,−1, 0]. We

Params Length L Mass m Damping b Torque Limit τmax

Value 0.61 m 0.15 kg 0.05 Ns/m [-0.4,0.4] Nm

TABLE I
PARAMETERS OF THE TLP

found that the following matrices produced reliable iLQR
solutions that found a way to reach the goal state: Q =
diag([10, 100, 1], R = [0.01], Qf = diag([10, 1000, 1000].
The very low control cost signifies that the controller is free
to saturate the control input while swinging up the pendulum
(resulting in bang-bang control), which is known to be
optimal in minimum-time problems with control limits. (Our
implementation of the iLQR algorithm is aware of control
limits and takes them into consideration when computing
nominal solutions; it is based on [3].)

A single execution of the iLQR algorithm in this setting
took on average of 7.94 s on an i7-10750H CPU, imple-
mented in Python. This number suggests that recomputing
the entire trajectory at every control step would be way too
slow for real-time control even if the implementation is op-
timized, but is otherwise acceptable for off-line construction
of a training database.

Once an iLQR solution has been computed, we decide
whether it has reached the goal state by computing the
distance d = ||xH − x(G)||2 between its terminal state xH

and the desired goal state x(G), and add the trajectories to
the dataset only if this distance is below a threshold ϵ: d ≤ ϵ.
We used a threshold of ϵ = 0.2. We should point out that,
in general, a full-state feedback (FSF) controller without
integral action cannot always eliminate steady-state error,
so many iLQR solutions converge to a terminal state with
some steady-state error, where the pendulum is propped by
a small amount of torque at an angle very close to the upper
unstable equilibrium. We consider such solutions successful,
as the FSF controller with terminal gains KH will be able to
reject disturbances around the upper equilibrium, and keep
the pendulum in the goal region.

C. Empirical Results

Consequently, we adopted the same criterion for success
when the MBiLQR algorithm is run from a new starting
point – whether the controller could bring the pendulum to
the goal region, such that ||xH −x(G)||2 ≤ ϵ. We conducted
1, 000 test executions from the same subset of the state
space used for training, and the execution of one of them
is superimposed on the training iLQR solutions in Fig. 2. It
is visible that the iLQR solutions do not necessarily cover
the state space uniformly, but tend to define a general pre-
ferred solution, even though they were computed completely
independently from one another, with completely random
initialization.

We also evaluated the fraction of successes across the
1, 000 test runs across 5 different random seeds, for a total
of 5, 000 random test cases) as a function of how many
iLQR solutions the MBiLQR algorithm was working with.
The results, shown in Figs. 3, demonstrate that the basic

Fig. 2. An example execution trajectory of MBiLQR solution (in red)
superimposed on the training iLQR solutions it was was based on (in blue).
The stable equilibria are shown with solid dots, and the unstable equilibria
(the task’s goal state) are shown with hollow dots.

Fig. 3. Success rate vs. the number of iLQR solutions used by MBiLQR-A,
MBiLQR-C-TD, MBiLQR-C-TI. The shaded area represents the standard
deviation of the success rate across 5 different random seeds.

version of the algorithms, MBiLQR-A, has very minimal
success rate, reaching the goal only occasionally. In contrast,
the more advanced MBiLQR-C time dependent (MBiLQR-
C-TD) version of the algorithm shows the ability to bring
the system to the goal state with very high success rates
with even very few nominal iLQR solutions. However, it is
not necessarily the case that more solutions monotonically
increase the success rate. Furthermore, it shows some vari-
ance across different random seeds. In contrast, the MBiLQR
time independent (MBiLQR-C-TI) version of the algorithm
not only shows very high success rate, but has almost no
variance across different random seeds. This demonstrates
the clear advantage of using time-independent gains.

Note that each experiment with more iLQR solutions in
memory included the exact same solutions as those exper-
iments with fewer solutions before it, so any change in
performance is due entirely to the additional solutions it is
using. Furthermore, the control step computation time never
exceeded 0.2 ms, even for the maximum number of solutions,
allowing control rates in excess of 5 kHz.

IV. CONCLUSION AND FUTURE WORK

We presented a method for designing global nonlinear con-
trollers based on the application of memory-based learning
schemes for the purpose of aggregating multiple solutions
produced by optimal control algorithms based on differential
dynamic programming. The method leverages the fact that
these optimal control algorithms produce not only nominal
state and control trajectories, but entire FSF controllers, and
the combined controller effectively switches between these
multiple FSF controllers. Another way to look at the pro-
posed controller is as a method for automatic gain scheduling
based on multiple local solutions. Empirical verification
demonstrated that it can be very effective in solving difficult
benchmark control problems, whereas naive application of
MBL that uses only the computed control trajectories and
discards the FSF gains was not successful.

Although efficient data structures can be used to shorten
dramatically the nearest-neighbor search, it is also true that
an excessive number of iLQR solutions in memory will
eventually slow down control computation. As many of the
solutions might be redundant, as evidenced by their converg-
ing trajectories, an appealing possibility for future work is
to apply algorithms for exemplar learning, where multiple
memory instances are replaced with a single instance that
represents all of them.

REFERENCES

[1] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning im-
plementations,” The Journal of Machine Learning Research, vol. 22,
no. 1, pp. 12 348–12 355, 2021.

[2] D. H. Jacobson and D. Q. Mayne, Differential dynamic programming.
Elsevier, 1970.

[3] W. Li and E. Todorov, “Iterative linear quadratic regulator design
for nonlinear biological movement systems,” in First International
Conference on Informatics in Control, Automation and Robotics,
vol. 2. SciTePress, 2004, pp. 222–229.

[4] N. Bruchon, G. Fenu, G. Gaio, S. Hirlander, M. Lonza, F. A.
Pellegrino, and E. Salvato, “An Online Iterative Linear Quadratic
Approach for a Satisfactory Working Point Attainment at FERMI,”
Information, vol. 12, no. 7, p. 262, 2021.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, pp. 1–40, 2016.

[6] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[7] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[8] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning for control,” Artificial Intelligence Review, vol. 11, pp. 75–
113, 1997.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, Michel V., B. Thirion,
O. Grisel, M. Blondel, Prettenhofer P., R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[10] R. F. Stengel, Optimal control and estimation. Courier Corporation,
1994.

[11] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy
control,” Automatica, vol. 36, no. 2, pp. 287–295, 2000.

[12] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine
for model-based control,” in International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 5026–5033.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2024-089.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

