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Adaptive Velocity Estimators for Learning Control

Daniel Nikovski and William Yerazunis†

Abstract—
The paper proposes a method for learning velocity esti-

mators, in the form of finite impulse response (FIR) filters,
from data collected from a system equipped with quantizing
position encoders that is to be controlled by means of a
full state feedback controller making use of the velocity
estimates. The resulting estimators are tailored to the proper-
ties of the controlled system and show empirically superior
performance in comparison with commonly used baseline
velocity estimators, both in terms of velocity estimation
error as well as in terms of reduced regulation cost when
tested on control problems. The proposed adaptive estimators
are resistant to overfitting the training data, are easy to
implement on embedded controller devices, and can be used
in conjunction with various learning control methods.

Index Terms— Learning control, state estimation

I. INTRODUCTION

Velocity estimation plays an important role in the control
of many mechanical systems whose state is described by
both position variables (angles or distances) as well as
velocities (angular or linear). More often than not, dedicated
velocity sensors (tachometers) are not available, and the
velocities need to be estimated from position sensors, most
commonly rotary encoders. Encoders introduce quantization
noise which depends on the resolution of the encoder. This
noise, when added to the actual velocity signal, ends up
creating a disturbance in the control signal that can signif-
icantly worsen the performance of the controller and even
render it unstable. As the cost of encoders increases sharply
with their resolution, there is a strong economic motivation
to develop effective velocity estimation methods that can
mitigate the effect of quantization noise on the estimated
velocities. In contrast to spatial resolution, increasing the
temporal resolution of the estimation process (the sampling
rate of the encoder) is much more economical due to the
ever increasing computational capabilities of modern micro-
controllers. The question then arises whether higher temporal
resolution can be leveraged to compensate for limited spatial
resolution of velocity estimation. The answer to this question
is, though, not straightforward, because directly increasing
the sampling rate without changing the velocity estimation
scheme will actually amplify the estimation error due to
quantization, and not reduce it. Consequently, it becomes
important to devise new methods for improved velocity
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estimation that take advantage of higher sampling rates, and
this paper proposes one such method.

If a state-space model of the controlled plant is available,
a suitable velocity observer can be designed by leveraging
the model. However, in learning control applications, such a
state-space model is not available; rather, it is the objective
of the learning algorithm to learn such a model from obser-
vations (for model-based methods) or learn directly a control
law (also called a policy in the field of reinforcement learning
(RL), for model-free methods) that maps the measured
or estimated state variables to the control variables. Such
learning algorithms must use apriori velocity estimators that
are not informed by the plant’s model.

This raises the question of which velocity estimator
method is optimal and advantageous to use, and a significant
amount of research has been performed on the performance
of various velocity estimators. As velocity is the first deriva-
tive of position, this is an instance of the more general
problem of differentiating a digital signal x[k] = x(tk)
sampled at discrete moments in time t[k], k = 0, . . . , N − 1
and corrupted by general noise. The simplest and most
fundamental velocity estimator is the first-order backward
difference estimator (BDE), defined as the ratio of the
difference between consecutive samples of the signal and
the time elapsed between them:

v̂[k]BDE ≜
∆x[k]

T [k]
, (1)

where ∆x[k] ≜ x[k]−x[k−1] and T [k] ≜ t[k]− t[k−1].
When the true positions x(true)[k] have been corrupted by
independent and identically distributed (i.i.d.) quantization
noise ϵ[k], such that x[k] = x(true)[k] + ϵ[k], the difference
∆ϵ[k] ≜ ϵ[k]−ϵ[k−1] is propagated into the velocity estimate
as ∆ϵ[k]/T [k], manifesting itself as velocity estimation error.
For control applications, the sampling period T [k] is often
the inverse of the control rate F , meaning that that rate
effectively amplifies the quantization noise of the encoder.
Furthermore, if, for example, a linear feedback controller
multiplies the velocity estimate by a velocity gain kv , the
resulting additive disturbance to the control signal will be
equal to kvF∆ϵ[k]. Depending on the gain, the control rate,
and the quantization error, this disturbance might be very
large and completely dwarf the other components of the
control signal, especially at low velocities, rendering the
control system unstable.

Given the deleterious effect of higher sampling rates
on the velocity estimation error and the resulting induced
disturbance in the control signal, the simplest solution would



be to resort to slower sampling rates. However, this would
ignore information in the encoder position signal that might
be instrumental in more accurate estimation. A much better
solution might be to try to make better use of multiple
position readings sampled at a high control rate. To this
end, a number of more advanced velocity estimators have
been proposed [1]. A Taylor series expansion (TSE) of the
velocity signal leads to a series of estimators of arbitrary
order. Similarly, the BDE estimators can be extended to an
arbitrary order. The first- and second-order TSE and BDE
estimators are the same, and differences appear only in the
third- and higher-order terms. In practical applications, at
most third-order estimators are usually used. Both TSE and
BDE estimators can be implemented as causal linear finite
impulse response (FIR) filters, either on the raw position
measurement x[k] or on the differences ∆x[k]. A different,
and computationally much more intensive approach is to fit
a low-order polynomial to the latest readings using least-
squares fitting (LSF), differentiate it analytically, and evalu-
ate the derivative at the most recent point in time to obtain a
velocity estimate [1], [2]. Variants of these estimators exist
when the encoders are not sampled at fixed time steps, but
produce a sample only when their position reading changes
by a fixed amount, typically one tick of the encoder.

Looking back at the long research into optimal velocity es-
timators, it becomes clear that no single estimator has proved
to be best for all applications and systems. This should come
as no surprise, as the performance of these estimators, and
most notably their ability to suppress quantization noise and
serve in feedback control applications, depends critically
on the properties of the system whose velocity is being
measured. The most important among these properties is the
bandwidth of the system, which determines the frequency
range within which the measured velocities are going to lie.
For a system of zero bandwidth, that is, always moving at a
constant velocity, the best estimate of that velocity would be
simply the average velocity v̄[k] = (x[k]−x[0])/(t[k]−t[0])
since the start; by dividing the difference (ϵ[k]−ϵ[0]) between
the i.i.d. quantization errors in the first and last readings by
the largest possible time interval, t[k]− t[0], the quantization
noise would be suppressed most effectively. This operation
is also equivalent to passing the position differences ∆x[i],
i = 1, . . . , k through an FIR filter of order k with coefficients
all equal to 1/k. However, this kind of very high-order causal
filter will cause a huge phase shift in the estimated signal for
all non-zero frequencies, and because it will act in sequence
with the feedback controller if used for control purposes, it
will likely affect its phase margin very negatively. So, for
systems exhibiting high-frequency velocities, there might be
no other choice but to use a velocity estimator of the lowest
possible order. That is, various velocity estimators provide a
different trade-off between suppression of quantization noise
and phase lag, and which one is better for a particular system
depends on the bandwidth of the system, which is typically
unknown in learning control applications.

Based on this realization, in this paper we propose a
method for adaptively constructing a velocity estimator that

is tailored to the properties of a target system to which
learning control is being applied. Similar to TSE and BDE
estimators, the resulting estimator is an FIR filter that acts on
the measured encoder position differences, but unlike these
estimators, its order and coefficients are learned from data,
using standard machine learning (ML) methodology. In the
spirit of learning control methods, it applies ML technology
beyond its usual uses for system identification and policy
learning, to the problem of velocity estimation. Section
II describes the proposed method, Section III details the
verification task, Section IV presents empirical results, and
Section V proposes directions for future work and concludes.

II. LEARNING VELOCITY ESTIMATORS

The overall idea of the method is to excite the target
system by means of a suitable excitation policy, collect
encoder data, and learn a suitable estimator in the form of an
FIR filter. Later, the filter is used to estimate velocities while
learning a model of the system for the purpose of model-
based controller design, or direct determination of a control
policy based on position and velocity readings. Finally,
the same filter is used when deploying the learned control
policy. The method is also compatible with control designs
that are based on an approximate state-space model of the
plant, whose accuracy is sufficient for a controller design
with acceptable performance, but insufficient for designing
a model-based observer of velocity.

The method is based on the realization that many velocity
estimators known from the literature, such as the TSE and
BDE estimators, are essentially weighted moving averages
of the position differences ∆x[k] of the position data, as
provided by position encoders. The weights of the moving
average can be represented as the impulse response hi, i =
0, n− 1 of an FIR filter of order n, where n is the order of
the velocity estimator, adopting the terminology of [1], and
the velocity estimate is the result of convolving the impulse
response with the signal of position differences:

v̂k = h0∆x[k]+ · · ·+hn−1∆x[k−n+1] =

n−1∑
i=0

hi∆x[k− i]

(2)
The only difference between TSE and BDE estimators is

in what kind of impulse response h = [h0, h1, . . . , hn−1]
they use. For example, the first order TSE(1) and BDE(1)
filters use, trivially, h = [1]. Their second-order variants,
TSE(2) and BDE(2), use the same convolution kernel, h =
[1.5,−0.5]. Differences between TSE and BDE gradually
appear in the higher-order filters. However, in practical ap-
plications, it is not clear why one kernel should be preferred
to another of the same, or for that matter, a different order.

We propose to make this decision based on collected
data, and moreover, use that data to find the actual optimal
kernel h that is best for the system from which the data was
collected, in the expectation that this kernel will generalize
to novel data from the same system, as is customary in
the field of ML. To this end, we formulate the following



machine learning problem. Given a sequence of position
differences ∆x[k], k = 1, N − 1, best off-line estimates
v̂(o)[k] of the velocities at the same time moments, and a
desired FIR filter order n, find the values of the impulse
response h = [h0, h1, . . . , hn−1] that minimize the mean-
squared prediction error of the velocities:

h(LSE) = argmin
h

N−1∑
k=n+1

(
v̂(o)[k]−

n−1∑
i=0

hi∆x[k − i]

)2

(3)
It can immediately be recognized that this is a least-

squares estimation (LSE) problem that can be solved in many
ways, for example by forming the time-lag matrix X of
dimensions N − n+ 1× n, such that Xij = ∆x[i− j + n],
the column vector v of dimension N − n + 1, such that
vi = v̂

(o)
i+n−1, and computing

h(LSE) = (XTX)−1XT v = X+v, (4)

making use of the pseudo-inverse X+ = (XTX)−1XT .
The estimates of the velocity v̂(o)[k] needed for the LSE
problem can be obtained from the sampled data by a suitable
acausal filter, e.g. the popular Savitzky-Golay (SG) filter [3].

III. EMPIRICAL VERIFICATION

In this section, we present results from an empirical
verification of the proposed adaptive velocity estimators on
a difficult benchmark control problem: the stabilization of
a rotary pendulum. The rotary pendulum, also known as
the Furuta pendulum (FP) after the name of its inventor,
has been a popular benchmark control problem used to
investigate various control schemes [4]. It consists of two
links, an arm and a pendulum, where the arm is actuated
by means of applied torque τ around the vertical axis Z,
and the pendulum rotates freely in a plane perpendicular
to the arm, without any actuation. The state of the FP
x = [θ1, θ2, θ̇1, θ̇2]

T is described by the arm and pendulum
angles θ1 and θ2 and their angular velocities θ̇1 and θ̇2.

We are investigating the performance of a standard set-
point stabilization controller, where the set-point is defined as
the home position of the arm (θ1 = 0) and the upper, unstable
equilibrium position of the pendulum (θ2 = π), under quan-
tization noise for the second joint (θ2). (That is, the desired
set-point for regulation is xd = [θ1,d, θ2,d, θ̇1,d, θ̇2,d] =
[0, π, 0, 0]T .) Although the proposed velocity estimation
scheme is generally meant to be used for learning control
applications, where a system model and/or controller will be
learned from data, in this study, we tested its performance in
conjunction with a manually designed stabilizing controller,
in order to isolate and analyze only the effects of the velocity
estimator on the stabilization performance. Following the
approach in the original FP publication [4] as closely as
possible, we designed an LQR FSF controller of the form
τ [k] = −Kx[k], where the gains K were determined with
cost matrices Q = diag[1, 1, 1, 1] and r = 1 for the state
variables and the control effort, respectively. In contrast to

[4], where a physical model of the FP was derived and
linearized analytically in order to design the stabilizing LQR
controller, we created an FP model in the MuJoCo physics
engine [5] and linearized it numerically around the set-point
by means of finite differencing. Empirical verification of the
velocity estimation algorithms was performed in MuJoCo
using the full FP model.

The FP stabilization problem illustrates well the effect
that encoder quantization noise has on the computed control
signal. For a control rate of F = 500Hz, the computed
LQR gains for the discrete-time controller were K =
[−0.67, 26.86,−1.14, 4.08]. The negative gains for θ1 and θ̇1
reflect the need to first tilt the pendulum in the right direction
by moving the arm away from its set-point before closing
the error on the arm, if starting from a balanced position for
the pendulum (θ2[0] = π) and at rest (θ̇1[0] = θ̇2[0] = 0),
but with some error on the arm’s angle (θ1[0] ̸= 0). (The
LQR controller typically performs very well in closing the
error and bringing the FP to its target position even from
significantly different starting arm angles θ1[0], because the
linearization of the FP remains valid, as long as the pendulum
remains mostly upright during movement.) However, the
opposite signs of the control gains also mean that often the
resulting control signal, the torque τ applied to the arm, is the
result of opposing feedback contributions computed through
relatively large gains, even if the final value of the torque is
not so high.

In particular, the gain kθ̇2 on the pendulum’s velocity error
is fairly large, 4.08 Nm · s/rad in this case. When using
simple consecutive encoder angle differences as velocity
estimators, this relatively large gain ends up multiplying the
noise ∆ϵ[k] = ϵ[k]−ϵ[k−1] in these differences, as discussed
in Section I. This noise ∆ϵ[k] is a random variable obtained
as a difference of two i.i.d. uniform random variables defined
over the interval [−∆/2,∆/2], where ∆ = 2π/2M rad
is the width of a single sector of the angle encoder of
resolution M bits. The probability distribution of ∆ϵ[k]
can be shown to be symmetric triangular, defined over the
interval [−∆,∆] and peaking at zero. Its mean is zero, but
its magnitude, if characterized by its deviation from the
mean, is by definition equal to the standard deviation of the
triangular distribution, which is σ = ∆/

√
6. This allows us

to compute the expected magnitude of the disturbance that
the quantization error in encoder angles will contribute to
the control signal if used directly for velocity estimation,
as w = kθ̇2Fσ = kθ̇2Fπ/(2M−1

√
6). If we employ a 10-

bit encoder for the pendulum’s angle, we obtain w = 5.11
Nm, which is more than four times larger than the maximal
torque (around 1.2 Nm) needed to stabilize the pendulum
even from arm angles that are 90 degrees away from the
set-point (θ1[0] = π/2), if no disturbance was present. This
demonstrates the challenges of using velocity estimates based
on encoder measurements with large quantization errors in
full-state feedback controllers on difficult control tasks, such
as balancing an FP around its unstable equilibrium, and the
importance of suppressing the effects of these quantization
errors by means of more accurate velocity estimators.



IV. RESULTS

In order to collect data for learning the FIR of the velocity
estimator, the FP model was simulated in MuJoCo, starting
from the lower stable equilibrium x[0] = [0, 0, 0, 0] and
applying random torques τ [k] ∼ N(0, 8)Nm and limited
to 20 Nm in magnitude for a duration of 4 s and at a
sampling rate of 500 Hz, resulting in N = 2,001 samples.
The measured pendulum angle θ2 was quantized at 1,024
levels, corresponding to a M = 10-bit absolute encoder.

A. Evaluation of the LSE Velocity Estimator’s Accuracy

Following standard ML practice, the data set was split
into two halves, the first for training and the second for
testing. The angles [k], k = 0, . . . , (N +1)/2 in the training
data set were filtered by an SG filter with window of size
15 and order 3 to remove as much quantization noise as
possible, using SciPy’s implementation of the SG filter [6].
This implementation also conveniently computes directly the
derivative of the filtered time series, which becomes the
sequence of best acausal, offline estimates v̂(o)[k], k =
1, . . . , (N + 1)/2 to be used in (4) to minimize the squared
error defined in (3).

Position differences ∆[k], k = 1, . . . , (N + 1)/2 for
the training data set were also computed as inputs to the
LSE estimator filter. Because the optimal order of the LSE
estimator is not known, estimation was performed for a
range of orders n = 1, . . . , 10. Root mean squared (RMSE)
velocity estimation errors for various estimators are shown
in Fig. 1 for the training (top) and testing (bottom) sets, for
one representative random generator seed. For the sake of
fair comparison between filters of different orders, all filters’
RMSE was computed over the same range of samples ∆[k],
k = 10, . . . , (N + 1)/2.

The fitting error for each filter order, defined with respect
to the best offline velocity estimates v̂(o)[k] that it was
computed from, is shown in Fig. 1 (top) under the label ”LSE
SG”. This fitting error on the training set is monotonically
non-increasing with the filter order, as higher-order filters
have more parameters (filter coefficients), so their fitting
error is necessarily lower or equal to that of lower-level
filters. This property is not always true for the RMSE
computed with respect to the true velocities recorded from
the MuJoCo simulator, shown under the label ”LSE”; the
lowest RMSE there is achieved at n = 2. However, the
RMSE of LSE(n) estimators for n > 2 remains largely
comparable to that of LSE(2).

This is not at all the case for the simple differencing
filters, labelled ”SDE”, that are also included in Fig. 1
(top), for the sake of comparison. Their FIR is equal to
h = [1/n, 1/n, . . . , 1/n], for the n-th order SDE(n) filter.
The SDE filters (not to be confused with the BDE filters,
as defined in [1]) are equivalent to using the single back
difference for velocity estimation as if the sampling rate were
reduced n times, thus ignoring every n−1 out of n samples
in the data set. After a significant drop for n = 2, their RMSE
rises sharply for higher orders, reflecting the lag between the
estimate of what is in fact the average velocity computed by

Fig. 1: RMSE of filters of increasing order on the training (top) and testing
(bottom) data sets. The solid lines show RMSE computed with respect to
the true velocities provided by the simulator, whereas the dashed line is
computed with respect to the SG-filtered training data set, to show the
goodness-of-fit achieved by the LSE routine. The SDE filters’s RMSE
increases sharply after its lowest value, whereas the LSE filters show little,
if any, over-fitting.

finite differencing over increasingly longer time intervals,
and the momentary velocity that is the correct target for
estimation.

In contrast, the RMSE curve for the LSE estimator on
the training set remains largely flat with the increasing
filter order. Why this is the case can be understood by
looking at the filter coefficients of the LSE estimators of
different orders. These coefficients are shown in Fig.2, for
n = 1, . . . , 6. It can be observed that, whereas LSE filters of
order 1 and 2 have substantially unique coefficients, all filters
of order n ≥ 3 are very similar, and have only increasingly
minor differences in the longer lags, which are very small in
magnitude, anyway. This suggests that the LSE estimation
procedure has essentially figured out that the most recent
three or so position differences ∆x[k − i], i = 0, 1, 2 are
useful for predicting the momentary velocity, but position



Fig. 2: Coefficients (FIR components) of the LSE estimators of orders n =
1, . . . , 6 estimated from the training data set.

differences earlier than that are more harmful than useful
and should be ignored during prediction.

Another way to understand the difference between the
SDE and LSE estimators is to make use of the probabilistic
analysis from the previous section. Recall that the standard
deviation σ of the differences ∆ϵ[k] in quantization noise
terms of two consecutive samples is given by σ = ∆/

√
6.

The SDE(1) estimator uses the most recent angle differ-
ence ∆[k] as a velocity estimate after dividing it by the
sampling period T [k], or equivalently by multiplying it by
the sampling rate F . As a result, the quantization noise
∆ϵ[k] is propagated into the velocity estimate v̂(SDE(1)),
contributing to its RMSE an error component equal to
F∆/

√
6 = Fπ/(2M−1

√
6), which for the test system is

equal to 1.25 rad/s. Fig. 1 shows that this is indeed very
close to the sample RMSE of SDE(1) on both the training
and testing data sets. The second component of the RMSE of
SDE(1) is due to the time lag between the true momentary
velocity at time t[k] and the average velocity over the time
interval [t[k−1], t[k]] that the estimator is in fact computing.
For SDE(1), this second component of the error appears to
be negligible at this sampling rate, so the RMSE of SDE(1)
is almost entirely due to quantization error.

SDE(2) halves the component of the error due to quanti-
zation, using an effective sampling rate of F/2, but incurs
non-negligible error due to lag, which is now between the
true momentary velocity at time t[k] and its average over the
twice longer time interval [t[k−2], t[k]]. For this reason, the
RMSE of SDE(2) is lower than that of SDE(1), but not as low
as half of it. With increasing filter order n, the component
of SDE(n)’s RMSE due to lag starts to exceed the benefit of
suppression of the quantization noise, and the overall RMSE
goes up. In contrast, the LSE estimators learn the optimal
weights (gradually decreasing with the filter coefficient’s
lag) that will not allow the lag error to exceed the error
reduction from noise suppression, thus always resulting in
better estimators with higher-order filters.

This analysis is also supported by the verification of the
LSE filters’ accuracy on the independent testing set that has
not been seen during training, shown in Fig. 1 (bottom). In
this graph, the filter LSE(n) of particular order n estimated

on the training set was applied to the data in the testing
set, and the resulting RMSE plotted against the filter order.
The RMSE for the LSE filters is also largely flat for n ≥ 3,
increasing only very slightly, demonstrating that the proposed
estimation method does not overfit the data. This claim
can be quantified by computing the relative suboptimality
(excessive RMSE) on the testing set of the LSE filter with
the best fitting error on the training set (which will always
be the highest-order filter, LSE(10) for this experiment), with
respect to the LSE filter that happens to be optimal on the
testing set, which is LSE(4) in this case. For this data set,
the suboptimality of LSE(10) with respect to LSE(4) is only
in the amount of 1.27% of the latter’s RMSE, whereas its
RMSE is 44.97% lower than that of the SDE(1) filter that
is commonly used for velocity estimation. This shows that
the differences between LSE filters of orders past n = 3
are very minor in comparison to the large improvement in
accuracy they exhibit with respect to the most commonly
used estimator in practice, SDE(1).

The accuracy of the BDE and TSE estimators of first,
second, and third order are shown in Fig. 1, too, for the sake
of comparison. Somewhat unexpectedly, their performance
is much worse than that of the LSE filters. A possible
explanation is that the learned coefficients of the LSE filters
differ substantially in nature from the theoretically derived
BDE and TSE ones. Even though the LSE coefficients
vary somewhat depending on the particular random process
realization from which the training data was collected, they
are consistently within the interval [0, 1], with negative
coefficients of negligible magnitude only in the higher-order
lags. This is in stark contrast with the FIR of BDE and
TSE filters, where for n ≥ 2, h0 > 1 and h1 < 0;
for example h = [1.5,−0.5] for BDE(2) (or, equivalently,
TSE(2)). Under the assumption of i.i.d. quantization noise,
each position difference ∆x[k] contributes to the total RMSE
of the estimated velocity proportionally to the absolute value
of its respective coefficient, so even if all coefficients in the
FIR add up to a value close to one, it is the sum of their
absolute values that determines the RMSE of the velocity
estimate. As this sum grows with the filter order of the BDE
and TSE filters, so does their RMSE.

This significant difference between the FIRs of BDE/TSE
and LSE estimators also demonstrates that the proposed
learning method does not merely fine tune estimators already
known from the research literature, but learns substantially
different estimators, tailored to the system whose velocity is
being estimated.

B. Evaluation of the LSE Velocity Estimator’s Performance
in Control

Although the preceding results suggest that the LSE esti-
mator is significantly more accurate than baseline estimators
in predicting (estimating) momentary velocity, the ultimate
test of its usefulness in control applications is whether its
use would result in improved control performance. As noted,
different velocity estimators based on causal FIR filters trade
off quantization noise suppression for time lag, and their



RMSE on test data does reflect both components. However,
the time lag might additionally impact the performance of
the feedback controller, and this impact can be expected to
be more significant for higher-order estimators.

For this reason, we compared the performance of several
of the learned LSE estimators vs. that of baseline estimators
on the difficult control problem we described above, FP
balancing, that requires accurate velocity estimation. An (ex-
pected) optimal order of the LSE estimator can be determined
from the RMSE curves above by means of cross-validation,
as the LSE filter learned from the training data set that
performs best on the testing data set (LSE(4) here).

The controller we tested was the aforementioned LQR
controller computed for costs Q = diag[1, 1, 1, 1]
and r = 1 and resulting feedback gains K =
[−0.67, 26.86,−1.14, 4.08], on the task of stabilizing the FP
around its upper, unstable equilibrium, for a duration of 2
s (Nc = 1, 001 control steps). The controller was tested
from two different initial states. The first was the unstable
equilibrium itself, x[0] = xd. Even though the system
starts in the goal state, the pendulum encoder immediately
introduces a finite quantization error in the pendulum’s angle,
prompting the controller to act, applying a torque that brings
the pendulum out of equilibrium, and from then on, the
controller is actively balancing the inverted pendulum by
applying torque to the arm to counteract the disturbance.

The second initial state was also with the pendulum at its
unstable upper equilibrium and at rest, but the arm starting
at a right angle to its goal state: x[0] = [π/2, π, 0, 0]T . This
is a much more difficult control problem, because bringing
the FP from its initial position to the goal position requires
maneuvering the arm carefully, first away from the goal state,
and then back towards it, while keeping the pendulum tilted
the right way, and finally straightening and balancing the
pendulum upright.

The mean squared regulation errors for the four state
variables, as well as their totals, are shown in Tables I and II
for the stabilization and transportation control tasks (i.e., with
different initial states) under several velocity estimators. An
evaluation for the BDE(2) (equivalently, TSE(2)) estimator
with FIR h = [1.5,−0.5] ([1]) is included, too.

The results show that all velocity estimators, BDE and
LSE, in conjunction with the LQR controller, were able
to bring the FP to the desired goal state and balance it
there successfully, without ever dropping it. Their regulation
performance, though, varied widely. For both tasks, the best
overall performance was achieved with the learned LSE
estimator of second order, LSE(2). Its mean squared cost was
28% and 14% lower than that of the second-best estimator,
BDE(1), on the two tasks, respectively. It can also be seen
that the reduction in regulation error was achieved almost
entirely in the velocity terms.

These results suggest that the proposed LSE estimators
can improve the quality of regulation with respect to well-
known estimators with fixed impulse responses, such as the
BDE and TSE estimators. However, the optimal order of
the LSE estimator on the control tasks is not necessarily

Estimator θ1 θ2 θ̇1 θ̇2 Total
BDE(1) 0.00008 0.000006 10.22 1.97 12.19
BDE(2) 0.01031 0.000337 40.81 7.81 48.64
LSE(2) 0.00022 0.000014 7.35 1.42 8.78
LSE(3) 0.00032 0.000041 21.57 4.16 25.72
LSE(4) 0.00055 0.000069 32.56 6.28 38.84

TABLE I: Mean squared error with several velocity estimators on the FP
stabilization task, tabulated by state variable and in total. Best (lowest) MSE
across estimators is displayed in bold.

Estimator θ1 θ2 θ̇1 θ̇2 Total
BDE(1) 0.580 0.000107 10.59 1.99 13.17
BDE(2) 0.542 0.000921 41.05 7.68 49.28
LSE(2) 0.568 0.000111 9.02 1.69 11.28
LSE(3) 0.540 0.000106 18.47 3.51 22.54
LSE(4) 0.582 0.000144 34.14 6.53 41.25

TABLE II: Mean squared error with several velocity estimators on the FP
transportation task, tabulated by state variable and in total.

the one with the lowest estimation error; this could be due
to the lag introduced by higher-order estimators into the
control loop. Furthermore, the second-order LSE estimator
had much better performance than the BDE/TSE estimator of
the same order, suggesting that the proposed adaptive data-
driven procedure can produce impulse response coefficients
that are much more appropriate and effective for control
purposes than those derived theoretically.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for learning velocity
estimators in the form of an FIR filter from data collected
from a system equipped with quantizing position encoders
that will be controlled by means of a full state controller
making use of velocity estimates. The method performs least-
squares estimation of the impulse response coefficients, using
off-line estimates of the momentary velocities obtained by
smoothing or another suitable signal denoising and recon-
struction method applied on a training data set. Empirical
verification in simulation demonstrates that the LSE velocity
estimators exhibit up to 5 times lower velocity prediction
error than simple differencing filters of the same order, and
are not prone to overfitting. In future work, we plan to
investigate better off-line signal reconstruction methods that
might improve the accuracy of the learned estimators further.
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