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PYROBOCOP: Python-based Robotic Control & Optimization
Package for Manipulation and Collision Avoidance

Arvind U. Raghunathan1, Devesh K. Jha1and Diego Romeres1

Abstract—Contacts are central to most manipulation tasks
as they provide additional dexterity to robots to perform
challenging tasks. However, frictional contacts leads to complex
complementarity constraints. Planning in the presence of
contacts requires robust handling of these constraints to
find feasible solutions. This paper presents PYROBOCOP
which is a lightweight Python-based package for control
and optimization of robotic systems described by nonlinear
Differential Algebraic Equations (DAEs). In particular, the
proposed optimization package can handle systems with
contacts that are described by complementarity constraints.
We also present a general framework for specifying obstacle
avoidance constraints using complementarity constraints. The
package performs direct transcription of the DAEs into a set
of nonlinear equations by performing orthogonal collocation
on finite elements. The resulting optimization problem belongs
to the class of Mathematical Programs with Complementarity
Constraints (MPCCs). MPCCs fail to satisfy commonly assumed
constraint qualifications and require special handling of the
complementarity constraints in order for NonLinear Program
(NLP) solvers to solve them effectively. PYROBOCOP provides
automatic reformulation of the complementarity constraints
that enables NLP solvers to perform optimization of robotic
systems. The package is interfaced with ADOL-C [1] for
obtaining sparse derivatives by automatic differentiation and
IPOPT [2] for performing optimization. We provide extensive
numerical examples for various different robotic systems with
collision avoidance as well as contact constraints represented
using complementarity constraints. We provide comparisons
with other open source optimization packages like CasADi
and Pyomo. The code is open sourced and available at
https://github.com/merlresearch/PyRoboCOP.

Note to Practitioners: PYROBOCOP is intended to be
an easy-to-use software package written in Python which can
be used for optimization, estimation and control for a large
class of robotic systems. Including, in particular, contact-rich
applications to deal with complex scenarios that arise when
making and breaking contacts during a task. Typical problems
that can be solved with our work are trajectory and control
sequence optimization, parameter estimation. To make the
proposed software package easier for practitioners, the paper
provides access to the package and a large number of example
problems. Furthermore, the package also provides a guide
describing the details of all the methods a user might have
to implement for their own system. Compared to some of the
other packages, PYROBOCOP works with NumPy object arrays
which is the native computing package in Python. We believe
that this will make it much easier to learn and use compared to
some of the other optimal control packages.

I. INTRODUCTION

MOST robotic applications are characterized by pres-
ence of constrained and cluttered environments while

1All authors are with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA 02139. Email– {raghunathan,jha,
romeres}@merl.com

dealing with challenging underlying phenomena like unilateral
contacts, frictional contacts, impact and deformation [3]. These
phenomena are very challenging to understand and represent
mathematically. However, contacts are central to most of
the manipulation problems and it is pivotal to model these
phenomena. This has led to a lot of work towards development
of fast and approximate models of multi-body dynamics [4].
However, to perform real-time optimization and control for
contact-rich tasks, we must have tools to reason about the
unique constraints imposed by contacts to discover optimal
behavior.

Model-based control of contact-rich tasks could be fa-
cilitated by development of high-performance optimization
algorithms that allow solution to mathematical programs for
optimization in presence of contact constraints [5]. With
this motivation, we present a Python-based robotic control
and optimization package (called PYROBOCOP) that allows
solution to optimal control problems for general dynamical
systems with nonlinear constraints. The current paper and
package only considers systems which can be represented by
DAEs. Integration with physics engines is left as a future
work as that requires additional development so as to expose
the contact model specifications to PYROBOCOP for optimal
performance. In particular, we employ collocation on finite
elements to convert the infinite-dimensional optimal control
problem to a finite-dimensional problem and is commonly
referred to as direct transcription [6]. The direct transcription
approach has been employed in a number of domains including
trajectory optimization in aerospace industry [7], chemical pro-
cess industry [8] among others. Another approach to perform-
ing optimization of dynamical systems is the shooting method
whereby the DAE simulation engine is used to accurately
integrate the dynamics and the continuity of the differential
variables imposed using the optimization algorithm (see [6]).
The advantage of the collocation method is that the inequality
constraints are rendered into simple inequalities on discretized
variables at the specific collocation point. On the other hand,
multiple shooting methods require the computation of adjoint-
based sensitivity in order to handle inequality constraints. We
refer the interested reader to the book [6] and the recent
paper [9] for a discussion on the different approaches for
solving optimal control problems.

Contact-rich robotic manipulation tasks are mostly char-
acterized by constraints imposed by contacts that could be
modeled as complementarity constraints. Furthermore, ma-
nipulation in the presence of obstacles could become even
more challenging due to the additional collision-avoidance
constraints. Obtaining a feasible, let alone an optimal tra-
jectory, can be challenging for such systems. An effective
integration of the high-level trajectory planning in configura-
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tion space with physics-based dynamics is necessary in order
to obtain optimal performance of such robotic systems. To
the best of author’s knowledge, none of the existing Python-
based open-source optimization packages can provide support
for trajectory optimization with support for complementarity
constraints that arise from contact-rich manipulation and an
easy specification of obstacle avoidance constraints. Such
optimization capability is, however, highly desirable to allow
easy solution to optimization problems for a large-class of
contact-rich robotic systems.

In this paper, we present PYROBOCOP – a lightweight but
powerful Python-based package for control and optimization
of robotic systems. A key contribution of our paper is that
we present a novel complementarity-based formulation for
modeling collision avoidance. Our formulation is differentiable
even when the obstacles or objects are modeled as polytopes.
The proposed formulation allows us to handle contact and
collision avoidance in an unified manner. PYROBOCOP uses
ADOL-C [1] and IPOPT [2] at its backend for automatic dif-
ferentiation and optimization respectively. The main features
of the package are:

• Direct transcription by orthogonal collocation on finite
elements

• Contact modeling by complementarity constraints
• Obstacle avoidance modeling by complementarity con-

straints
• Support for minimum time problems
• Support for optimization over fixed mode sequence prob-

lems with unknown sequence time horizons
• Automatic differentiation for sparse derivatives

The features described above should convince the reader
that PYROBOCOP addresses the identified gaps in existing
software for optimization of robotic systems. By bringing
together ADOL-C [1] and IPOPT [2] we believe that PY-
ROBOCOP would be very useful for real-time model-based
control of robotic systems. A preliminary version of the paper
was presented as a conference publication [10]. Codes and
instructions for installing and using PYROBOCOP could be
found here https://github.com/merlresearch/PyRoboCOP.

Contributions. The main contributions of the paper are:
1) We present a Python-based package for optimization and

control of a large class of robotic systems with contact
and collision constraints.

2) We present a novel formulation for trajectory optimiza-
tion in the presence of obstacles using complementarity
constraints, thus allowing to solve for trajectory op-
timization of contact-rich systems in the presence of
obstacles.

3) We evaluate our proposed package, PYROBOCOP ,
over a range of different dynamical systems (smooth as
well as contact-rich) and also provide some comparison
with SOTA optimization packages for performance and
efficiency.

The rest of the paper is structured as follows. In Section II,
we contrast PYROBOCOP to existing trajectory optimization
techniques and present related works. Section III describes the
dynamic optimization problem solved by PYROBOCOP and

specifies the corresponding mathematical program obtained on
collocation using finite elements. In Section IV, we describe
several variants of discontinuous problems that could be solved
by PYROBOCOP. Section V presents the user interface for
PYROBOCOP. Finally, we show results on a range of different
dynamical systems in Section VI. Conclusions and future work
are summarized in Section VII.

II. RELATED WORK

Our work is closely related to various optimization tech-
niques proposed to solve contact-implicit trajectory optimiza-
tion. Some related examples could be found in [11], [12],
[13], [14], [15], [16], [17], [18]. In a more general setting, our
work is related to trajectory optimization in the presence of
non-differentiable constraints. These problems are common in
systems with constraints like non-penetrability [19], minimum
distance (e.g., in collision avoidance) [20], or in some cases
robustness constraints [21].

Some of the existing open-source software for dynamic opti-
mization are Optimica [22], ACADO Toolkit [23], TACO [24],
pyomo.dae [25], Drake [26] and CasADi [27]. All of the
cited software leverage automatic differentiation to provide the
interfaced NLP solvers with first and second-order derivatives.
However, these software do not provide any support for
handling contact-based manipulation and obstacle-avoidance
which are key requirements in robotic applications. More re-
cently, some packages have been proposed to perform contact-
rich tasks in robotics [28]. However, the solver proposed
in [28] uses DDP-based [29] techniques which suffer from
sub-optimality and difficulty in constraint satisfaction. Com-
pared to most of the other techniques in open literature,
the proposed optimization framework provides the following
novelties and advantages.

1) Automatic transcription of DAEs to nonlinear equations
using collocation on finite elements.

2) Automatic formulation of collision avoidance between
pairs of objects with minimal user input.

3) Multiple formulations for handling complementarity
constraints using NLP solvers robustly.

The optimization method presented in our work is most
closely related to the direct trajectory optimization method
for contact-rich systems earlier presented in [16], [17], [18].
The authors pose contact dynamics as a measure differential
inclusion and employ an augmented Lagrangian to solve the
resulting complementarity constrained optimization problem.
[19] handle the complementarity constraint by relaxing to an
inequality and solving using an active-set solver. In an anal-
ogous manner, other optimization packages like CasADi and
Pyomo can also be extended for the solution to trajectory op-
timization in presence of complementarity constraints through
a similar reformulation of the complementarity constraints. We
provide an adaptive approach for relaxing the complementarity
constraints. Further, we also provide a novel formulation
for trajectory optimization in the presence of minimum dis-
tance constraints for collision avoidance. To the best of our
knowledge, there is no other existing open-source, Python-
based optimization toolbox that can handle constraints arising
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due to frictional contact interaction and collision avoidance.
Consequently, none of the existing trajectory optimization
techniques and toolboxes could be used for solving frictional
interaction in the presence of additional obstacles.

Our work is also an enabler for developing Nonlinear Model
Predictive Control (NMPC) algorithms. Recent works [30],
[31] have demonstrated the effectiveness of NMPC in solving
collision avoidance problems. PYROBOCOP can be readily
used to implement the MPC or NMPC frameworks using the
existing functionality that we have made available. Indeed, in
MPC and NMPC at each sampling instant, an optimization
problem is solved to compute the control to be injected. PY-
ROBOCOP can be utilized to solve that optimization problem
at each sampling instant.

III. PROBLEM DESCRIPTION

PYROBOCOP solves the dynamic optimization problem

min
x,y,u,p

tf∫
t0

c(x(t), y(t), u(t), p)dt+ ϕ(x(tf ), p) (1a)

s.t. f(ẋ(t), x(t), y(t), u(t), p) = 0, x(t0) = x0 (1b)
([y(t)]σl,1

− νl,1)([y(t)]σl,2
− νl,2) = 0 ∀ l ∈ L (1c)

x ≤ x(t) ≤ x, y ≤ y(t) ≤ y, u ≤ u(t) ≤ u (1d)

where x(t) ∈ Rnx , y(t) ∈ Rny , u(t) ∈ Rnu , ẋ(t) ∈ Rnx ,
p ∈ Rnp are the differential, algebraic, control, time deriva-
tive of differential variables and time-invariant parameters
respectively with the set of real numbers denoted by R. The
notation [z]k for a vector z refers to its k-th component.
The function ϕ : Rnx+np → R represents Mayer-type
objective function [32] term and is not a function of the
entire trajectory. In addition, x, x, y, y, u, u are the lower
and upper bounds on the differential, algebraic and control
variables. The initial condition for the differential variables
is x0. Constraints (1b)-(1c) are the Differential Algebraic
Equations (DAEs) modeling the dynamics of the system with
f : R2nx+ny+nu → Rnx+ny−nc with nc = |L|. Each l ∈ L
defines a pair of indices σl,1, σl,2 ∈ {1, . . . , ny} that specifies
the complementarity constraint between the algebraic variables
[y(t)]σl,1

and [y(t)]σl,2
. In (1c) νl,1, νl,2 correspond to either

the lower or upper bounds on the corresponding algebraic
variables. For example, if they are set respectively to the
lower and upper bounds of corresponding algebraic variables
then (1c) in combination with the bounds (1d) model the
complementarity constraint

0 ≤ [y(t)− y]σl,1
⊥ [y − y(t)]σl,2

≥ 0.

The dynamic optimization problem in (1) is transcripted
to a NonLinear Program (NLP) by orthogonal collocation on
finite elements. The time interval [t0, tf ] is discretized into
Ne finite elements of width hi such that

∑Ne

i=1 hi = tf − t0.
Let ti = t0 +

∑
i′≤i hi′ denote the ending time of the finite

elements i. The differential, algebraic and control variables
in each finite element i ∈ {1, . . . , Ne} are represented as La-
grange polynomials of degree (Nc+1), Nc and Nc respectively
where Nc is the order of the collocation. Given rj ∈ (0, 1] for

Fig. 1: Collocation on finite elements with Nc = 2. Note
that the differential variables (x(t)) is continuous across finite
elements while the algebraic (y(t)) and control (u(t)) variables
are not continuous across the finite elements. The Lagrange
polynomial representing x(t) on finite element i is of degree
Nc and is parameterized by xi0, xi1, xi2. The Lagrange poly-
nomial representing y(t)(u(t)) on finite element i is of degree
(Nc − 1) and is parameterized by yi1, yi2(ui1, ui2).

j = 1, . . . , Nc the differential, algebraic and control variables
in the i-th finite element, i.e. t ∈ [ti−1, ti], are represented as
the following polynomials

x(ti−1 + τhi) =

Nc∑
j=0

xijΩj(τ) (2a)

y(ti−1 + τhi) =

Nc∑
j=1

yijΨj(τ) (2b)

u(ti−1 + τhi) =

Nc∑
j=1

uijΨj(τ) (2c)

with Ωj(τ) =

Nc∏
k=0,̸=j

(τ − rk)

(rj − rk)
, Ψj(τ) =

Nc∏
k=1,̸=j

(τ − rk)

(rj − rk)

where r0 = 0, τ ∈ [0, 1] and xij , yij , uij denote the values of
the differential, algebraic and control variables at time (ti−i+
rjhi). The values of rj are chosen as the roots of Legendre or
shifted Radau polynomials of order Nc. Figure 1 provides a
illustration of the polynomial representation of the differential,
algebraic and control variables over the finite elements.

PYROBOCOP allows the user to employ a collocation
method of order up to Nc = 5. The user has the option of
using either Legendre or shifted Radau roots. In addition, the
package also implements an explicit Euler scheme that can
be useful in specifying discrete nonlinear systems as opposed
DAEs. Such discrete nonlinear systems may arise from learned
machine learning models from data, such as Gaussian Process
(GP) and Neural Network models.

The NLP that results from applying the orthogonal collo-
cation on finite elements to the dynamic optimization prob-
lem (1) is

min

Ne∑
i=1

hic(xij , yij , uij)Ψ̂j + ϕ(xf , p) (3a)

s.t. f(ẋij , xij , yij , uij) = 0, x10 = x0 (3b)
([yij ]σl,1

− νl,1)([yij ]σl,2
− νl,2) = 0∀ l ∈ L (3c)

x ≤ xij ≤ x, y ≤ yij ≤ y, u ≤ uij ≤ u (3d)
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ẋij = hi

Nc∑
k=0

xikΩ
′(τ) (3e)

x(i+1)0 =

Nc∑
j=0

xijΩj(1) (3f)

xf =

Nc∑
j=0

xNejΩj(1) (3g)

where the decision variables in the (3) are xij , ẋij , yij
and uij . The variables xij are indexed over i ∈ Ne(:=
{1, . . . , Ne}) and j ∈ {0} ∪ Nc(:= {1, . . . , Nc}), while the
rest of the variables are indexed over i ∈ Ne, j ∈ Nc.
The constraints (3b)-(3e) are imposed for i ∈ Ne, j ∈ Nc.
The constraint in (3f) imposes the continuity of the differ-
ential variable across the finite elements and is imposed for
i ∈ Ne \ {Ne}. The constraint (3g) defines the state at the
final time. The polynomial representation of x within a finite
element i is used to relate ẋij to xij in (3e) where Ω′(τ) is the
derivative of Ω(τ) w.r.t. τ . The notation Ψ̂j =

∫ 1

0
Ψj(τ)dτ . If

complementarity constraints are present then (3) is an instance
of a Mathematical Program with Complementarity Constraints
(MPCC).

MPCCs are well known to fail the standard Constraint
Qualification (CQ) such as the Mangasarian Fromovitz CQ
(MFCQ), see [33]. Hence, solution of MPCCs has warranted
careful handling of the complementarity constraints when
used in Interior Point Methods for NLP (IPM-NLP) using
relaxation [34], [35] or penalty formulations [36]. In the case
of active set methods, the robust solution of MPCC relies on
special mechanism such as the elastic mode [37].

PYROBOCOP implements two possible relaxation schemes
for complementarity constraints

αl([yij ]σl,1
− νl,1)([yij ]σl,2

− νl,2) ≤ δ ∀ l ∈ L (4a)∑
l∈L

Nc∑
j=1

αl([yij ]σl,1
− νl,1)([yij ]σl,2

− νl,2) ≤ δnc (4b)

where αl = 1 if the involved bounds (νl,1, νl,2) are either
both lower or both upper bounds. If one of the bounds is a
lower bound and other is an upper bound then αl is set to −1.
Note that the choice of αl ensures that the resulting product is
nonnegative whenever (3d) are satisfied. The first approach re-
laxes each complementarity constraint by a positive parameter
δ [34] while the second approach imposes the relaxation on the
summation of all the complementarity constraints over a finite
element i [37]. In addition, we also have flexibility to keep the
δ fixed to a constant parameter through out the optimization
or link this with the barrier parameter in IPM-NLP [34], [35].

When using time-stepping methods in the presence of
complementarity constraints a lower integration error can only
be obtained if the discontinuity is resolved accurately. Time-
stepping methods for complementarity systems [38] do not
employ a discontinuity resolution scheme and hence, the use
of higher order collocation method is not meaningful. The
approach in [39] addresses this problem by enforcing that
the contacts do not change within a finite element. This
allows them to employ higher order collocation. However, the

Fig. 2: Planar pushing in the presence of obstacles. Our
proposed formulation in PYROBOCOP allows us to solve
the collision avoidance with hybrid dynamics simultaneously
using a novel formulation. The figure shows a possible solution
to the given planning scenario. The figure shows a scenario
where there are four possible points of contact for a pusher
denoted as Pi, i = 1, . . . , 4. An approximate friction cone is
also shown at the point of contact.

resulting optimization problem tends to be more challenging
and requires careful initialization for convergence. For the
systems with complementarity constraints (1c), the current
version of the package only allows the choice of Nc = 1 which
corresponds to explicit or implicit Euler scheme. Higher values
for Nc can be employed provided the lengths of the finite
elements hi are allowed to vary [40]. Such an approach renders
the finite dimensional NLP quite difficult to solve unless a
careful initialization of the iterates to guarantee convergence.
We plan to consider extending PYROBOCOP for supporting
collocation of higher orders in a future work.

IV. TRAJECTORY OPTIMIZATION PROBLEMS IN ROBOTICS

In this section, we describe three main instantiations of the
mathematical programs that could be solved via the formula-
tion described in Section III. These are problems with hybrid
dynamics (e.g., systems with contacts using complementarity
and mode enumeration) and problems with non-differentiable
constraints like collision avoidance. It is noted that trajectory
optimization problems for systems with smooth constraints are
a subset of these problems and thus, are naturally solved by
PYROBOCOP.

A. Manipulation Problems with Contacts

Robotic manipulation utilizes contacts to manipulate objects
in its environment. Contacts appear in a lot of tasks in dex-
terous manipulation like pushing [41], [42], [43], prehensile
manipulation [44], etc. A common manipulation primitive
that we come across in robotics is pushing a body on a flat
surface. Complementarity conditions could be used to model
Coulomb friction between the pusher and the slider. Similarly,
complementarity conditions could also appear because the
pusher can exert force on a certain face of the slider (the object
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being pushed) only on contact with that face, and thus the
distance function between the contact surface and the pusher
will be zero depending on which surface the contact happens
(see Figure 2).

For sake of exposition, we will briefly describe a planar
pushing model. For more detailed description of the pushing
model, readers are referred to [45] and [46]. A schematic for
a pusher-slider system is shown in Figure 3. The frictional
interaction between the pusher and slider leads to a linear
complementarity system which we describe next. The pusher
interacts with the slider by exerting forces in the normal and
tangential direction denoted by f−→n , f−→

t
(as shown in Figure 3)

as well as a torque τ about the center of the mass of the
object. Assuming quasi-static interaction, the limit surface [47]
defines an invertible relationship between applied wrench w
and the twist of the slider t. The applied wrench w causes the
object to move in a perpendicular direction to the limit surface
H(w). Consequently, the object twist in body frame is given
by t = ∇H(w), where the applied wrench w = [f−→n , f−→t , τ ]

could be written as w = JT (−→n f−→n +
−→
t f−→

t
). For the contact

configuration shown in Figure 3, the normal and tangential
unit vectors are given by −→n = [1 0]T and

−→
t = [0 1]T .

The Jacobian J is given by J =

[
1 0 −py
0 1 px

]
.

The equation of motion of the pusher-slider system is then
given by

ẋ = f(x,u) =

[
Rt
ṗy

]
(5)

where R is the rotation matrix given by R =cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . Since the wrench applied on the system

depends of the point of contact of pusher and slider, the state
of the system is given by x = [x y θ py]

T and the input
is given by u = [f−→n f−→

t
ṗy]

T . The elements of the input
vector must follow the laws of coulomb friction which can be
expressed as complementarity conditions as follows:

0 ≤ ṗy+ ⊥ (µpf−→n (t)− f−→
t
(t)) ≥ 0

0 ≤ ṗy− ⊥ (µpf−→n (t) + f−→
t
(t)) ≥ 0 (6)

where ṗy = ṗy+ − ṗy− and the µp is the coefficient of
friction between the pusher and the slider. The complemen-
tarity conditions in Eq. (6) mean that both ṗy+ and ṗy− are
non-negative and only one of them is non-zero at any time
instant. Furthermore, ṗy is non-zero only at the boundary of
friction-cone. Consequently, the slipping velocity ṗy cannot be
chosen as an independent control input and is optimized while
satisfying the conditions in Eq. (6).

B. Collision Avoidance

In this section, we present a novel formulation for the
collision avoidance problem of rigid bodies. Path constraints
arise in robotic systems due to their operation in cluttered
environments. The constraints impose that the trajectories of
robots do not collide with other obstacles which may be
static or dynamic. For example, the pushing scenario shown in
Figure 2 shows a frictional interaction scenario in the presence

Fig. 3: A schematic of a planar pusher-slider system. State of
the system is given by [x, y, θ, py]

T assuming that the pusher
only comes in contact with the left edge as shown in the figure.
The world frame and the body frame of reference are denoted
by Fw and Fb respectively.

of obstacles. The goal in the example shown in Figure 2 is to
move the object being pushed between the two obstacles O1

and O2.
We propose a novel formulation for collision avoidance

using complementarity constraints. The distinguishing features
of the formulation are that: (i) it is differentiable and allows
for the use of NLP solvers and (ii) the treatment is identical
for the case of robot-static obstacle and robot-robot collision
avoidance.

We assume that the extent of the robot and obstacles are
modeled as polytopes in 3-D and are specified by the set of
vertices (see Figure 4). Let nO denote the number of objects
(including the robot and the obstacles). The polytope bounding
the objects at time t are denoted by Oi(t) for i = 1, . . . , nO.
We assume that user provides the matrix Vi(x(t), y(t)) ∈
R3×nvi with columns representing the coordinates of the nvi

vertices of the polytope Oi(t). The polytope Oi(t) is

Oi(t) = {q | q = Vi(x(t), y(t))α, 1
T
nvi

α = 1, α ≥ 0} (7)

where 1nvi
∈ Rnvi is a vector of all ones and α ∈ Rnvi

are nonnegative vectors that generate the convex hull of the
vertices. The dependence of the coordinates’s vertices on the
position, orientation of the object is modeled through the
functional dependence of Vi on x(t), y(t). Note that a static
obstacle’s vertex coordinates are independent of x(t), y(t).

Consider two objects i, j ∈ {1, . . . , nO}. The distance
between the objects at time t is

min ∥qi − qj∥2 s.t. qi ∈ Oi(t), qj ∈ Oj(t). (8)

Suppose that the minimum separation required between the
two objects is ϵij > 0. [48] proposed to model the distance
constraint as

∥qi − qj∥ ≥ ϵij where qi, qj solves (8). (9)

The formulation (9) is at best once differentiable when the
minimizer of (8) is unique. The uniqueness requirement cannot
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Fig. 4: Schematic showing the approximations needed to
formulate an MPCC for the collision avoidance problem in PY-
ROBOCOP. Using a polytopic representation for the objects
in the environment allows us to represent first-order stationary
conditions for minimum distance function as complementarity
constraints.

be guaranteed when the objects are modeled as polytopes.
As a consequence, the formulation in [48] cannot be directly
provided to NLP solvers. Our formulation overcomes these
drawbacks. The price to pay is that we need to solve a MPCC
instead of a NLP. A schematic representing the underlying
idea is shown in Figure 4.

The minimization problem (8) can be equivalently posed as

min
αij,i,αij,j

∥Vi(x(t), y(t))αij,i − Vj(x(t), y(t))αij,j∥2 (10a)

s.t. 1Tnvi
αij,i = 1, 1Tnvj

αij,j = 1, αij,i, αij,j ≥ 0 (10b)

where αij,i and αij,j are variables denoting the convex
combinations of the vertices of the polytope bounding the
objects i, j (see Figure 4). At an optimal solution α∗

ij,i, α
∗
ij,j

to (10) the points Vi(x(t), y(t))α
∗
ij,i and Vj(x(t), y(t))α

∗
ij,j

are respectively the points in objects i, j that give the shortest
distance between the objects. The optimization problem in (10)
is a convex problem. Every first order stationary point of (10)
is a minimizer [49]. This suggests imposing (10) through its
first order stationary conditions

Vi(x(t), y(t))
T (Vi(x(t), y(t))αij,i − Vj(x(t), y(t))αij,j)

+ 1nviβi − νi = 0 (11a)

Vj(x(t), y(t))
T (Vj(x(t), y(t))αij,j − Vi(x(t), y(t))αij,i)

+ 1nvj
βj − νj = 0 (11b)

1Tnvi
αij,i = 1, 1Tnvj

αij,j = 1 (11c)

0 ≤ [αij,i]k ⊥ [νi]k ≥ 0 ∀ k = 1, . . . , nvi (11d)
0 ≤ [αij,i]k ⊥ [νi]k ≥ 0 ∀ k = 1, . . . , nvj (11e)

where βi, βj are the multipliers for the equality constraints
in (11c) and νi, νj are the multipliers for the nonnegative
bounds on αij,i, αij,j . The separation requirement can be
modeled as√

∥Vi(x(t), y(t))αij,i − Vj(x(t), y(t))αij,j∥2 + ϵ2

≥
√

ϵ2ij + ϵ2 (12)

The parameter ϵ > 0 is a small constant that is included
to render the constraint (12) differentiable everywhere. The

separation requirements between the nO objects are modeled
through the constraints (11)-(12) for all i < j, with i, j ∈
{1, . . . , nO}.

The variables αij,i, βi, νi, αij,j , βj , νj are in fact trajectories
over time i.e. the variables are different for every time instant
at which the collision avoidance constraint is imposed. The
number of additional variables and constraints introduced for
a pair of objects i, j is (2nvi + 2nvj + 2). On applying the
discretization, the total number of additional variables and con-
straints added to the MPCC is NenO(nO −1)(nvi+nvj +1).
The size of the MPCC scales quadratically in the number of
objects and linearly in the number of vertices defining the ob-
jects. The constraints modeling collision avoidance are sparse.
A sparsity preserving automatic differentiation algorithm and
an NLP solver that can exploit such sparsity are critical to
obtaining computational efficiency. We will touch upon in the
design of our software next.

C. Optimizing Over Mode Sequences

Consider the complementarity constraint in (1c). A feasible
point for (1c) requires either

[y(t)]σl,1
− νl,1 = 0 or [y(t)]σl,2

− νl,2 = 0 (13)

for each l ∈ L. At every instant of time, the system can
choose to enforce either one of the equalities in (13) for
each l ∈ L. This requirement reveals that (1c) embeds a
disjunctive structure. This disjunctive nature of the system
can be fully exposed through the notion of modes. At a
particular time the mode of the system is defined as the set
m = {(l, b(l)) | l ∈ L, b(l) ∈ {1, 2}} denoting which of the
the two inequalities are satisfied as equality for each l ∈ L.
Note that set of of all possible modes M has cardinality 2|L|.
The formulation in (1) allows the system to be in any of
modes in M at each instant of time assuming that the rest
of the constraints can be satisfied. In certain robotic tasks, the
sequence of modes is specified apriori but the time duration
of the mode is not known (for example, consider a table-
top manipulation scenario which can be performed using a
known contact sequence, and thus known mode sequence).
We can utilize PYROBOCOP to optimize the operation of
such systems. We describe the continuous time-formulation
for optimizing over mode sequences. The procedure described
in III can be followed to convert the dynamic optimization
problem to a nonlinear program.

Suppose for simplicity that the system is constrained to
operate in two modes where the first mode is m1 = {(l, 1) | l ∈
L} and the second mode is m2 = {(l, 2) | l ∈ L}. As
mentioned earlier, the time duration for each of the modes
needs to be determined as part of the optimization. Let T1, T2

denote the time duration for the two modes. Note that these are
now parameters for optimization. Further, the duration of time
in each mode is normalized to 1 instead of T1, T2 respectively
and we employ a scaled time t̃ ∈ [0, 2]. The system is in mode
m1 for t̃ ∈ [0, 1] and is in mode m2 for t̃ ∈ [1, 2]. The key
advantage is that switching between modes can be precisely
fixed in the scaled time (t̃ = 1) coordinates which could not be
done in absolute time coordinates. With this scaling of time,
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Fig. 5: Workflow in PYROBOCOP. The dynamics provided by the user to create a MPCC which is then optimized using
IPOPT and the gradients are evaluated using automatic differentiation via ADOL-C.

the variable ẋ is equal to 1
T1

˜̇x for τ ∈ [0, 1] and is equal to
1
T2

˜̇x for τ ∈ [1, 2]. The dynamics of the system (1b) can be
recast as

f

(
1

T1

˜̇x(t̃), y(t̃), u(t̃), p

)
= 0∀ t̃ ∈ [0, 1] (14a)

f

(
1

T2

˜̇x(t̃), y(t̃), u(t̃), p

)
= 0∀ t̃ ∈ (1, 2]. (14b)

Further, the mode sequence is now realized by imposing
time-varying bounds on the algebraic variables in the comple-
mentarity constraints, i.e.

[y(t̃)]σl,1
∈

{
[νl,1, νl,1] for t̃ ∈ [0, 1]

[[y]σl,1
, [y]σl,1

] for t̃ ∈ (1, 2]
(15a)

[y(t̃)]σl,2
∈

{[
[y]σl,2

, [y]σl,2

]
for t̃ ∈ [0, 1]

[νl,2, νl,2] for t̃ ∈ (1, 2]
(15b)

The dynamic optimization problem over the mode sequence
can be written as

min
x,y,u,p

T1

1∫
0

c(x(t̃), y(t̃), u(t̃), p)dt̃+

T2

2∫
1

c(x(t̃), y(t̃), u(t̃), p)dt̃+ ϕ(x(2), p) (16a)

s.t. Eq. (14), x(0) = x0 (16b)
Eq. (15)∀ l ∈ L (16c)

x ≤ x(t̃) ≤ x, y ≤ y(t̃) ≤ y, u ≤ u(t̃) ≤ u (16d)

The discretization can be applied to (16) to obtain a nonlinear
program. Note that this formulation does not have complemen-
tarity constraints.

V. SOFTWARE DESCRIPTION

Figure 5 provides a high-level summary of the flow of
control in PYROBOCOP. A user provided class specifies

the dynamic optimization problem (1). This is also briefly
described in Figure 5. The user needs to provide the equal-
ity constraints for the dynamical system. These constraints
could include the dynamics information for the system, the
bounds on the system state and inputs, and information about
complementarity constraints, if any. Furthermore, a user needs
to provide the objective function, and also has the option to
provide derivative information (note the derivative information
is optional). PYROBOCOP expects the user provided class to
implement the following methods in order to formulate an
MPCC (or NLP) (also shown in Figure 5).

• get_info: Returns information on (1) including nd, na,
nu, |L|, np, Ne, hi.

• bounds: Returns the lower and upper bounds on the
variables x(t), ẋ(t), y(t), u(t) at a time instant t.

• initialcondition: Returns the initial conditions for
the variables x(t0), i.e. values of the differential variables
at initial time instant t0.

• initialpoint: Returns the initial guess for the vari-
ables x(t), ẋ(t), y(t), u(t) at a time instant t. This initial
guess is passed to the NLP solver.

• objective: Implements method to evaluate and return
c(x(t), y(t), u(t), p) at a time instant t.

• constraint: Implements method to evaluate and re-
turn (f(x(t), ẋ(t), y(t), u(t), p) at a time instant t.

We provide a description of optional methods that are expected
if certain specified conditions are satisfied.

• bounds_finaltime: Returns the bounds on the vari-
ables x(tf ) at the final time. This method allows to
specify a final time condition on a subset or all of the
differential variables.

• bounds_params: Returns information on lower and
upper bounds on the parameters p. This method must
be implemented if np > 0.

• initialpoint_params: Returns the initial guess for
the parameters p. This method must be implemented if
np > 0. This initial guess is passed the NLP solver.

• get_complementarity_info: Returns information
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on the complementarity constraints in (1) i.e. L and also
information on whether the lower or upper bound is
involved in the complementarity constraint. This method
must be implemented if L ≠ ∅.

• objective_mayer: Implements method to evaluate
and return ϕ(x(tf ), p).

• get_objects_info: Returns the information on
number of objects nO, flags to indicate if these obstacles
are static or dynamic and the number of vertices nvi for
the polytope bounding the objects.

• get_object_vertices: Implements and returns the
matrix Vi(x(t), y(t)) ∈ R3×nvi representing the vertices
of the polytope bounding the objects. This method is
called only when get_objects_info is implemented
and nO > 0.

Note that the user is not required to implement the collision
avoidance constraints (11)-(12). The user only provides the
matrix Vi(x(t), y(t)) which models the dependence of the
vertices of the bounding polytope on the differential and
algebraic variables in (1). PYROBOCOP defines a new class
that wraps around the user-provided class to provide a dynamic
optimization problem that is of the form in (1). The new
class includes additional variables and constraints modeling
the collision avoidance constraints.

PYROBOCOP is interfaced with ADOL-C [1] to compute
derivatives (see the Backend block in Figure 5). Note that
the ADOL-C can also provide the sparsity pattern of the
constraint jacobian and hessian of the Lagrangian. As men-
tioned earlier, the exploitation of sparsity in computations
of the NLP is critical to solve large problems. To provide
derivatives PYROBOCOP used ADOL-C to set up tapes [1]
for evaluating: (i) the objective (3a), (ii) constraints including
the DAE (3b) and a reformulation of (3c), and (iii) the Hessian
of the Lagrangian of the NLP (3). The set-up of the tape
is done prior to passing control to the NLP solver. The
advantage of this approach is that evaluation of (3a), (3b) are
now C-function calls instead of Python-function calls. This
considerably reduced the time spent in function evaluations
for the NLP solver. As shown in Figure 5, PYROBOCOP uses
IPOPT as the optimization solver.

The user has the ability to specify a number of parameters
that determine the type of collocations method, complemen-
tarity relaxation that PYROBOCOP used for discretization of
the optimal control problem and reformulation for solution by
an optimization solver. We list these parameters and provide a
brief description. For a comprehensive description of the usage
and an example, please refer to the software documentation1

• Number of collocation points (Nc): User specifies the
number of collocation points to be used in each finite
element i ∈ Ne. PYROBOCOP supports up to order 5.

• Roots for the collocation points (rk): User specifies the
roots to be used for determining the locations of the
collocation points in each finite element i ∈ Ne. The
available options are “legendre” and “radau”.

1https://github.com/merlresearch/PyRoboCOP/blob/main/PyRoBoCOP
Software Package.pdf

• Choice of complementarity relaxation and adpative re-
laxations: The user has flexibility in specifying how the
complementarity constraints are solved. The choices are:
(i) (4a) with δ fixed, (ii) (4b) with δ fixed, (iii) (4a) with δ
set equal to the interior point barrier parameter, (iv) (4b)
with δ set equal to the interior point barrier parameter, and
(v) the objective function is appended with complemen-

tarity terms as
∑Ne

i=1

∑
l∈L

Nc∑
j=1

αl([yij ]σl,1
−νl,1)([yij ]σl,2

−

νl,2). The convergence behavior of formulations can be
quite different and we provide these implementations so
the user can choose one that works best for the problem
at hand.

• Choice of user-providing derivatives: The user can choose
to provide the first and second derivatives or select to use
ADOL-C for providing the derivatives automatically.

Codes and instructions for installing and using PYROBO-
COP could be found here https://github.com/merlresearch/
PyRoboCOP.

VI. NUMERICAL RESULTS

In this section, we test PYROBOCOP in several robotic sim-
ulations providing solutions to trajectory optimization prob-
lems including several systems with complementarity con-
straints. In all these examples, we do not provide a feasible
initialization, and the performance of PYROBOCOP would be
enhanced with a better initialization.

To foster reproducibility, the source code for each of
the following examples is available at https://github.com/
merlresearch/PyRoboCOP.

A. Planar Pushing

In this section, we show some results for planar pushing
without any obstacles. The model for planar pushing was
earlier presented in Section IV-A (see Eqs (5) and (6)). The
complementarity constraints are used to represent slipping
or sticking contact between the slider and the pusher. Two
pushing trajectories with different goal configurations from
the same initial state are shown in Figure 6. In both these
examples, the initial pose of the slider is xinit = (0, 0, 0)
and the desired goal pose of the slider is xg = (0, 0.5, π) and
(0, 0, π). The initial point of contact between the pusher and
the slider is py = 0. For all these examples, the maximum
normal force is set to 0.5 N and the coefficient of friction
is µp = 0.3. The corresponding control trajectory shows the
sequence of forces fn and ft used by the slider to obtain
the desired trajectory. The plot of ṗy shows the sequence of
sticking and slipping contact as found by PYROBOCOP and
thus this also decides the contact point between the pusher
and the slider. Note that the pusher maintains sticking contact
with slider whenever ṗy = 0, and slipping contact otherwise.
In both these examples, the objective function is a function
of the target state and the control inputs. It is noted that the
modes for the pushing problem described here is sticking and
slipping contact between the pusher and the slider.

To demonstrate the robustness of our approach to change
in goal configurations, we considered 100 different goal states

8



(a) Pushing Sequence for xg = (0, 0.5, π) (b) Optimal Controls

(c) Pushing sequence for xg = (0, 0, π) (d) Optimal Controls

Fig. 6: Optimal pushing sequences and control inputs obtained by solving the MPCC for two different goal conditions. The
switching sequence between sticking and slipping contact formation could be visualized by the trajectory of ṗy . The pusher
maintains a sticking contact with the slider when ṗy = 0. For clarity, we show very few frames of the pushing sequence in
the second example in plot 6c.

given by xg = (0, 0.5∗i/10, π∗j/10) for i, j = 1, . . . , 10. We
ran the optimization for each of the goal states without any
modification to the initialization of the optimization problem.
Of these 100 problems, IPOPT converged to a solution
in 96 instances. Thus, PYROBOCOP shows the ability to
generate optimal trajectories for a range of goal states. We
must stress that MPCCs are challenging to solve for nonlinear
programming algorithms. As noted, we have attempted to
solve the 100 problems without modifying the initialization. A
more careful initialization that is specific to the instance can
provide convergence in all instances.

B. Car Parking Example with Obstacle Avoidance

To show collision avoidance, we show a parking scenario
which has been previously used to show the effectiveness of
several optimization-based collision-avoidance methods [20].
The dynamics of the car is described in [20]. The state of
the car is defined by a 4-dimensional vector x = [x, y, θ, v]T ,
where x, y is the center of the rear axis, θ is the heading angle
and v is the longitudinal velocity of the car. The initial state of

the car was chosen to be xinit = (1, 4, 0, 0) and the desired
state was chosen to be xg = (2, 2.5, π/2, 0). The resulting
optimal solution from PYROBOCOP is shown in Figure 7. As
described earlier in Section IV-B, the two static obstacles are
specified by providing the vertex set for them.

C. Assembly of Belt Drive Unit

An example of a complex manipulation problem that in-
volves contacts, elastic objects and collision avoidance is pro-
vided by the Belt Drive Unit system. This assembly challenge
was presented as one of the most challenging competition in
the World Robot Summit 20182 [50]. The real world system is
represented in Figure 8 where the objective of the manipulation
problem is to wrap the belt, held by a robotic manipulator
around the two pulleys. The elastic belt is modeled through
a 3D keypoint representation. The hybrid behavior of the
model generated by the contacts between the belt and the
pulleys and the elastic properties of the belt is captured by
the complementarity constraints.

2https://worldrobotsummit.org/en/about/
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Fig. 7: Motion Planning in the presence of obstacles using the
proposed obstacle avoidance method using complementarity
constraints.

Fig. 8: Real Setup of the Belt Drive Unit system.

The full manipulation task has been divided into two
subtasks as shown in Figure 9. The goals of the first and
second subtask are to wrap the belt around the first and
second pulley, respectively. The elastic belt was modeled by

K1

K2
K1

K2P1 P1P2P2

S1 S2

Fig. 9: Visualization of the two subtasks decomposition, S1

and S2. P1 and P2 are two pulleys. The blue lines represent
the belt gripped by a robot at keypoint K1, and K2 is the
lower keypoint. S1: The belt wraps around the first pulley P1

and it is stretched. S2: The belt rotates around the first pulley
and it is assembled onto the second pulley P2.

two points, called keypoints: the upper keypoint K1 and the
lower keypoint K2. K1 is placed where the end-effector grasps
the belt, and K2 is the lowest point when the belt is falling

under gravity because being lifted up by K1. See Figure 9
for a schematic visualization. The dynamics and the physical
constraints were modeled for this reduced representation. In
particular, the complementarity constraints at the two key-
points model the elastic forces to describe when the belt is
stretched or loose and the contact forces to describe when the
belt is in contact with the pulleys. With these constraints we
formulated two trajectory optimization problems one for each
of the two subtasks as a MPCC of the form in (1). More

Fig. 10: The optimal trajectory to assemble the belt is shown.
The orange points represent the trajectory of the upper key-
point, K1, and the blue points represent the lower keypoint,
K2, which together represent the model of the belt. The green
and red points are the starting and the final points, respectively.
The grey lines are virtual connections between K1 and K2

for illustration only. The belt approaches the first pulley (not
shown) then there is a movement downwards to hook the
pulley with the lower keypoint from below during subtask 1.
The lower keypoint is then hooked onto the pulley and will
not move. Then, the higher keypoint, K2, moves toward the
second pulley (not shown) stretching the belt and wraps around
the pulley during subtask 2.

details on the modeling assumptions, the division into the two
subtasks, the exact formulation including the explanation of
the dynamics and complementarity constraints can be found
in our previous paper [51]. In Figure 10 we report successful
trajectories computed by PYROBOCOP to assemble the belt
drive unit combining the optimal trajectories obtained in the
two subtasks. The optimal trajectory was implemented on the
real system with a tracking controller, see [51] for further
details.

D. Planar Pushing With Obstacles

In this section, we show the solution to some planar pushing
scenarios in the presence of obstacles and show that our
proposed method can handle complementarity constraints as
well as obstacle avoidance constraints simultaneously. We
demonstrate our approach on two different pushing scenarios
with same initial condition for the slider but different location
of the obstacles and different goal states for the slider. In
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(a) Pushing sequence for initial position (0, 0, 0) and desired goal
(0.5, 0.5, 0)

(b) Optimal Controls obtained for Example 11a

(c) Pushing sequence for initial position (0, 0, 0) and desired goal
(0.45,−0.1, 3π/2.)

(d) Optimal Controls obtained for Example 11c.

Fig. 11: Planar pushing in the presence of obstacles. Our proposed formulation in PYROBOCOP allows us to solve the collision
avoidance. The trajectory of ṗy shows the slipping contact sequence between the pusher and the slider. Pusher maintains a
sticking contact when ṗy = 0.

particular, the initial state of the slider in both these ex-
amples was set to xinit = (0, 0, 0) and the goal state for
the two conditions was specified as xg = (0.5, 0.5, 0) and
(−0.1,−0.1, 3π/2). We add the obstacles next to the goal state
so that PYROBOCOP has to find completely different solution
compared to the case when there are no obstacles. The initial
point of contact between the pusher and the slider is py = 0.
The optimal pushing sequence to reach the goal states for the
slider are shown in Figures 11a and 11c. To provide more
insight about the solution, we also provide the plot of the
input sequences in Figures 11b and 11d. The slipping contact
sequence between the slider and the pusher is seen in the plot
of ṗy . Sticking contact occurs when ṗy = 0. We show that
the proposed solver can optimize for the desired sequence
of contact modes in order to reach the target state. For the
example in Figure 11a, the objective is a function of target
state and control inputs. For the example in Figure 11c, the
Mayer objective function is used.

E. Optimization with Mode Enumeration

We show our approach of optimization over fixed mode
sequences using the quasi-static pushing model which was
presented in Section IV-A while considering sticking contact
at the 4 faces of the slider (see Figures 2 and 3). In particular,
we use the dynamics model and the problem described in [42]
to show solutions obtained by PYROBOCOP in the case where
the mode sequence is pre-specified. Note that this can be easily
extended to the case where one can search for the mode-
sequence using the approach discussed in [42]. Thus, we do
not discuss mode sequence search here.

The contact model in this case can be obtained from the
model described in Section IV-A, Eq 5 with ṗy = 0. Thus
we only consider sticking contact between the pusher and
the slider. The modes appear based on which face the pusher
contacts with the slider, and thus we have four different modes
that could be used during any interaction (see Figure 2 for the
four possible modes for the system). It is noted that this is dif-
ferent from the modes considered in the previous sections for
pushing, where modes change between sticking and slipping.
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(a) Optimal pushing sequence computed by PYROBOCOP.

(b) Optimal control inputs computed by PYROBOCOP.

Fig. 12: Optimal pushing sequence and control inputs obtained
by optimizing mode sequence.

For a given mode, state-space of the pusher-slider system is
then 3 dimensional while the input is only 2 dimensional. We
use our formulation presented in Section IV-C to solve for
the optimization problem with pre-specified mode sequence.
The optimization process ensures continuity of dynamics and
selection of final time for each mode in a trajectory. The initial
state of the slider is xinit = (0, 0, 0) and the goal state of
the slider is xg = (0, 0, π). The two modes we use for this
example are pushing from the left face followed by pushing
from the top face of the slider. The trajectory obtained by
PYROBOCOP is shown in Figure 12a. The inputs used in
different modes is shown in Figure 12b. The objective function
used is the Mayer objective function, i.e., the minimum-time
problem. The time spent in mode 1 is 12.36 seconds and in
mode 2 is 0.56 seconds.

F. Trajectory Optimization with a Machine Learning Model

We illustrate the usage of PYROBOCOP to control a com-
plex dynamical system such as the circular maze represented

Fig. 13: The circular maze environment for which we show
trajectories using the learned Gaussian process models.

in Figure 13. The goal in this system is to tip and tilt the
maze in order to move a marble from an outer ring into the
inner-most ring. The movement of the maze is actuated by two
servomotors. The forward dynamics of the marble moving in
the maze are learned using Gaussian Process Regression, as
described in our previous work [52]. The model is assumed to
be a black box system and ADOL-C is used to compute the
derivatives. PYROBOCOP computes the control sequence and
the marble’s trajectory to reach one of the gates at each of the
4 rings. Figure 14 shows the computed optimal trajectory of
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Fig. 14: The red circles represent the marble’s optimal trajec-
tory computed by PYROBOCOP for each of the 4 rings of the
maze.

the marble in each of the rings, illustrated on a schematic of
the maze.

The optimal control sequence in each of the ring is shown
in Figure 15.

Remark. The choice of using ADOL-C gives the opportunity
of having any machine learning model written in standard
Python and the computation of the derivatives comes auto-
matic together with the non-zero sparsity structure without
requiring any insight of the model itself. However, this does
not preclude the option that if the derivatives are available
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Fig. 15: Optimal control sequence for the maze system in each
of the 4 rings.

from other toolboxes e.g., pytorch these derivatives can also
be provided to the solver instead than the ones coming from
ADOL-C .

G. System Identification For Complementarity Systems

The system identification problem for systems with comple-
mentarity constraints is a particular case of the optimization
problem (3) and therefore can be solved in PYROBOCOP.
The objective is to identify the physical parameters of a
system given a set of collected data. As a case of study, we
consider the cart-pole with softwalls depicted in Figure 16.
The interactions of the pole with the soft walls is modeled
as complementarity constrains. The dynamical equations and
more details on the system can be found in [53].

We formalize the parameter estimation problem as MPCC
(3) where the cost function is the normalized Root Mean
Square Error (nRMSE) between the observed trajectory and
the trajectory obtained from the estimation procedure. The
parameters we aim to identify are the mass of the pole,
mp, and the spring constants of the two walls k1 and k2.
In PYROBOCOP these parameters are implemented as time
independent parameters p. We validated the method with a
Monte Carlo simulation on 4 different sets of parameters
pi = [mi

p, k
i
1, k

i
2] with i = {1, . . . , 4} sampled independently

from a uniform distribution, each of which was tested with
different levels of independent Gaussian noise added to the
trajectories collected. The trajectories are generated with an
input sequence that is computed as a sum of sinusoids. Each
MC simulation has 50 random realization of the noise. The
results are shown in Figure 17 where on the x-axis we have
the cart-pole system defined with one of the parameter set pi

and the standard deviation of the noise for each system is in
order [0.0001, 0.001, 0.01, 0.05].

We can observe how PYROBOCOP is able to identify both
the parameters in the dynamics equations as well as in the

Fig. 16: A schematic of cartpole with softwall system.

Fig. 17: Distributions of the estimation errors for 4 different
cart-pole with softwalls with increasing noise level.

complementarity constraints with the lower levels of noise.
As seen in the figure, we observe that with higher amounts of
noise, the estimation method starts diverging.

H. Comparison with CasADi and Pyomo
The purpose of this section is to compare PYROBOCOP

with some state-of-the-art open-source software for optimiza-
tion and control, namely CasADi and Pyomo . These two
software define their own syntax to model complex nonlinear
optimization problems. In particular, CasADi uses a specific
symbolic language that allows a fast automatic differentiation
and translation to C-code, while Pyomo offers automatic
differentation via the AMPL Solver Library. In PYROBOCOP
we provide to the user both an interface to specify the
model and constraints derivatives manually and an automatic
differentiation capability by using ADOL-C which computes
the derivatives in C-code and provides access to the sparsity
pattern which can be used during optimization. Furthermore,
neither CasADi nor Pyomo offer specific constructors to
handle complementarity constraints which is one of the major
focuses in PYROBOCOP.

We compared the three packages on three different bench-
mark dynamical systems with increasing state dimension: an
inverted pendulum, an acrobot and a quadrotor. The purpose
is to see if PYROBOCOP converges to the same solutions
in comparable time. For fair comparison the models, the
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constraints and the initial conditions are identical in all three
software and we used IPOPT as the solver in all the exper-
iments. We solve the OCP for these systems 5 times using
each software and record the mean and standard deviation for
solution time. Results are shown in Table I.
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Fig. 18: Optimal trajectory computed by the three optimization
packages.

In the table we can first notice that in each experiment
the three software converge to a solution with a similar cost
function implying convergence to similar optimal solution. An
example of this is shown for the acrobot system in Figure 18,
where both the optimal state trajectory and the optimal control
sequence computed by the three software are plotted, and
there is an almost exact overlap. Similar plots have been
obtained for the other systems but are not shown for sake of
brevity. Second, we can notice that the problem size, which
is the total number of variables in the optimization problem
is higher in PYROBOCOP w.r.t. the other software. We have
chosen a formulation of the transcription that depends only
on the number of collocation points nc and independent of
the choice of the roots. With the choice of legendre roots
in the collocation we observe that the number of variables in
Pyomo is larger than that in PYROBOCOP which remains
invariant to choice of roots. The analysis of the difference
is orthogonal to the main point of this section. It can also be
observed that the number of iterations are different in the three
optimization packages. This can be attributed to the difference
in the problem size for the underlying NLP, which can also
be seen in Table I.

We can conclude that all the three software packages are
more or less equivalent in solving the considered systems.
Based on our experiments, it seems that CasADi tends to
outperform the other two in terms of computational time. The
main advantages of PYROBOCOP over the other packages
are in offering convenient in-built methods to (i) model com-
plementarity constraints and (ii) automatically formulate the
collision avoidance constraints for all pairs of user-specified
objects using the novel obstacle avoidance formulation.

VII. CONCLUDING REMARKS

This paper presented PYROBOCOP which is a Python-
based optimization package for model-based control of robotic
systems. This package has been developed with the motivation
to allow Python-based control of contact-rich systems oper-
ating in constrained environments in the presence of other
obstacles. We showed that PYROBOCOP can be used to solve
trajectory optimization problems of a number of dynamical
systems in different configurations such as with contact and
collision avoidance constraints. We demonstrated two practical
scenarios of planar pushing and belt-drive unit assembly where
one needs to consider the collision avoidance as well as contact
constraints. A description of the functions that a potential
user needs to implement in order to solve their control or
optimization problem has been provided. The software has
been benchmarked against two other SOTA optimization pack-
ages to verify the solution quality and timing obtained by
PYROBOCOP.

A. Strengths of PYROBOCOP

PYROBOCOP is a model-based trajectory optimization,
control and estimation package for systems with non-linear
and non-smooth dynamics. In particular, PYROBOCOP can
handle systems with contact as well as collision constraints
with a novel complementarity formulation. PYROBOCOP also
allows automatic differentiation by using ADOL-C. To the
best of our knowledge, PYROBOCOP is the only Python-
based, open-source software that allows handling of contact &
collision constraints and automatic differentiation for control
and optimization. Unlike most of the competing optimization
solvers which are available in Python, PYROBOCOP allows
users to provide dynamics information in Python through a
simple script using Numpy data structures [54]. We show
that we achieve similar computation times as achieved by
other SOTA optimization toolboxes like CasADi and Pyomo.
Note that these solvers do not provide adaptive relaxations
for complementarity constraints as in PYROBOCOP. Another
advantage is that PYROBOCOP allows interfacing to MPCC
solver using standard Numpy data structures instead of using
any special-purpose data structures designed for PYROBO-
COP. This makes PYROBOCOP easier to use when compared
to other packages like CasADi and Pyomo. PYROBOCOP
also simplifies solution of collision avoidance problems by
requiring users to only provide the bounding polytope for
each obstacle. A potential user does not need to specify the
constraints arising from collision avoidance – this is handled
by PYROBOCOP internally. This also reduces the risk of
modeling errors made by users when defining these constraints
which can be very hard to track down.

B. Limitations of PYROBOCOP and Future Work

We would also like to highlight some of the limitations
of PYROBOCOP. Since PYROBOCOP uses IPOPT as the
solver for the resulting MPCC problems, it borrows limitations
of IPOPT. In particular, one of the main limitations is that
PYROBOCOP can find only local solutions. Furthermore,
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System State IPOPT Func Eval Problem Cost Iterations
Dim Time Time size Func

Pendulum PYROBOCOP 2 0.112± 0.003 0.101 ± 0.003 1048 19.89 29
Pendulum CasADi 2 0.058 ± 0.001 0.016 ± 0.0008 750 19.89 21
Pendulum Pyomo 2 0.146 ± 0.008 0.008 ± 0.0008 755 20.13 31

Acrobot PYROBOCOP 4 2.282 ± 0.05 1.85 ± 0.019 1296 62.724 349
Acrobot CasADi 4 1.175 ±0.023 0.706 ± 0.008 900 62.52 355
Acrobot Pyomo 4 2.374 ± 0.039 0.652 ± 0.021 909 62.76 265

Quadrotor PYROBOCOP 12 0.871 ± 0.016 0.786 ± 0.013 7988 156.01 21
Quadrotor CasADi 12 0.353 ± 0.002 0.050 ± 0.001 5600 156.01 9
Quadrotor Pyomo 12 1.190 ± 0.038 0.057 ± 0.001 5628 155.64 26

TABLE I: Comparison between PYROBOCOP, CasADi and Pyomo on three non-linear systems of different dimensions. In
all cases PYROBOCOP achieves comparable performance with both CasADi and Pyomo.

it might require good initialization to find even the local
solutions. Furthermore, it can not detect infeasibility of the
underlying optimization problem provided by the user. An-
other possible limitation is given by interfacing PYROBOCOP
with ADOL-C. While, as described above, this is one of the
strengths of PYROBOCOP it also carries some limitations as
we still have to rely on an external code to do the automatic
differentiation while other software like CasADi have built-
in source code transformation into C and can handle the
differentiation internally with faster performance. In the future
we will explore other open source options.

For collision avoidance problems, providing an initial iterate
that is collision-free and feasible with respect to the dynamics
is important for improved convergence of the optimization
solver. Such a trajectory can be obtained using RRT [55] and
integration of such techniques with PYROBOCOP will greatly
enhance the performance on such problems [56]. We propose
to address this in a future work.

While we have shown that PYROBOCOP can handle a
broad range of robotic control problems, the current software
has been developed under the premise that the dynamics is
provided to PYROBOCOP as DAEs, which requires expert
knowledge for system specification. We identify this is a
limitation as this restricts the developmental usage of PY-
ROBOCOP. In the future, we would work towards integrating
PYROBOCOP with a physics engine for easy specification
of dynamics to provide solution to complex manipulation
tasks with real-time feedback [57], [58], [59]. We will also
extend the MPCC formulation presented in the current paper
to allow finite horizon model predictive control (MPC) for
hybrid systems in future research to allow real-time control of
contact-rich systems [60].

We are also interested in extending the functionality of
PYROBOCOP to specify uncertain parameters in contact-rich
systems. Our recent work [59], [61] has already demonstrated
that the framework in PYROBOCOP is conducive to handling
such uncertainty. In these papers, we had to explicitly resolve
the uncertainty by sampling the uncertain parameters. We are
interested in providing users with a convenient method for
specifying the the uncertainty in the systems so that the sam-
pling of the uncertain parameters and the resulting formulation
can be handled by PYROBOCOP and relieve the user of the
burden of having to perform the sampling, reformulation of
the problem. The sampling and reformulation will happen in
a manner akin to the transcription of the continuous-time DAE

to a finite-dimensional problem by discretization.
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