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Abstract
For automated driving, decision making determines the next maneuver that the vehicle should
execute, for which the motion planner will generate a trajectory. The feasibility of the maneu-
ver depends on the current conditions of the vehicle, the route, and the traffic. Thus, decision
making must determine which maneuvers are feasible with relatively simple calculations, so
that the motion planner, which performs more time-consuming calculations, can succeed in
computing the trajectories that achieve the corresponding goals. We propose an approach to
solve the decision making problem based on ideas from the reference governor. Our method
constructs backward reachable sets for goals and collision areas for maneuvers that are gener-
ated by dynamical models parametrized by target values of vehicle motion quantities. Online,
the reference governor determines the existence of parameter values that provide member-
ship of the state-parameter vector in a goal reachable set, and non-membership in all collision
reachable sets. The resulting online computations are simple and fast, allowing solution of the
decision making process at higher rate and with minimal resources as required for standard
automotive computing platforms. Furthermore, the method can provide reference maneuvers
to guide the motion planning in determining the actual trajectory, can include robustness
metrics, and is extended to handle uncertainty in the motion of the obstacles to be avoided.
We show simulation results in scenarios involving lane change, braking at intersections, and
obstacles with changing velocity.
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Abstract For automated driving, decision making determines the next maneuver that
the vehicle should execute, for which the motion planner will generate a trajectory.
The feasibility of the maneuver depends on the current conditions of the vehicle,
the route, and the traffic. Thus, decision making must determine which maneuvers
are feasible with relatively simple calculations, so that the motion planner, which
performs more time-consuming calculations, can succeed in computing the trajec-
tories that achieve the corresponding goals. We propose an approach to solve the
decision making problem based on ideas from the reference governor. Our method
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are generated by dynamical models parametrized by target values of vehicle motion
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set, and non-membership in all collision reachable sets. The resulting online com-
putations are simple and fast, allowing solution of the decision making process at
higher rate and with minimal resources as required for standard automotive comput-
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Fig. 1 Multi-layer architecture of the automated driving system: current (green) and next (red)
maneuver/mode in decision making, goal (red) and trajectory (blue) in motion planning, and
control signals (blue) in vehicle control.

1 Introduction

In order to achieve full autonomy [23], automated driving systems must operate a ve-
hicle during long travels in changing scenarios, environments and traffic conditions.
An effective way to achieve this is to decompose the planning and control for the
entire travel into several smaller sub-problems such that, if all are solved, the vehicle
achieves its final destination, while satisfying all the traffic rules and retaining safety.

Thus, the automated driving system can be implemented as a multi-layer control
architecture, where the different layers have different reaction times, decision hori-
zons and computation budgets. Figure 1 shows a prototypical example of this control
architecture. At the lower level, the vehicle control (VC) is responsible for controlling
the vehicle through the different actuation mechanisms, i.e., steering, brakes, throt-
tle, to track given trajectories. Such trajectories are computed by the motion planner
(MP) in the middle layer. Due to the length of the travel and the rapidly changing
traffic conditions, the motion planner cannot generate a trajectory from the initial
point of travel to the final destination, but rather generates only a short segment of
the travel. To enable that, the route is commonly divided into segments, as seen in car
navigation systems, and within each segment the decision making (DM) in the upper
layer provides to the motion planner one or more maneuvers, sometimes also called
driving modes, and their associated goals for the current segment, i.e., the possible
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Fig. 2 The ego vehicle (blue) may execute several maneuvers: lane keeping, lane changing, stop-
ping. However, not all may be feasible due to the other vehicles (red).

next waypoints, for which the trajectory must be computed. If the architecture in
Figure 1 is properly designed, the sequence of motion plans will steer the vehicle
from its initial point to the desired destination while correctly behaving in road and
traffic, and the vehicle will be controlled to precisely track them.

For determining the maneuvers and their goals, decision making must consider
the current conditions of the vehicle, the traffic and the road rules, because certain
maneuvers may or may not be feasible, depending on 0 those. Fig. 2 shows a scenario
where the ego vehicle is operating in a travel direction with two lanes, close to other
vehicles, and approaching a stop line. Several maneuvers are allowed, e.g., continue
following the lane, change lane, or decelerate to a stop, but some may be infeasible,
e.g., changing lane may be impossible due to the positions and velocities of other
vehicles, and it may be too early to begin braking to stop.

Thus, the decision making needs to determine not just a maneuver, but a feasible
maneuver, i.e., such that the motion planner will be able to compute a trajectory
from current conditions to goal conditions, while satisfying constraints imposed by
ego vehicle motion, obstacle avoidance, and road rules satisfaction. If the maneuver
provided by the decision maker was not achievable according to motion, traffic and
rules, the motion planner would waste computations trying to achieve an impossible
goal.

The brute force approach of computing one trajectory for each maneuver, discard-
ing maneuvers where the planner fails, and choosing the maneuver by comparing
the trajectories successfully computed, wastes significant amount of computational
resources, which are limited in automotive platforms [11], and is actually feasible
only for simple scenarios, primarily related to highway driving. Instead, driving in
city-like scenarios, where multiple maneuvers are possible, and under realistic con-
straints imposed by automotive embedded platforms, usually requires more refined
approaches.

Several methods for decision making in automated driving have been proposed
based on rules, optimization, or machine learning [10, 13, 14, 17, 18, 25, 27], see
also the references therein. However, these methods often do not provide both, the
guarantee of a feasible motion plan for the selected maneuver, and a computationally-
light implementation, especially under uncertainty.
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Recently, [1, 2] proposed using set reachability in decision making for automated
driving, where a maneuver was deemed achievable if (𝑖) a goal region defined in the
vehicle state space is reachable within a given finite horizon; and, (𝑖𝑖) the vehicle
avoids collisions and violating traffic rules. In [2], achievability of the next maneuver
and avoidance of collisions and traffic rules violation were obtained by backward
reachable sets [9] and capture sets [26], respectively. The approach was extended
in [1] to determine all feasible maneuvers with their corresponding goals, and then
a motion planner determined the best maneuver, among the feasible ones, and the
corresponding best trajectory.

While successfully validated in experiments [2], such a method still shows some
limitations. Specifically, it verifies goal achievability and collision avoidance sequen-
tially, by separately testing candidate trajectories for safety, by performing collision
checking on the points of the trajectories, and for liveness, by ensuring that the
initial state remains in the next goal reachable set or in a collision avoidance in-
variant. The latter amounts to checking set membership conditions for all the points
of several candidate trajectories, which may be computationally expensive, and re-
quires pre-computing candidate trajectories for the different maneuvers that may be
executed.

In this paper, we propose a method to overcome such limitations. The proposed
method uses dynamical systems with parameters that are target values for certain mo-
tion quantities and that remain constant throughout the maneuver. Online, a reference
governor-like algorithm checks if there exist target values for which the dynamical
system trajectory reaches the goal within a given finite horizon, while avoiding colli-
sions with other vehicles. Such a check is performed on the reachable sets of the goal
and the obstacles, i.e., only the initial vehicle state and constant parameter values
are checked. Thus, we do not need to check for collisions and achievement of goal
for all points of the trajectory of the maneuver, which saves a significant amount of
computation. In addition, collision avoidance and goal achievability are integrated
and use similar computations, which further simplifies the implementation of the
method. Finally, the method enables simple metrics of robustness, supports model-
ing of uncertainty in the behavior of other vehicles, as well as possibly in the ego
vehicle’s motion, and provide with minimal additional computations a reference to
the motion planner that may guide in generating the actual vehicle trajectory.

Among additional prior works related to this paper, set-based methods have been
investigated for several uses in automated driving, such as motion planning, safety
verification, and robust control, see, e.g., [3, 5, 15, 19, 24], and references therein.
A related use of reachable sets appeared in [21], which determined when to modify
a command signal for collision avoidance, while here we consider goal reachability
for maneuver feasibility determination.

This paper is organized as follows. In Section 2 we introduce the maneuver, goal,
and obstacle models, in Section 3 we describe the reachable set construction and the
conditions for maneuver feasibility, and in Section 4 we discuss the implementation of
the decision making as a reference governor, including some computational aspects,
maneuver reference selection, and extension to robustness with respect to other
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vehicle motion. Section 5 reports simulation scenarios for both known and uncertain
behavior of the obstacles, and Section 6 reports the conclusions.

Notation: Z and Z+ are the sets of integers, and positive integers, we denote
intervals as Z[𝑎,𝑏) = {𝑧 ∈ Z : 𝑎 ≤ 𝑧 < 𝑏}, and similarly for real numbers R. We
denote the Minkowski set sum by ⊕, and the logical or by ∨. For vectors 𝑥, 𝑦, [𝑥]𝑖
denotes the 𝑖𝑡ℎ component, (𝑥, 𝑦) = [𝑥′ 𝑦′]′ the stacking, and inequalities between
them are intended componentwise. For a discrete-time signal 𝑥 ∈ R𝑛, 𝑥𝑡 is the value
at sampling instant, 𝑥𝑘 |𝑡 denotes the predicted value 𝑘 steps ahead of 𝑡, based on data
at 𝑡, and 𝑥0 |𝑡 = 𝑥𝑡 .

2 Maneuvers, Models, and Problem Definition

First we introduce models for ego vehicle, obstacle, and maneuver goals. Since the
decision making (DM) method sits at the top layer in the architecture in Figure 1,
it involves decisions over long horizons with relatively low update rates. As a con-
sequence, simplified models are sufficient, since the actual trajectory and vehicle
motion will be refined by the motion planner and the vehicle controller that use
more detailed models, at higher rates, and over shorter horizons. For more details on
the overall automated driving architecture and the integration of the different layers
see [1, 2, 4, 6].

The DM determines the maneuvers for the motion planner according to a motion
model of the ego vehicle with a vector of parameters, where a maneuver is completed
successfully if the ego vehicle state enters a given goal set. Hence, the set M of
maneuvers is composed of triples

M =

{
𝑀 (𝑖)

}𝑚
𝑖=1

=

{(
Σ (𝑖) (𝑟 (𝑖) ), Γ (𝑖)

)}
, (1)

where 𝑀 (𝑖) is the 𝑖𝑡ℎ maneuver, Σ (𝑖) (𝑟 (𝑖) ) is the motion model with parameter vector
𝑟 (𝑖) , Γ (𝑖) is the goal for the 𝑖𝑡ℎ maneuver, and 𝑚 is the total number of maneuvers.
Some examples of maneuvers are change lane, follow lane, stop at line, follow traffic,
cross intersection, turn left/right, merge in/out. The goal Γ (𝑖) is defined by the set of
couples

G =

{
Γ (𝑖)

}𝑚
𝑖=1

=

{(
P̃ (𝑖)
𝑔 , Σ

(𝑖)
𝑔

)}𝑚
𝑖=1
, (2)

where P̃𝑔 is the goal region, the region of space where the goal is achieved, and Σ
(𝑖)
𝑔

is the motion model of the goal, which allows for modeling moving goal regions. The
obstacles, which may be other vehicles or actors on the road, are similarly defined
by the set of couples

Q =

{
𝑂 (ℎ)

}𝑛𝑜
ℎ=1

=

{(
P̃ (ℎ)
𝑜 , Σ

(ℎ)
𝑜

)}𝑛𝑜
ℎ=1

, (3)
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where ℎ ∈ Z[1,𝑛𝑜 ] , 𝑛𝑜 is the number of obstacles, P̃ (ℎ)
𝑜 is the exclusion zone of the

obstacle, i.e., the region where a collision between ego vehicle and obstacle occurs,
and Σ

(ℎ)
𝑜 is the motion model for the exclusion region of the obstacle, which enables

modeling moving obstacles.

2.1 Motion Models for Maneuvers of Ego Vehicle

The ego vehicle maneuver models Σ (𝑖) (𝑟 (𝑖) ), 𝑖 ∈ Z[1,𝑚] , describe the vehicle motion
state 𝑥 (𝑖) when maneuver 𝑀 (𝑖) is executed with parameter vector value 𝑟 (𝑖) ,

¤𝑥 (𝑖) = 𝑓 (𝑖) (𝑥 (𝑖) , 𝑟 (𝑖) ), (4)

which includes both the vehicle response and the action of the controllers ensuring
that the vehicle tracks the maneuver.

The maneuver models (4) will be different for different maneuvers, including
possibly the state dimensions. However, all are expected to favor simplicity even if
some approximation may be necessary, as they need to capture only the most relevant
vehicle behaviors while allowing to assess the maneuver over long horizons with
simple and fast computations. Since we consider normal driving, i.e., comfortable
and non-aggressive, we use linear models in (4) for assessing feasibility of the
maneuvers. The actual maneuvers will be generated and executed by the MP and VC
using higher precision models, more degrees of freedom, and higher update rates.

For driving maneuvers such as lane following and changing lane, the ego vehicle
motion model includes the longitudinal and lateral motion. While such motions are
physically coupled [7], under normal driving conditions the coupling is mild and
a controller will be able to execute maneuvers obtained from decoupled longitudi-
nal and lateral motions. The longitudinal motion can be formulated as for cruise
control [22] by the linear model

¤𝑝𝑥 = 𝑣𝑥 , (5a)

¤𝑣𝑥 = − 1
𝜏𝑣
𝑣𝑥 +

1
𝜏𝑣
𝑟𝑣, (5b)

where 𝑝𝑥 , 𝑣𝑥 are longitudinal position and velocity, 𝑟𝑣 is the velocity command,
and 𝜏𝑣 > 0 is the time constant for tracking velocity commands. Model (5) can be
represented in standard form as

¤𝑥𝑥 =
[
¤𝑝𝑥 ¤𝑣𝑥

] ′
= 𝐴𝑥𝑥𝑥 + 𝐵𝑥𝑟𝑣. (6)

A constant value of the velocity command, i.e., reference velocity, 𝑟𝑣 can be used as
parameter in models (5), (6). The lateral motion of the ego vehicle can be built from
a kinematic or dynamic lateral motion model. However, since we are considering
controlled maneuvers, the motion during the maneuver can also be the output of a
dynamical system describing the response of the lateral position due to a commanded
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lateral position. As briefly discussed in [12], a 2𝑛𝑑/3𝑟𝑑 order system is suitable to
represent most driver-executed lane changes, so here we use the 3𝑟𝑑 order transfer
function from lateral position command to lateral position,

𝐺𝑦 (𝑠) =
1(

𝑠2

𝜔2
𝑦
+ 2 𝜁𝑦

𝜔𝑦
𝑠 + 1

)
· (𝑠𝜏𝑦 + 1)

, (7)

where 𝜔𝑦 , 𝜁𝑦 are the second order system natural frequency and damping, and 𝜏𝑦 is
a time constant.

The values of 𝜔𝑦 , 𝜁𝑦 , 𝜏𝑦 determine the lateral trajectories and can be selected
based on time specifications such as overshoot, rise time, settling time, and actuation
responsiveness, which in turn determine the aggressiveness of the lateral motion of
the vehicle, and may change for different maneuvers. Sometimes, the lateral motion
exhibits behavior well represented by a non-minimum phase zero, which can also be
included in (7). System (7) can be realized in state space form as the linear system

¤𝑥𝑦 =
[
¤𝑝𝑦 ¤𝑣𝑦 ¤𝑎𝑦

] ′
= 𝐴𝑦𝑥𝑦 + 𝐵𝑦𝑟𝑦 . (8)

A constant value of the lateral position command, i.e., reference lateral position, 𝑟𝑦 ,
can be used as parameter in models (7), (8).

For maneuvers with significant braking, such as stopping at an intersection or in
a queue, the lateral position with respect to the centerlane is fixed, ¤𝑝𝑦 = 0, and we
represent the longitudinal motion by the double integrator model

¤𝑝𝑥 = 𝑣𝑥 , (9a)
¤𝑣𝑥 = −𝑟𝑎, (9b)

which is suitably re-written as

¤𝑥𝑏 =
[
¤𝑝𝑦 ¤𝑣𝑦

] ′
= 𝐴𝑏𝑥𝑏 + 𝐵𝑏𝑟𝑎, (10)

where 𝑟𝑎 > 0 is the commanded deceleration due to braking. In (10), we ignored the
actuation dynamics, which are much faster than the longitudinal dynamics, but they
can be easily included, e.g., as a first order lag from commanded to actual decelera-
tion. The commanded deceleration 𝑟𝑎 can be used as parameter in model (10).

2.2 Maneuver Constraints

In certain cases, imposing an admissible range of parameter vectors 𝑟 ∈ R (𝑖) may
be sufficient to encode maneuvers that satisfy constraints on vehicle motion and
dynamics states. However, in some cases the ego vehicle models (6), (8), (10)
require imposing explicit constraints on the ego vehicle states, which we model as

𝑥𝑦 ∈ X𝑦 , 𝑥𝑥 ∈ X𝑥 , 𝑥𝑏 ∈ X𝑏, (11)
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where X𝑦 , X𝑥 , X𝑏 are suitable polyhedra representing the regions where the con-
straints are satisfied. □

2.3 Models for Maneuver Goals and Obstacles

Goals Γ (𝑖) , 𝑖 ∈ Z[1,𝑚] and obstacles O (ℎ) , ℎ ∈ Z[1,𝑛𝑜 ] are represented by sets that
evolve over time according a function ¤𝑓𝑠 , i.e., with a little abuse of notation,

¤S = 𝑓𝑠 (S, 𝑑), (12)

where 𝑓𝑠 models an instantaneous change in the setS, 𝑑 ∈ D is a vector of exogenous
disturbances for the obstacle and D is the obstacle disturbance set.

For computational tractability, we model a goal region by a constant polyhedron,
the goal zone, with a goal center defined by (𝑔𝑥 , 𝑔𝑦), the longitudinal and lateral
positions with respect to the (curvilinear) lane coordinates,

P̃𝑔 = {𝑝 : 𝐻𝑔 [𝑝𝑥−𝑔𝑥 𝑝𝑦−𝑔𝑦]′ ≤ 𝐾𝑔} = [𝑔𝑥 𝑔𝑦]′ ⊕ P̄𝑔 .

Then, a moving goal region is modeled by including a motion model for the goal
center Σ𝑔. This allows for representing goals that change over time, such as in certain
lane change maneuvers or in following behaviors. For simplicity, we use a goal center
motion model with constant longitudinal velocity and constant lateral position with
respect to the road centerlane,

¤𝑔𝑥 = 𝑣𝑔 (13a)
¤𝑣𝑔 = 0 (13b)
¤𝑔𝑦 = 0, (13c)

where 𝑣𝑔 is the goal longitudinal velocity.
The obstacles are modeled similar to the goals by a fixed polyhedron, the collision

region, with an obstacle center defined by (𝑜𝑥 , 𝑜𝑦), the longitudinal and lateral
positions with respect to the (curvilinear) lane coordinates, that define the exclusion
region of the obstacles, i.e., where a collision occurs,

P̃𝑜 = {𝑝 : 𝐻𝑜 [𝑝𝑥−𝑜𝑥 𝑝𝑦−𝑜𝑦]′ ≤ 𝐾𝑔} = [𝑜𝑥 𝑜𝑦]′ ⊕ P̄𝑜 .

As obstacles may be moving, we include a motion model for the obstacle center to
predict the obstacle future positions. We use the vector 𝑑𝑣 ∈ D to represent changes
in the obstacle behavior, e.g., changes in velocity or in lateral position. In this paper
we consider only changes in longitudinal velocity,
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¤𝑜𝑥 = 𝑣𝑜 (14a)

¤𝑣𝑜 = − 1
𝜏𝑣
𝑣𝑜 +

1
𝜏𝑣
𝑑𝑣 (14b)

¤𝑜𝑦 = 0, (14c)

where the lateral position with respect to the centerline is constant and the velocity
tracks a target 𝑑𝑣 with time constant 𝜏𝑣. Such a time constant is assumed equal for all
vehicle as it represents the average vehicle behavior in tracking a changing velocity
setpoint. On the other hand, using the same time constant in (5) and (14) allows for
some simplifications, but it is not necessary.

Remark 1 The goal and obstacle regions account for the physical dimension of both
the goal/obstacle and the ego vehicle. Hence, a collision is avoided when the vehicle
“point-mass” position is outside of the obstacle exclusion zone, and a goal is achieved
when it is in the goal zone.

Remark 2 It is fairly standard not to model changes in the obstacle lateral position,
i.e., the obstacle remains in the same lane, motivating the choice for (14c). However,
it is straightforward to include such changes in (14) by adding a lateral position
model tracking a lateral position setpoint 𝑑𝑦 , either similar to (7) or even as a first
order model. Then, the disturbance vector that determines the possible motions of
the obstacles becomes 𝑑 = [𝑑𝑣, 𝑑𝑦]′ ∈ D.

2.4 Problem Definition: Decision Making for Automated Driving

Next, we formalize the problem that is solved in this paper. To this end, we first state
an assumption related to the information available to the decision making system.

Assumption 1. The ego vehicle has enough information from sensors to initialize
the maneuver models (6), (8), (10) and the obstacle model (14) with 𝑑𝑣 = 𝑣𝑜. □

Assumption 1 is reasonable for models (6), (8), (10), (14), as it requires having
information about quantities that are commonly measured by conventional vehicle
on-board sensors, such as radars, cameras, and lidars. Assumption 1 provides a
further motivation for keeping the motion models as simple as possible. According
to Assumption 1, we are able to initialize (14) by 𝑑𝑣 = 𝑣𝑜, but we may use also
different values. The actual obstacle disturbance 𝑑𝑣 ∈ D does not need to be known,
although the obstacle disturbance set D is known. The goal model (13) is fully
known since it describes the ego vehicle target.

We now formalize the problem tackled in this paper.

Problem 1 Let a sampling period 𝑇𝑠 and a maneuver horizon 𝑁 ∈ Z+ be given. At
any discrete time 𝑡, given:

• a set of obstacles {𝑂 (ℎ) (𝑡)}𝑛𝑜
ℎ=1 with motion models (14) for 𝑑𝑣 ∈ D, where 𝑑𝑣 is

not known and D is known;
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• a subset of maneuvers M(𝑡) ⊆ M, where for each 𝑀 (𝑖) ∈ M(𝑡):

– the motion model Σ (𝑖) is constructed from a combination of (6), (8), (10) with
parameter vector 𝑟 (𝑖) ∈ R (𝑖) , R (𝑖) being its admissible set;

– the goal is Γ (𝑖) (𝑡) with motion model (13);

determine for which maneuvers 𝑀 (𝑖) ∈ M(𝑡) there exist 𝑟 (𝑖) ∈ R (𝑖) such that the
goal Γ (𝑖) (𝑡) is reached within 𝑁 sampling periods, while satisfying the constraints on
the ego vehicle (11) and while the ego vehicle does not enter any obstacle exclusion
zone, i.e., 𝑝𝑘 |𝑡 ∈ P̃ (𝑖)

𝑔 for some 𝑘 ∈ Z[0,𝑁 ] , and 𝑝𝑘 |𝑡 ∉ P̃ (ℎ)
𝑜 , for all ℎ ∈ Z[1,𝑛𝑜 ] ,

𝑘 ∈ Z[0,𝑁 ] . □

As discussed in Section 2.1, in Problem 1 the parameter vector is a vector of
constant commands/setpoints that must be chosen to satisfy safety, i.e., collision
avoidance, and liveness, i.e., goal achievement, constraints. This suggests that refer-
ence governor [16] may provide a suitable method for solving Problem 1.

3 Set Construction for Automated Driving Decision Making

In order to solve Problem 1 using concepts from set-based methods [8] and reference
governor [16], we recall some basic definitions and results, see [8, 9].

Definition 1 (Backward reachable set) Given set S and system 𝑥𝑡+1 = 𝑓 (𝑥𝑡 ), the
(1-step) backward reachable set is the set of states that are inS after evolving through
𝑓 for one step, i.e., Pre 𝑓 (S) = {𝑥 : 𝑓 (𝑥) ∈ S}. The 𝑘-steps backward reachable set
is recursively defined as Pre𝑘

𝑓
(S) = Pre 𝑓 (Pre𝑘−1

𝑓
(S)), Pre0

𝑓
(S) = S. □

When S in Definition 1 is a polyhedron and 𝑓 is linear, the backward reachable
sets enjoy some properties that allow for simplifying computations.

Result 1 (Backward reachable set for linear system). Consider a linear system
𝑓 (𝑥𝑡 ) = 𝐴𝑥𝑡 and a polyhedron S = {𝑥 : 𝐻0𝑥 ≤ 𝐾0}. The 1-step backward reachable
set is the polyhedron, Pre 𝑓 (S) = {𝑥 : 𝐻1𝑥 ≤ 𝐾1}, where 𝐻1 = 𝐻0𝐴, 𝐾1 = 𝐾0. □

The computation of backward reachable sets for polyhedral sets and (discrete-
time) autonomous linear systems involves only algebraic operations, possibly with
solutions of linear programs to eliminate redundant inequalities [9, 16]. This is in
contrast with non-autonomous systems, 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), for which the backward
reachable set involves projection from the (𝑥, 𝑢) to the 𝑥 space, which is a potentially
very expensive operation even in the linear case [9].

3.1 Construction of Achieving and Colliding Sets

To solve Problem 1 we need to determine whether for a maneuver it is possible to
(𝑖) achieve the goal, and (𝑖𝑖) avoid collisions with obstacles. We use the backward
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reachable sets in Definition 1 for constructing the sets where the goal is eventually
achieved and the sets where a collision with obstacles eventually occurs.

For efficiently constructing such reachable sets, first we construct relative motion
models for ego vehicle and obstacles, and for ego vehicle and goals, using (6), (8),
(10), (13), (14) formulated in discrete-time with sampling period 𝑇𝑠 . At time 𝑡, for
each maneuver 𝑖 the relative motion of ego-vehicle with respect to the goal/obstacles,

Δ𝑥
(𝑖) ,ℎ
𝑘+1 |𝑡 = Δ𝐴(𝑖) ,ℎΔ𝑥 (𝑖) ,ℎ

𝑘 |𝑡 + Δ𝐵 (𝑖) ,ℎ𝑤 (𝑖) ,ℎ
𝑡 + Δ𝐸 (𝑖) ,ℎ𝑑 (𝑖) ,ℎ𝑡 (15a)

𝑤
(𝑖) ,ℎ
𝑡 = Ψ (𝑖) ,ℎ𝑥ℎ𝑡 + 𝑟 (𝑖)𝑡 , (15b)

where the index ℎ ∈ Z[0,𝑛0 ] is such that if ℎ = 0, (15) models the relative motion
with respect to the goal, and if ℎ ∈ Z[1,𝑛0 ] , 𝑟 ∈ R ⊆ R𝑛𝑟 , 𝑑 (𝑖) ,ℎ ∈ R𝑛

(𝑖) ,ℎ
𝑑 ⊆ D (𝑖) ,ℎ,

(15) models the relative motion with respect to obstacle ℎ ∈ Z+. In (15), Δ𝑥 (𝑖) ,ℎ
is the state of the relative motion model and 𝑤 (𝑖) ,ℎ is the relative parameter vector,
which is constructed from the parameter vector 𝑟 (𝑖) ,ℎ, and from the state of the goal
(ℎ = 0) or obstacle (ℎ ≥ 1) at the beginning of the maneuver, 𝑥ℎ𝑡 , by (15b), where
Ψ (𝑖) ,ℎ is a known matrix. According to (15b), 𝑤 (𝑖) ,ℎ, 𝑑 (𝑖) ,ℎ are constant throughout
the maneuver.

Using the approach of the reference governor [16], we augment the state with
the relative parameter vectors and with the obstacle motion disturbance, both with
constant dynamics, resulting in the lifted model

𝜉𝑘+1 |𝑡 = Φ(𝑖) ,ℎ𝜉 (𝑖) ,ℎ
𝑘 |𝑡 =


Δ𝐴(𝑖) ,ℎ Δ𝐵 (𝑖) ,ℎ Δ𝐸 (𝑖) ,ℎ

0 1 0
0 0 1



Δ𝑥

(𝑖) ,ℎ
𝑘 |𝑡

𝑤
(𝑖) ,ℎ
𝑘 |𝑡
𝑑
(𝑖) ,ℎ
𝑘 |𝑡

 . (16)

Then, we construct the goal and obstacle sets for the augmented state in relative
coordinates by:

𝑖) constructing the set X̄ (𝑖) ,0 of states for the relative motion model of the ego
vehicle with respect to the goal from (11) and (15), where the ego vehicle
constraints are satisfied, i.e., Δ𝑥 (𝑖) ,0 ∈ X (𝑖) ,0 ⇒ 𝑥 𝑗 ∈ X𝑗 , for 𝑗 ∈ {𝑥, 𝑦, 𝑏};

𝑖𝑖) lifting the polyhedra centered at the goal and obstacle coordinates, P̄ (𝑖)
𝑔 , P̄ℎ

𝑜 to
the dimension of Δ𝑥 (𝑖) ,ℎ ;

𝑖𝑖𝑖) intersecting the lifted sets with Δ𝑥
(𝑖) ,ℎ
min ≤Δ𝑥 (𝑖) ,ℎ ≤ Δ𝑥

(𝑖) ,ℎ
max , i.e., a bounding box

of the relative states for maneuver 𝑖 with respect to the goal/obstacle ℎ, obtaining
P̂ (𝑖) ,0
𝑔 , P̂ (𝑖) ,ℎ

𝑜 compact;
𝑖𝑣) constructing P (𝑖) ,0

𝑔 = P̂ (𝑖) ,0
𝑔 ×W (𝑖) ,0 × {0}, P (𝑖) ,ℎ

𝑜 = P̂ (𝑖) ,ℎ
𝑜 ×W (𝑖) ,ℎ ×D (𝑖) ,ℎ,

where W (𝑖) ,ℎ are the admissible sets for the relative parameter vector con-
structed from R (𝑖) based on (15b), and X (𝑖) ,0 = X̄ (𝑖) ,0 × R𝑛𝑟+𝑛𝑑 , which results
in sets of the appropriate dimension for 𝜉.
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The conditions Δ𝑥 (𝑖) ,0 ∈ P (𝑖) ,0
𝑔 on relative ego vehicle-goal state are such that, when

satisfied, the ego vehicle is at the goal, and similarly the conditions 𝑥 (𝑖) ,ℎ ∈ P (𝑖) ,ℎ
𝑜 ,

ℎ > 0 on relative ego vehicle-goal states are such that, when satisfied, the ego vehicle
is in collision with obstacle ℎ.

From (15), we compute the colliding sets as the 𝑘-steps backward reachable sets

C (𝑖) ,ℎ
𝑘

= Pre𝑘
Φ(𝑖) ,ℎ (P (𝑖) ,ℎ

𝑜 ), 𝑘 ∈ Z[0,𝑁 ] , ℎ ∈ Z[1,𝑛𝑜 ] , (17)

where 𝑁 is the maneuver duration in sampling periods, C (𝑖) ,ℎ
𝑘

is the set of augmented
states 𝜉 (𝑖) ,ℎ = (Δ𝑥 (𝑖) ,ℎ, 𝑤 (𝑖) ,ℎ, 𝑑 (𝑖) ,ℎ) such that if maneuver 𝑖 is executed with
parameter vector 𝑤(𝑡) = 𝑤 (𝑖) ,ℎ from initial state Δ𝑥

(𝑖) ,ℎ
0 |𝑡 = Δ𝑥 (𝑖) ,ℎ and for 𝑑 (𝑡) =

𝑑 (𝑖) ,ℎ with relative motion model (15), Δ𝑥
(𝑖) ,ℎ
𝑘 |𝑡 ∈ P (𝑖) ,ℎ

𝑜 , i.e., the system is in
collision with obstacle ℎ ∈ Z[1,𝑛𝑜 ] after 𝑘 steps. Thus, for maneuver 𝑖, the feasible
set of parameter vectors for state Δ𝑥 (𝑖) ,ℎ with respect to obstacle ℎ is

F (𝑖) ,ℎ
𝑜 (Δ𝑥 (𝑖) ,ℎ, 𝑥ℎ) ={
𝑟 (𝑖) ∈ R (𝑖) : (Δ𝑥 (𝑖) ,ℎ,Ψ (𝑖) ,ℎ𝑥ℎ + 𝑟 (𝑖) , 𝑑 (𝑖) ,ℎ) ∉

𝑁⋃
𝑘=0

C (𝑖) ,ℎ
𝑘

, ∀𝑑 (𝑖) ,ℎ ∈ D (𝑖) ,ℎ

}
,

(18)

which guarantees that collisions will not to occur in the future 𝑁 steps. Similarly, we
compute the achieving sets as the 𝑘-steps backward reachable sets

A (𝑖) ,0
𝑘

= Pre𝑘
Φ(𝑖) ,0 (P (𝑖) ,0

𝑔 ) ∩ X, 𝑘 ∈ Z[0,𝑁 ] , (19)

where 𝑁 is the maneuver duration in sampling periods, A (𝑖) ,0
𝑘

is the set of augmented
states 𝜉 (𝑖) ,0 = (Δ𝑥 (𝑖) ,0, 𝑤 (𝑖) ,0, 0) such that if maneuver 𝑖 is executed with parameter
vector 𝑤 (𝑖) ,0 from initial state Δ𝑥

(𝑖) ,0
0 = Δ𝑥 (𝑖) ,0 of the relative motion model (15),

Δ𝑥
(𝑖) ,0
𝑘

∈ P (𝑖) ,ℎ
𝑜 , i.e., the system is in the goal set after 𝑘 steps, and the constraints on

the ego vehicle states are satisfied. Thus, for maneuver 𝑖, the feasible set of parameter
vectors for Δ𝑥 (𝑖) ,ℎ with respect to the goal is

F (𝑖) ,0
𝑔 (Δ𝑥 (𝑖) ,0, 𝑥0) ={
𝑟 (𝑖) ∈ R (𝑖) : (Δ𝑥 (𝑖) ,0,Ψ (𝑖) ,0𝑥0+𝑟 (𝑖) , 0) ∈

𝑁⋃
𝑘=0

A (𝑖) ,ℎ
𝑘

}
, (20)

which guarantees that the goal set is reached within 𝑁 steps, while satisfying con-
straints in ego vehicle motion (11).

Fig. 3 shows sections of the colliding/achieving sets for the case of the lateral
and longitudinal motion models, (6), (8), and for the case of braking motion (10),
respectively.

The next proposition summarizes our solution to Problem 1.
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Fig. 3 Sections of reachable sets for different maneuvers. Top: longitudinal and lateral motion with
initial set (purple). Bottom: braking motion for deceleration commands 𝑟𝑎 increasing in the arrow
direction.

Theorem 1 At time 𝑡 ∈ Z0+, for maneuver 𝑀 (𝑖) ∈ M(𝑡) ⊆ M, obstacle set
{𝑂 (ℎ) (𝑡)}𝑛𝑜

ℎ=1, and obstacle disturbance set D, let F (𝑖) ,0
𝑔 (Δ𝑥 (𝑖) ,0), F (𝑖) ,ℎ

𝑜 (Δ𝑥 (𝑖) ,ℎ)
be the set of parameter values 𝑟 ∈ R (𝑖) from (20), (18). Given Δ𝑥

(𝑖) ,ℎ
𝑡 , constructed

from the state of the ego vehicle, obstacle, and goals, maneuver 𝑀 (𝑖) is admissible
according to Problem 1 if and only if

F (𝑖) ,0
𝑔 (Δ𝑥 (𝑖) ,0𝑡 , 𝑥0

𝑡 ) ∩
(
𝑛𝑜⋂
ℎ=1

F (𝑖) ,ℎ
𝑜 (Δ𝑥 (𝑖) ,ℎ𝑡 , 𝑥ℎ𝑡 )

)
≠ ∅. (21)

□

Proof. Assume that (21) holds, and let 𝑟 ∈ F (𝑖) ,0
𝑔 (Δ𝑥 (𝑖) ,0𝑡 , 𝑥0

𝑡 )∩(
⋂𝑛𝑜

ℎ=1 F
(𝑖) ,ℎ
𝑜 (Δ𝑥 (𝑖) ,ℎ𝑡 , 𝑥ℎ𝑡 )).

Since 𝑟 ∈ F (𝑖) ,0
𝑔 (Δ𝑥 (𝑖) ,0𝑡 , 𝑥0

𝑡 ), when 𝑟 is applied from Δ𝑥
(𝑖) ,0
0 |𝑡 = Δ𝑥

(𝑖) ,0
𝑡 , there ex-

ists �̄� ∈ Z[1,𝑁 ] such that Δ𝑥 (𝑖) ,0
�̄� |𝑡 ∈ P (𝑖) ,0

𝑔 , and Δ𝑥
(𝑖) ,0
𝑘,𝑡

∈ X (𝑖) ,0 for all 𝑘 ∈ Z[0, �̄� ]
due to the definition of backward reachable sets, (18) and (20). Hence 𝑥 (𝑖) ,0

𝑗 ,𝑘 |𝑡 ∈ X𝑗

for 𝑗 ∈ {𝑦, 𝑥, 𝑏} and 𝑝𝑘 |𝑡 ∈ P̃ (𝑖)
𝑔 , i.e., the maneuver satisfies the ego vehicle con-

straints and achieves the goal in 𝑘 steps, where 𝑘 ∈ Z[1,𝑁 ] . Furthermore, since
𝑟 ∈ F (𝑖) ,ℎ

𝑜 (Δ𝑥 (𝑖) ,ℎ𝑡 , 𝑥ℎ𝑡 ), for all ℎ ∈ Z[1,𝑛𝑜 ] , when 𝑟 is applied from Δ𝑥
(𝑖) ,ℎ
0 |𝑡 = Δ𝑥

(𝑖) ,ℎ
𝑡 ,

Δ𝑥
(𝑖) ,ℎ
𝑘 |𝑡 | ∉ P (𝑖) ,ℎ

𝑜 , for all 𝑘 ∈ Z[1,𝑁 ] , due to the definition of backward reachable sets.
Hence, 𝑝𝑘 |𝑡 ∉ P̃ (ℎ)

𝑜 , i.e., the maneuver does not collide with obstacles for at least



14 Authors Suppressed Due to Excessive Length

𝑁 steps. Thus, the conditions for a feasible maneuver according to Problem 1 are
satisfied. Conversely, when (21) does not hold, due to the definition of backward
reachable sets either the trajectory of the maneuver will not reach the goal within 𝑁
steps while satisfying the ego vehicle constraints, or it will be in collision with an
obstacle at least at one sampling instant. Hence, the maneuver will not be admissible
according to Problem 1 ⊓⊔

Condition (21) provides a way to solve P1 evaluating only conditions on the initial
state and parameter vector, and does not require forward motion simulation. This is
a major advantage over many methods in robotics [20] and also with our method
in [2] that requires collision checking of candidate trajectories to ensure safety with
respect to the obstacles.

Remark 3 The ego vehicle constraints do not need to be included also in the reachable
set iteration (17) because the intersection in (21) will render them redundant, i.e.,
(18) excludes all maneuvers that collide with the obstacles, regardless whether they
satisfy vehicle constraints or not, since the ones that do not, are eliminated in (21)
by (20). This allows for simplifying computation since it avoids checking several
unnecessary constraints. □

Parameterizing the maneuvers with a constant setpoint/command, simplifies the
computations of the sets, since state-parameter sets do not grow in dimension at
each iteration, which means that projection is not needed. Instead if a general control
signal were used, either the set dimension grows at each step, or it requires projection,
which is computationally expensive and prone to failure when 𝑁 becomes large.
Furthermore, our approach allows for fast checking of (21) despite this generally
involving non-convex sets, as discussed later.

4 Reference Governor for Decision Making

The feasibility condition (21) in Section 3 determines the states and parameter
values for which a goal of the maneuver is achieved, while avoiding collisions with
other vehicles. Leveraging (21), the decision making can also provide a reference
trajectory to the motion planner, which allows to focus to search for a motion plan
in a smaller region of the space, thus reducing the motion planner computations.
This is particularly important for automated driving applications due to the limited
capabilities of automotive computational platforms [11].

Since in the approach proposed in Section 3 the maneuver parameters are constant
setpoints for system variables, we can use an approach similar to the reference
governor [16] to determine the parameter value for the maneuver, which results in a
reference trajectory for the motion planner. For maneuver 𝑖 ∈ M, we determine
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𝑟
(𝑖)
∗ = arg min

𝑟
𝐽 (𝑖) (𝑟, 𝜃 (𝑖) ) (22a)

s.t. 𝑟 ∈ F (𝑖) ,0
𝑔 (Δ𝑥 (𝑖) ,0𝑡 , 𝑥0

𝑡 ) ∩
(
𝑛𝑜⋂
ℎ=1

F (𝑖) ,ℎ
𝑜 (Δ𝑥 (𝑖) ,ℎ𝑡 , 𝑥ℎ𝑡 )

)
, (22b)

where 𝜃 (𝑖) is a vector containing information on the desired behavior, such as desired
velocity, deceleration, etc, and 𝐽 (𝑖) is a maneuver-dependent cost function encoding
the desirability of the maneuver. Solving (22) for different maneuvers 𝑖 ∈ M may
result in multiple feasible maneuvers for the motion planner, similar to [1], which
is useful for multi-mode planners such as [6]. For selecting a single maneuver, the
feasible ones are compared as

𝑟𝑡 = 𝑟
(𝑖∗ )
∗ , 𝑖∗ = arg min

𝑖
𝐽𝑎

(
{(𝑟 (𝑖)∗ , 𝜃 (𝑖) , 𝑖), }𝑖∈M 𝑓

)
(23)

where M 𝑓 are the feasible maneuver, i.e., the maneuvers for which (22) returns a
non-empty, finite value, and 𝐽𝑎 is a cost function for comparing the maneuvers in
terms of desirability, based also on the solutions of (22). The solution of (23) is
straightforward as only few maneuvers are available, and hence direct comparison
of the values of 𝐽𝑎 will be sufficient.

The decision making determines the maneuver parameters to satisfy inclusion
constraints, the achieving sets, and exclusion constraints, the colliding sets, similar
to a reference governor that determines the virtual reference to satisfy the system
constraints. However, while the reference governor aims at remaining closer to a
specified user reference, and operates repeatedly in time, the decision making does
not have initial reference and operates once when a maneuver needs to be determined.
Next we discuss the solution of (22), which appears more challenging but can be
greatly simplified by leveraging its structure.

4.1 Maneuver determination for deterministic obstacle motion

Consider first the case where the motion of the obstacle is deterministic, i.e., at any
time 𝑡, D = {𝑑𝑡 }, 𝑑𝑡 is known, and we can assume without loss of generality that
𝑑𝑡 = 0. For this case, the challenge in computing (22) is satisfying constraint (22b),
since it involves a non-convex set constructed from complements and unions of
convex sets. However, since we have parameterized the maneuvers, the computations
are simplified by resorting to methods similar to those for reference governors [16].

According to Result 1, for every 𝑘 ∈ Z[0,𝑁 ] , the achieving sets and the colliding
sets are the polyhedra, A (𝑖) ,0

𝑘
= {(Δ𝑥 (𝑖) ,0, 𝑤 (𝑖) ,0) : 𝐻

(𝑖) ,0
𝑘

[Δ𝑥 (𝑖) ,0′ 𝑤 (𝑖) ,0′]′ ≤
𝐾

(𝑖) ,0
𝑘

} and C (𝑖) ,ℎ
𝑘

= {(Δ𝑥 (𝑖) ,ℎ, 𝑤 (𝑖) ,ℎ) : 𝐻𝑘 [Δ𝑥 (𝑖) ,ℎ
′
𝑤 (𝑖) ,ℎ′]′ ≤ 𝐾

(𝑖) ,ℎ
𝑘

)}, for ℎ ∈
Z[1,𝑛𝑜 ] , respectively. Since the initial state in (22) is given, we take sections of the
polyhedra at the known state value, resulting in the lower dimensional polyhedron
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𝑎
(𝑖) ,ℎ
𝑘

𝑤 (𝑖) ,ℎ ≤ 𝑏
(𝑖) ,ℎ
𝑘

, ℎ ∈ Z[0,𝑛0 ] ,

where ℎ = 0 for the achieving sets of the goal, and ℎ > 0 for the colliding sets of
obstacle ℎ. Since the parameter vector 𝑤 (𝑖) ,ℎ is usually low dimensional, a simple
approach of gridding or random shooting and testing the values may be sufficient to
solve (22).

Further simplification is possible if the parameter vector for a maneuver is
one-dimensional, i.e., the maneuver is parametrized by a scalar. The case of one-
dimensional parameter vector is quite common, since braking maneuvers based
on (10) only use the the reference deceleration, lane keeping and lane changing
maneuvers only use the reference longitudinal velocity in (6) with the centerlane as
fixed lateral setpoint in (8), and lateral sway maneuvers use only the reference lateral
position in (8). When 𝑟 (𝑖) is a scalar, and so is 𝑤 (𝑖) ,ℎ, (22b) is a union of intervals
that can be explicitly evaluated. We first determine

∃ 𝑗 ∈ Z+, 𝑘 ∈ Z[0,𝑁 ] , [𝑎 (𝑖) ,0𝑘
] 𝑗 = 0,

if

{
[𝑏 (𝑖) ,0

𝑘
]
𝑖
> 0 ⇒ {𝐻𝑘 [Δ𝑥 (𝑖) ,ℎ

′
𝑤 (𝑖) ,ℎ′]′ ≤ 𝐾

(𝑖) ,ℎ
𝑘

} = ∅
[𝑏 (𝑖) ,0

𝑘
]
𝑖
≤ 0 ⇒ Redundant constraint,

(24)

For the cases [𝑎 (𝑖) ,0
𝑘

] 𝑗 ≠ 0 we compute

𝑤
(𝑖) ,ℎ
𝑘

= max
𝑗:[𝑎 (𝑖) ,ℎ

𝑘
] 𝑗>0

[𝑏 (𝑖) ,ℎ
𝑘

] 𝑗
[𝑎 (𝑖) ,ℎ

𝑘
] 𝑗
, 𝑤

(𝑖) ,ℎ
𝑘

= min
𝑗:[𝑎 (𝑖) ,ℎ

𝑘
] 𝑗<0

[𝑏 (𝑖) ,ℎ
𝑘

] 𝑗
[𝑎 (𝑖) ,ℎ

𝑘
] 𝑗
,

where 𝑗 is the index for the rows of the vectors 𝑎 (𝑖) ,ℎ
𝑘

, 𝑏 (𝑖) ,ℎ
𝑘

. Then, we can discretize
the 1-dimensional range of R (𝑖) , obtaining {𝑟 (𝑖) (ℓ)}𝑛ℓ

ℓ=1, and evaluate the feasibility
of the maneuver by checking that at least one value of the maneuver parameter 𝑟 (𝑖)
is: (𝑖), included in the section of at least one goal achieving set, A𝑘 , at the current
state Δ𝑥 (𝑖) ,0, by retaining the values 𝑟 (𝑖) (ℓ) that satisfy

∃𝑘 ∈Z[0,𝑁 ] : Ψ (𝑖) ,0𝑥0
0 |𝑡+𝑟

(𝑖) (ℓ) ∈ [𝑤 (𝑖) ,0
𝑘

, 𝑤
(𝑖) ,0
𝑘

] (25a)

where no value is retained if the set is empty due to (24); (𝑖𝑖), excluded from the
sections of all the colliding sets, C𝑘 , at the current state Δ𝑥 (𝑖) ,0 for all the obstacles
by retaining the remaining values 𝑟 (𝑖) (ℓ) that also satisfy

Ψ (𝑖) ,0𝑥0
0 |𝑡+𝑟

(𝑖) (ℓ) ∈
(
(−∞, 𝑤 (𝑖) ,ℎ

𝑘
) ∨ (𝑤 (𝑖) ,ℎ

𝑘
, +∞)

)
,

∀𝑘 ∈Z[0,𝑁 ] , ∀ℎ ∈ Z[1,𝑛0 ] . (25b)

Thus, the maneuver parameter value 𝑟𝑡 can be determined by evaluating elements
of {𝑟 (𝑖) (ℓ)}𝑛ℓ

ℓ=1 against (25a), (25b) for determining feasibility, and against (22) for
optimality. Once 𝑟𝑡 is determined, we obtain {𝑥𝑘 |𝑡 }𝑁𝑘=0 that defines the reference
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trajectory for the maneuver by simulating the maneuver motion model (e.g., based
on (6), (8), (10)) forward in time from 𝑥𝑡 with 𝑟𝑘 |𝑡 = 𝑟𝑡 , for 𝑘 ∈ Z[0,𝑁 ] .

4.2 Robustness metrics and uncertain obstacle motion

Besides the performance metrics in the ego vehicle maneuver, e.g., high/low veloc-
ity/accelerations, robustness is another important metric for choosing the reference
trajectory. We can include a robustness metrics such that even for a nominal pre-
diction of the obstacle motion, some deviations from the nominal behavior of the
obstacle will not cause the maneuver to become infeasible.

Without including yet another uncertainty in the obstacle motion, for computa-
tional simplicity, we formulate a robustness metrics quantifying how large perturba-
tions on the parameter vector results in a successful completion of the maneuver. To
this end, we define the robustness radius of 𝑟 (𝑖) ∈ R (𝑖)

𝑓
as

𝛿𝑟 (𝑖) = max{𝛿 ∈ R+ : 𝑟 (𝑖) + 𝜍 ∈ R (𝑖)
𝑓
, ∀𝜍, |𝜍 | ≤ 𝛿}. (26)

For discretized R (𝑖) , the conditions (26) are checked only for points included in
{𝑟 (𝑖) (ℓ)}𝑛ℓ

ℓ=1, i.e., assuming an equispaced discretization, for 𝜍 such that 𝑟 (𝑖) + 𝜍 ∈
R (𝑖) . The non-equispaced discretization case entails the same operations but a
slightly more involved definition. Also, a discretized R (𝑖) may cause a resolution
error in the robustness radius where infeasible regions of size less than the dis-
cretization grid are not detected. The robustness radius can be included as part of the
objective in the cost function 𝐽 (𝑖) in (22), which may be useful to address the differ-
ence in models used by motion planner and decision making, as well as imperfect
predictions of the obstacle motions.

For the case where we explicitly model uncertainty in the motion of the obstacle,
i.e., D (𝑖) ,ℎ is not a singleton, the maneuver can be determined in two ways. If D (𝑖) ,ℎ

is discrete, the process in Section 4.1 may be repeated to determine the maneuver
parameters values, where (18) is implemented as

F (𝑖) ,ℎ
𝑜 (Δ𝑥 (𝑖) ,ℎ, 𝑥ℎ) =⋂

𝑑 (𝑖) ,ℎ∈D (𝑖) ,ℎ

{
𝑟 (𝑖) ∈ R (𝑖) : (Δ𝑥 (𝑖) ,ℎ,Ψ (𝑖) ,ℎ𝑥ℎ + 𝑟 (𝑖) , 𝑑 (𝑖) ,ℎ) ∉

𝑁⋃
𝑘=0

C (𝑖) ,ℎ
𝑘

}
, (27)

i.e., for each obstacle, checking avoidance of the collision sets for all the discrete
obstacle behaviors encoded in the exogenous disturbances.

Alternatively, consider the case when sets D (𝑖) ,ℎ are uncountable. One can first
select 𝑟 (𝑖) ∈ {𝑟 (𝑖) (ℓ)}𝑛ℓ

ℓ=1 and substitute it into C (𝑖) ,ℎ obtaining
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C (𝑖) ,ℎ
𝑑,𝑘

(Δ𝑥 (𝑖) ,ℎ, 𝑥ℎ, 𝑟 (𝑖) ) ={
𝑑 (𝑖) ,ℎ ∈ D (𝑖) ,ℎ : (Δ𝑥 (𝑖) ,ℎ,Ψ (𝑖) ,ℎ𝑥ℎ + 𝑟 (𝑖) , 𝑑 (𝑖) ,ℎ) ∈ C (𝑖) ,ℎ

𝑘

}
, (28)

Corollary 1 Let 𝑑 (𝑖) ,ℎ ∈ D (𝑖) ,ℎ, ℎ ∈ Z[0,𝑛𝑜 ] , the parameter value 𝑟 (𝑖) ∈
{𝑟 (𝑖) (ℓ)}𝑛ℓ

ℓ=1 makes maneuver 𝑀 (𝑖) feasible if and only if there exists 𝑘 ∈ Z[1,𝑁 ]

such that (Δ𝑥 (𝑖) ,ℎ,Ψ (𝑖) ,ℎ𝑥0 + 𝑟 (𝑖) , 0) ∈ A (𝑖) ,0
𝑘

, and C (𝑖) ,ℎ
𝑑,𝑘

= ∅ for all ℎ ∈ Z[1,𝑛𝑜 ] ,
𝑘 ∈ Z[0,𝑁 ] .

Proof. The condition (Δ𝑥 (𝑖) ,ℎ,Ψ (𝑖) ,ℎ𝑥0 + 𝑟 (𝑖) , 0) ∈ A (𝑖) ,0
𝑘

for some 𝑘 ∈ Z[1,𝑁 ]
guarantees that the maneuver goal is achieved within at most 𝑁 steps as for Theo-
rem 1, while if such condition does not hold, the goal is not achieved and hence the
maneuver does not succeed.

As for obstacle avoidance, if there exists 𝑘 ∈ Z[1,𝑁 ] , ℎ ∈ Z[1,𝑛𝑜 ] such that
C (𝑖) ,ℎ
𝑑,𝑘

≠ ∅, then there exists 𝑑𝑘 ∈ D (𝑖) ,0 such that (Δ𝑥 (𝑖) ,ℎ,Ψ (𝑖) ,ℎ𝑥ℎ + 𝑟 (𝑖) , 𝑑 (𝑖) ,ℎ) ∈
C (𝑖) ,ℎ
𝑘

, which means that a collision happens and the maneuver is not safe. Instead if
C (𝑖) ,ℎ
𝑑,𝑘

= ∅ for all 𝑘 ∈ Z[1,𝑁 ] , ℎ ∈ Z[1,𝑛𝑜 ] , there exists no disturbance value causing
a collision, and the maneuver is safe. ⊓⊔

According to Corollary 1 a maneuver parameter is feasible if the state and param-
eter values belongs to an achieving goal set A (𝑖) ,0

𝑘
, and all the collision disturbance

sets C (𝑖) ,ℎ
𝑑,𝑘

are empty, i.e., no collision occurs for any value of the disturbance. When
the motion models of ego and obstacles are linear and the obstacle and goal sets are
polyhedral, as those in Section 2, sets C (𝑖) ,ℎ

𝑑,𝑘
are polyhedral, and specifically, they are

polyhedral sections of C (𝑖) ,ℎ
𝑘

at parameter value 𝑟 (𝑖) . The set-emptyness checks are
straightforward if 𝑑 (𝑖) ,ℎ is a scalar, and require at most linear feasibility programs.

5 Simulations

We evaluate the decision making approach though several scenarios on a straight
road with 2 lanes in the ego vehicle travel direction.

5.1 Simulations with Known Obstacle Behavior

First, we consider a lane change scenario, in which we allow 3 types of lane change
maneuvers, where the lateral position is the output of 3𝑟𝑑 order systems as in (7)
with 𝑟𝑦 set to the centerlane of the next lane, each with different settling time and
overshoot, and dubbed cautious, normal, aggressive in order of decreasing settling
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(a)

(b)

Fig. 4 Lane change scenario with 3 feasible maneuvers: (a) allowed values of commanded velocity
𝑟𝑣 for each maneuver; (b) execution of the normal maneuver at maximum feasible 𝑟𝑣. Ego (blue) and
other (red, purple) vehicles: current (solid), past (frame), and at maneuver start (shaded) positions.
Region of lane change completion (green). Snapshots after 𝑡 = 0.5, 1.5, 2.5, 3.5s from maneuver
start.

time and increasing overshoot1. The goal is to complete a lane change from 10m to
120m ahead of the ego vehicle, within 5s with sampling period 𝑇𝑠 = 0.25s, i.e., a
horizon of 𝑁 = 20 steps, commanding velocities 𝑟𝑣 ∈ [10, 20]m/s, where the range
is discretized in 100 points with a resolution 0.1m/s.

Fig. 4 shows the case with two other vehicles, one in the same lane and moving
at the same speed as the ego vehicle, 𝑣 (1)𝑜 = 𝑣𝑥 = 17m/s, ahead by 4m, and the
other in the lane to the right, moving at 𝑣 (2)𝑜 = 16m/s and behind by 2m. The other
vehicles are maintaining their velocities, i.e., 𝑑 (ℎ)𝑣 = 𝑣

(ℎ)
𝑜 , ℎ ∈ {1, 2}. From Fig. 4(a),

the lane change is feasible with all 3 maneuvers for different commanded velocities.
For each maneuver there is a higher range of admissible velocities that allows lane
change ahead of the vehicle in the next lane, a lower range that allows lane change

1 Despite the name used here for differentiation, all these maneuvers are mild enough that linear
models in Section 2 are appropriate.
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(a)

(b)

Fig. 5 Lane change scenario with 2 feasible maneuvers: (a) allowed values of commanded velocity
𝑟𝑣 for each maneuver; (b) execution of the cautious maneuver with most robust 𝑟𝑣. Ego (blue) and
other (red, purple) vehicles: current (solid), past (frame), and at maneuver start (shaded) positions.
Region of lane change completion (green). Snapshots after 𝑡 = 0.5, 1.5, 2.5, 4.0s from maneuver
start.

behind, and a range of inadmissible velocities between the two, where a collision
would occur. Fig. 4(b) shows the execution of the normal maneuver for its maximum
allowed value 𝑟𝑣 = 18, which results in changing lane ahead of the other vehicle
in the next lane, while avoiding collisions and completing the lane change in the
designated area.

Fig. 5 shows the case when the other vehicle initial position and velocities have
been changed to 4.5m ahead, 7m behind, and 𝑣 (1)𝑜 = 16m/s, 𝑣 (2)𝑜 = 18m/s for the
one in the same and next lane, respectively. The other vehicles are still maintaining
their velocities, i.e., 𝑑 (ℎ)𝑣 = 𝑣

(ℎ)
𝑜 , ℎ ∈ {1, 2}. As shown in Fig. 5(a), the normal lane

change is infeasible, while the cautious and aggressive lane changes are feasible by
changing lane behind and ahead of the vehicle in the next lane, respectively. Fig. 5(b)
shows the waypoints generated by choosing the value 𝑟𝑣 = 11.1m/s, which has the
largest robustness radius according to (26) for the cautious lane change.
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(a)

(b)

Fig. 6 Stopping scenario with 1 maneuver: (a) feasible values of commanded acceleration 𝑟𝑎;
(b) execution of the maneuver with minimum 𝑟𝑎 . Ego (blue) and other (red) vehicles: current
(solid), past (frame), and at maneuver start (shaded) positions. Stop region (green). Snapshots after
𝑡 = 0.5, 1.5, 2.5, 3.5s from maneuver start.

In Fig. 6 we show a scenario where the ego vehicle is driving at 𝑣𝑥 = 12m/s, and
has to reach a stop in a target area that starts 80m ahead, while another vehicle is
slowly, 𝑣0 = 𝑑𝑣 = 2.5m/s, departing from it. This simulates stopping at an intersec-
tion, while a preceding vehicle starts crossing it. The decision making uses a single
maneuver with the braking motion model (10), where the reference deceleration
command 𝑟𝑎 ∈ [1, 5]m/s2 is the parameter, discretized with resolution of 0.01m/s2.
Fig. 6(a) shows that the maneuver is feasible, and Fig. 6(b) shows the waypoints
obtained for the least deceleration 𝑟𝑎 = 2.94m/s2, for which the vehicle stops with a
trajectory following just behind the departing vehicle.

Finally, Fig. 7 shows the total computing time, i.e., for checking all maneuvers,
in the scenario shown in Figure 5, for different number of discretization values in
each reference range, i.e., 𝑛(𝑖)

ℓ
, 𝑖 ∈ Z[1,3] . The total time for the discretization at

0.1m/s, i.e., 100 points per maneuver, used in Fig. 4–5 is less than 7.5ms, i.e., 2.5ms
per maneuver for checking all the points, in a non-optimized purely Matlab 2021𝑏
implementation on a 2020 MacBook Pro, with Intel i5 processor and 16GB of RAM.
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Fig. 7 Total computation time 𝑡cpu to evaluate the 3 maneuvers in the scenario of Fig. 5 for different
numbers 𝑛(𝑖)

ℓ
of discretized parameter values.

This is more than 3 times faster than the approach in [2]. Furthermore, an equivalent
standard C implementation, e.g., from non-optimized code generation, may be up to
10-40 faster. For a higher number of discretization points, which are unnecessary in
this application other than to assess the computational burden, the curve is fairly flat
until 1000 points, since the evaluation of feasibility by (25) is inexpensive after the
upper and lower bounds have been determined, which needs to be done only once
for a given initial state.

5.2 Simulations with Uncertain Obstacle Behavior

Next we show simulations comparing the case of known and uncertain behavior
of the obstacles, in scenarios that are similar to the ones described in Section 5.1,
though with some different initial conditions to better highlight the impact of the
uncertainty in the other vehicle motion.

First we consider a lane change scenario where the goal is to change lane within
5s, with sampling period 𝑇𝑠 = 0.25s, objective of maximum feasible velocity, 𝑟𝑣 ∈
[5, 25]m/s and there is an obstacle vehicle slightly ahead in the target lane, and no
vehicle in the lane where the ego vehicle is. The other vehicle has initial velocity 𝑣𝑜 =

15m/s and in the nominal case it is maintaining such velocity, i.e., 𝑑𝑣 = 𝑣0 = 15m/s.
In the uncertain case the obstacle may be maintaining the current velocity 15m/s,
may be accelerating to 20m/s, or decelerating to 12m/s, hence 𝑑𝑣 ∈ {12, 15, 20}m/s.

Fig. 8 shows that in the nominal case, the ego vehicle is able to change lane ahead
of the other vehicle by selecting 𝑣𝑟 = 25m/s. On the other hand, with the uncertain
behavior of the other vehicle, the ego vehicle cannot pass in front and instead has to
slow down and lane change behind the other vehicle by selecting 𝑣𝑟 = 5.5m/s.

Then, we consider the stopping scenario where the goal is to stop in the stopping
area while remaining in the same lane within 5s, with sampling period 𝑇𝑠 = 0.25s,
objective of smallest feasible deceleration, and there is an other vehicle departing
from the stopping area. The other vehicle is initially stopped 𝑣𝑜 = 0m/s and in the
nominal case has a target velocity 𝑑𝑣 = 4m/s. In the uncertain case the obstacle may
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(a) (b)

Fig. 8 Lane change scenario with known and uncertain obstacle behavior. Maximum velocity
objective, initial obstacle velocity 𝑣 = 15m/s: (a) known obstacle velocity target 𝑑𝑣 = 𝑣𝑜 = 15m/s;
(b) uncertain obstacle velocity target, 𝑑𝑣 ∈ {12, 15, 20}m/s. Ego (blue) and other vehicle with
constant speed (red), acceleration (cyan), deceleration (magenta): current (solid), past (frame), goal
region (green). Snapshots after 𝑡 = 0.5, 1.5, 3.0s from maneuver start.

be targeting the same velocity of the nominal casex 4m/s, or creeping slowly with a
target of 1.5m/s, hence 𝑑𝑣 ∈ {1.5, 4}m/s.

Fig. 9 shows that in the nominal case the ego vehicle stops in the forward part of
the stop area and decelerates mildly, with 𝑟𝑎 = 2.01m/s2. On the other hand, when
the behavior of the other vehicle is uncertain, the ego needs to stop further behind
and hence applies a more aggressive deceleration with 𝑟𝑎 = 2.51.

(a) (b)

Fig. 9 Stopping scenario with known and uncertain obstacle behavior. Minimum deceleration
objective, initial obstacle velocity 𝑣 = 0m/s: (a) known obstacle velocity target 𝑑𝑣 = 𝑣𝑜 = 4.0m/s;
(b) uncertain obstacle velocity target, 𝑑𝑣 ∈ {1.5, 4.0}m/s. Ego (blue) and other vehicle nominal
speed (red), slow speed (magenta): current (solid), past (frame), goal region (green). Snapshots
after 𝑡 = 0.5, 1.5, 3.0s from maneuver start.
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6 Conclusions

We developed a method for decision making for automated driving that determines
feasibility of maneuvers using reachable sets parametrized by setpoints of vehicle
motion quantities. The feasible maneuvers, the corresponding goals and the reference
trajectories can be provided to the motion planner with certainty that it will be able
to compute a trajectory to accomplish the maneuver while avoiding collisions. The
proposed method is simple to implement, fast to compute, which is a requirement
to limit the cost of the automotive computation platform, and we showed how it can
include robustness metrics and account for uncertainty in the predicted motion of
the other vehicles.
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