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Abstract
We propose a motion planner for quadrotors implemented as a search on a graph constructed
from robust positively invariant (PI) sets. We model the position error dynamics of the
quadrotor in closed-loop with an onboard controller as a second-order system with poly-
topic uncertainty in the gains. In addition, we consider bounded attitude tracking errors
and additive input disturbances. Using linear matrix inequalities (LMIs), we compute small
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where collision avoidance and input constraints are satisfied. We use the sets to construct a
graph where the nodes are associated to position setpoints, and the edges are included if it is
possible to transition from one node setpoint to the next one while satisfying constraints and
avoiding collisions. The motion plan is obtained by selecting the sequence of active setpoints
based on set membership conditions. The construction of the graph can be performed offline,
while the online computation of the motion plan is simple and fast, as demonstrated by a
Monte- Carlo simulation study in a cluttered indoor environment.
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A Robust Invariant Set Planner For Quadrotors

Marcus Greiff, Avishai Weiss, Karl Berntorp, Stefano Di Cairano

Abstract— We propose a motion planner for quadrotors
implemented as a search on a graph constructed from robust
positively invariant (PI) sets. We model the position error
dynamics of the quadrotor in closed-loop with an onboard
controller as a second-order system with polytopic uncertainty
in the gains. In addition, we consider bounded attitude tracking
errors and additive input disturbances. Using linear matrix
inequalities (LMIs), we compute small ellipsoidal robust PI
sets and large ellipsoidal inflated safe PI sets around positional
setpoints where collision avoidance and input constraints are
satisfied. We use the sets to construct a graph where the nodes
are associated to position setpoints, and the edges are included if
it is possible to transition from one node setpoint to the next one
while satisfying constraints and avoiding collisions. The motion
plan is obtained by selecting the sequence of active setpoints
based on set membership conditions. The construction of the
graph can be performed offline, while the online computation of
the motion plan is simple and fast, as demonstrated by a Monte-
Carlo simulation study in a cluttered indoor environment.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly utilized
in industrial applications, such as indoor surveying and
factory automation, where the environment is well known
and largely static [1]. In such settings, autonomous UAV
operations require motion-planning methods with rigorous
safety guarantees that enable fast planning (and re-planning)
of the UAV motion. In this work we are particularly inter-
ested in planners that:

(i) Provide theoretical guarantees of safety in the presence
of disturbances and system modeling errors;

(ii) Ensure that relevant variables, such as the maximal
thrust of the UAV, are kept within their bounds;

(iii) Report a priori if safe flight is impossible, and provide
limitations for recovering of safe flight.

The dominating paradigm for UAV motion-planning lever-
ages convex optimization, see, e.g., [2]–[5]. For example, the
minimum-snap planners in [4], [5] were designed to facilitate
aggressive maneuvering [3], [4]. Some extensions leverage
simple disturbance models [6], but these planning methods
generally neglect structured uncertainties and disturbances
acting on the system. In practice, uncertainties are dealt with
by inflating the obstacles, but determining the amount of
inflation that ensures safety is a nontrivial task.

For planning methods based on convex optimization, point
(i) is challenging to achieve without sacrificing computa-
tional efficiency. This motivates an exploration of graph-
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Fig. 1. Core idea of the RISMP method: A sequence of set-points {rk ∈
R3}Kk=1 are computed in a world with M = 3 three obstacles {Si ⊂
R3}Mi=1 (gray). Large safe sub-level sets {Γi}Mi=1 (blue) of the a Lyapunov
function V k are computed for each single obstacle, centered at rk . Here,
the sublevel set that is safe for all obstacles is V k ≤ Vmax = Γ2. A small
robust PI set for the node associated with the set-point rk (green) is used
to determine valid connections to this node.

based planning, where instead of optimizing over trajectories
in space, the UAV motions are encoded though a graph,
enabling usage of highly efficient search algorithms [7]. Of-
ten, in graph-based planning motions are explicitly associated
with graph edges [8]. Here, to comprehensively address (i)–
(iii), we consider invariant-set motion planners (ISMPs) [9]–
[11], in which the motions are encoded implicitly, as the
closed-loop response to a sequence of setpoint commands
(see Fig. 1). Leveraging invariant sets, such methods can
provide guarantees on robust constraint satisfaction and on
convergence to a target (positive invariant) PI set.

The ISMP methods have been employed in various set-
tings [9]–[17], most notably automotive applications [11],
[14], [18], but they have also been considered for applica-
tions such as spacecraft orbit [9] and attitude control [16],
[17]. Related invariance-based methods have been suggested
for use in UAVs in [13], and there is a parallel track
of developing invariance-based explicit reference governors
(ERGs) [19] tailored for UAVs in [20].

In this paper, we extend the framework in [15] to construct
a robust ISMP (RISMP) for UAVs that addresses (i)–(iii).
To this end, we borrow preliminary results from the ERG
literature [19] and extend the ideas in [15] to develop a new
RISMP framework for UAVs. The method provides rigorous
safety guarantees and enables long-horizon planning (∼30s),
with computation time on the order of milliseconds for large
and cluttered environments.

Notation: Vectors are written x ∈ Rn with [x]i denoting



the ith element, and ei is a unit vector where [ei]i = 1. The
identity matrix is denoted by Id ∈ Rd×d. The ⋆ denotes a
block in a symmetric matrix defined by an existing block and
symmetry. We let ∥x∥22 = x⊤x, denote ∥x∥2P = x⊤Px, and
(Sn+)Sn++ is the cone of n×n positive (semi)definite matrices.
For any P ∈ Sn++, an associated ellipsoidal volume is
denoted by Ω(P , λ) = {x ∈ Rn|∥x∥2P ≤ λ}, and this set is
PI if for all x(t0) ∈ Ω(P , λ) ⇒ x(t) ∈ Ω(P , λ)∀t ≥ t0. All
invariant sets are denoted by O. The convex combination of
the elements of a set S is denoted by Co(S). The maximum
and minimum eigenvalues of a real, symmetric matrix M ∈
Rm×m are λ̄(M) ∈ R and

¯
λ(M) ∈ R, respectively. The

set of rotations is denoted by SO(3) = {R ∈ R3×3|R⊤R =
I,det(R) = 1}. A directed graph G = (V, E) is a set of
vertices (or nodes) V together with ordered pairs E ⊆ V ×V
called edges. Vertices Vi,Vj ∈ V are adjacent if (Vi,Vj) ∈ E
is an edge. A path is a sequence of adjacent vertices. We let
rk ∈ R3 be a setpoint and V k = ∥xe∥2P be a Lyapunov
function associated with Vk, where

P =

[
Ppp Ppv

⋆ Pvv

]
∈ S6++, Ppp ∈ S3++, Pvv ∈ S3++,

with xe,k = (p − rk;v), and usually we omit the index k.
Finally, E ∼ U(M) is a uniform selection of an element E ∈
M, with every element in M drawn with equal probability.

II. ASSUMPTIONS AND PROBLEM FORMULATION

For small UAVs, there is a significant time-scale separation
between the attitude dynamics and the positional dynamics.
As such, it is natural to consider only the positional sub-
system for motion-planning, but in a manner that accounts
for bounded attitude tracking errors due to a nonideal attitude
controller. Furthermore, bounded additive disturbances on the
UAV accelerations due to imperfect actuation and sensing are
also accounted for, as in the robust ERG in [20].

Assumption 1 The system response of the UAV with a
nonideal attitude controller is governed by

p̈ = −R̃⊤Kp(p− r)− R̃⊤Kvv +∆, (1a)

∆ = m−1f + g(I − R̃)e3, (1b)

where f ∈ R3 is an external force, R̃ ∈ SO(3) denotes an
attitude tracking error, with Kv ∈ S3×3

++ and Kp ∈ S3×3
++ ,

and m, g > 0 denote mass and gravitational acceleration.

Equation (1) is the error dynamics that results from using
a geometric proportional derivative (PD) controller [21], [22]
for setpoint stabilization. Unlike [20], we do not assume
perfect knowledge of such error dynamics.

Assumption 2 The feedback is stabilizing when ∥I−R̃∥2 ≡
0 and ∥f∥ ≡ 0, and the gains are known in the sense that

K ≜ (Kp,Kv) ∈ Co({(Ki
p,K

i
v)}Ni=1) ≜ K. (2)

While it would seem natural to assume that the UAV feed-
back gains are known, this is not necessarily true, and we
use the flexibility offered by such an uncertainty to model

different translational behaviors of the UAV about some
(approximate) nominal tuning.

Assumption 3 The attitude tracking error and the external
forces acting on the UAV are bounded, supt|α(t)| ≤ αmax,
supt∥f(t)∥2 ≤ Fmax, respectively, where

α(t) ≜ max
∥u∥2=1

arccos
(
u⊤R̃(t)u

)
. (3)

Given these assumptions, we state the problem:

Problem 1 Given Assumptions A1–A3, compute a piece-
wise constant reference r(t) = rk for t ∈ [tk−1, tk], where
{rk ∈ R3}Kk=1 such that tK − t0 ≥ 0 is finite, the UAV
avoids a set of convex obstacles {Si ⊆ R3}Mi=1 at all times,
and converges to a PI set centered at a desired point rK .

In what follows, we design a motion planner that solves
Problem 1. The proofs are omitted due to space limitations.

III. SMALLEST ELLIPSOIDAL ROBUST PI SETS

In this section, we show how to compute inner approx-
imations of PI sets to facilitate the design of an RISMP
that addresses Problem 1. To this end, we first need to
compute PI sets for the system defined by Assumptions A1–
A3. The method in [20] can be applied when the gains in (2)
are: known, i.e., N = 1; diagonal matrices; and there is
no variation in the diagonal elements. Thus, [20] does not
accommodate all modes satisfying Assumptions A1, A2. The
LMI-based approach in [15], [23] is more easily generalized,
but does not accommodate the structured uncertainty due to
bounded attitude tracking error in Assumption A3, which is
often necessary to consider for precise UAV planning and
control.

A. Synthesis via LMIs

We formulate a LMI-based synthesis building on standard
results for computing common Lyapunov functions for poly-
topic systems subject to norm-bounded inputs [23, Chapter
6], with additional constraints to handle the bounded attitude
tracking errors in Assumption A3

λ⋆ = argmin
P∈S6×6

++

K̄∈S6×6
+

λ≥0

(λ), (4a)

subject to

P ⪰ I, (4b)A⊤
i P + PAi + P + βK̄ ⋆ ⋆

B⊤P −λI ⋆√
βB⊤P 0 −I

 ⪯ 0, (4c)

[
K̄ ⋆
Ki I

]
⪰ 0, (4d)



for all i ∈ 1, ..., N , where

β =
√
2(1− cos(αmax)), (4e)

Ai =

[
0 I

−Ki
p −Ki

v

]
, (4f)

Ki =
[
Ki

p Ki
v

]
, (4g)

B =

[
0
I

]
. (4h)

The characterization of an ellipsoidal PI set based on the
solution of (4) is summarized in the following proposition.

Proposition 1 Under Assumptions A1-A3, given a maximal
attitude error αmax, if there exists a solution to (4), there
exists a constant Vmin = ∆2

maxλ
⋆ > 0 such that Omin =

{xe ∈R6 :V(p,v, r) ≤ Vmin} is PI.

In the context of UAV motion-planning, Proposition 1
permits a direct application of the ISMP under realistic
assumptions, and with quantities (e.g., αmax, Fmax,K) that
can be learned from data for any closed-loop UAV controller
that stabilizes about setpoints in space.

B. PI sets as function of attitude tracking error

To demonstrate this method of computing PI sets, and to
get a sense of what the sets may look like for relevant param-
eters, consider a problem where N = 5 gains are randomized
with magnitudes similar to those in [20]. Specifically, the
gains are randomized such that λ(Ki

p) ∈ [ω2
n, ω

2
n + 1]3 and

λ(Ki
v) ∈ [2ξωn, 2ξωn+1]3 with ωn = 5 and ξ =

√
1/2. The

mass of the micro UAV is m = 0.1kg, the external forces are
bounded as Fmax = 0.05N, and the gravitational acceleration
is g = 9.81m/s2. The resulting additive disturbance in (1b)
is bounded by ∆max = supt ∥∆∥2 = g(1 − cos(αmax)) +
Fmax/m, which is a function of αmax. Here, the largest
feasible attitude tracking error in the sense of (3) is ≈ 0.45.

IV. LARGEST ELLIPSOIDAL SAFE PI SETS

Sec. III outlines a method for computing smallest ellip-
soidal robust PI sets subject to Assumptions A1–A3. To
formulate the RISMP, we also need to construct the largest
ellipsoidal PI sets where constraints are satisfied and where
the operation of the UAV is safe, i.e., free of collisions,
denoted by Omax. In fact, we can only guarantee a transition
from one node to the next if the set Omin in Proposition 1
associated with one node is contained in the set Omax of the
next node. To compute Omax, we use the following Lemma.

Lemma 1 Let xe = (p−r;v) and let V (p,v, r) = ∥xe∥2P
be a Lyapunov function. Let

Γ(r) =
(c⊤p r − d(r))2[
cp
cd

]⊤
P−1

[
cp
cd

] , (5)

then V (p,v, r) ≤ Γ(r) ⇒ c⊤p p+ c⊤v v ≤ d(r).

Lemma 1 determines how much we can inflate the in-
variant set associated with a specific node of the graph
while still retaining safety. We construct safe sublevel sets

for the Lyapunov function in Lemma 1 from positional
constraints for avoiding convex polyhedral obstacles, and
from thrust constraints. Considering one input constraint and
M obstacles, we compute M + 1 such sublevel sets, i.e.,
{Γi}Mi=0, and the largest ellipsoidal safe sublevel set for P
is Omax≜{xe∈R6 :V(p,v, r) ≤ Vmax}, where

Vmax = min({Γi}Mi=0). (6)

A. Polyhedral positional constraints

Consider a vertex at a point r ∈ R3 and let Q = Ppp −
PpvP

−1
vv Pvp be a projection of its associated set Omin on the

positional dimensions via Schur complement. Introducing the
coordinate transformation p̄ = Q1/2(p− r), if V(p, r,v) ≤
Γ is PI, then ∥p̄∥22 ≤ Γ is also PI. For all obstacles Si =
{p : AS

i p ≤ bSi }, we apply the same linear transformation
to obtain S̄i = {p̄ : ĀS

i p̄ ≤ b̄Si } with

ĀS
i = AS

i Q
−1/2, b̄Si = bSi −AS

i r. (7)

In the transformed coordinates, we solve

p̄⋆
i = argmin

p̄∈S̄i

∥p̄∥22. (8)

The hyperplane passing through p̄ = p̄⋆ with normal p̄⋆ is

c⊤p,ip̄ = (p̄⋆
i )

⊤p̄ ≤ (p⋆
i )

⊤p⋆
i ≜ di. (9)

so that for obstacle Si, Γi = ∥p̄⋆
i ∥22. This is illustrated in a

2D projection in Fig. 1 where Γ1 and Γ3 are computed by
the solution of (8).

B. Thrust constraints

Constraints induced by bounds on the thrust become more
cumbersome to enforce in the context of Assumption A2, and
depend on the UAV low-level controller. For the trajectory
tracking control system in [21], the commanded thrust is
f = (mge3 −Kp(p − r) −Kdv) ·Re3, and the objective
is to find a safe PI set such that f ≤ fmax. This can be
done along the lines of [20], but is complicated slightly by
the gains K ∈ K being dense. To construct the level set, we
first state a set of LMIs to bound the denominator in (5) for
the linear constraint f ≤ fmax,

λ⋆ = argmin
(λ11,λ12,λ22)∈R3

(λ), (10a)

subject to [
P K̄i

K̄i Λ

]
⪰ 0, ∀i = 1, .., N, (10b)[

λ11I λ12I
⋆ λ22I

]
= Λ, (10c)

λ11 + 2λ12 + λ22 = λ. (10d)

Lemma 2 Given Assumption A2, let K̄ = diag(Kp,Kd)
and K̄i = diag(Ki

p,K
i
d). There exists λ > 0 such that[

u
u

]⊤
K̄P−1K̄

[
u
u

]
≤ λ ∀u ∈ S2. (11)

The smallest λ satisfying (11) is the solution λ⋆ of (10).



Lemma 2 is useful in defining safe robust PI sets with
respect to a thrust constraint. Following [20] and using
Lemma 1, we obtain a maximal level set V ≤ Γ0 such
that f(t) < fmax for all t ≥ 0, where Γ0 = (fmax −
mg)2m−2(λ⋆)−1 and λ⋆ can be computed from (10).

V. ROBUST INVARIANT-SET MOTION-PLANNING

Leveraging the smallest ellipsoidal robust PI sets (Sec. III)
and inflated safe PI sets (Sec. IV) for specific setpoints r,
we construct a graph G with a vertex set V . To simplify
the exposition, let ri ∈ R ⊆ R3 be a position setpoint.
Furthermore, let Oi

min be computed as in Sec. III for ri, and
Oi

max be the PI sets computed as in Sec. IV for ri. Thus, each
vertex in G is associated with a triple (ri,Oi

min,Oi
max). We

describe how to define the graph connectivity in an offline
step in Sec. V-A, and how to solve Problem 1 by searching
over the graph online in Sec. V-B. Finally, conditions for
updating the reference are stated in Sec. V-C.

A. Building the graph (offline)

The connectivity of the graph can be determined directly
from the triple associated with each vertex. The first step is
to determine suitable reference positions, either by sampling
or by a lattice-based construction as in [15]. Then, the
connectivity can be defined by considering when it is safe to
switch from one ri to another rj based on the invariant sets.
If Oi

min ⊂ Oj
max, any trajectory starting in Oi

max eventually
converges to Oi

min, and it is safe to change the setpoint, as
the UAV resides in Oj

max. Thus, as in standard ISMPs [15],
[17], [18], we construct edges in the graph such that

(Vi,Vj) ∈ E iff Oi
min ⊂ Oj

max. (12)

In the coordinates r̄i = (Ppp − PpvP
−1
vv Pvp)

1/2ri, the
condition (12) is efficiently checked across V × V as

∥r̄i − r̄j∥2 <

√
V j
max −

√
V i
min. (13)

We can associate costs with the edges in several ways. For
simplicity, define the weights cij = ∥r̄i−r̄j∥2. It is relatively
common to find nodes that have a single edge leading into
a vertex, but no edges leading back to any other vertex. To
make the theoretical statements concise, these vertices are
pruned from G along with any disconnected vertices.

B. Modifying and searching the graph (online)

Searching for a path from an initial node to a terminal
node is fast. For this purpose, we can use a standard Dijkstra
algorithm. We need to choose the initial and terminal vertices
before initializing the graph search. The initial vertex is

min
Vi∈V

∥x(t0)− (ri;0)∥2P , (14)

and for a requested terminal position p∞ = limt→∞ p(t), we
add a new node Vj to the graph with rj = p∞. For this new
node, an inflated safe PI set is determined as in Sec. IV, and
edges are added to the neighboring nodes prior to executing
the graph search algorithm. The output of the algorithm is a
path consisting of a sequence of K ≥ 1 vertices.

C. Switching between set-points (online)

Given the path in the graph as a sequence of K vertices,
next we describe the conditions for switching between the
sequence of piecewise constant setpoints associated to the
vertices, see also [15], [17], [18]. With a slight abuse of
notation, we re-number the vertices of the graph according
to their sequence in the path, i.e., V1 is the starting vertex and
VK is the terminal vertex. If at any time t⋆ ≥ tk−1, x(t⋆) ∈
Ok

max, we let tk = t⋆ and start tracking the next reference,
r(t) = rk. Here, (12) implemented by (13) ensures that
tk − tk−1 is finite and that the RISMP solves Problem 1.

While the detailed analysis of the properties is beyond the
scope of this paper, the resulting motion planner provides
safety with respect to the obstacles, since for all t ≥ t0,
x(t) ∈

⋃K
k=1 Ok

max and (
⋃K

k=1 Ok
max) ∩ (

⋃M
i=1 Si) = ∅, and

constraint satisfaction, since for all t ≥ t0, f(t) ≤ fmax.
Furthermore, the stabilizing design of the gains in (4) ensures
that any neighborhood of the goal is entered in finite time.

The success or failure in computing a feasible state tra-
jectory between any initial condition x(t0) ∈

⋃
i Oi

max and
target node in the graph depends entirely on the connectivity
of G. For instance, if two rooms are connected by a passage
that is too narrow to pass subject to the problem data, the
graph will not be fully connected, and the RISMP will not
be able to safely fly the UAV from one room to another. The
graph connectivity can be studied offline, before running any
UAV mission. Such prior statements about feasibility and
operational limits makes the method well suited for tasks
such as indoor factory automation and surveying (e.g., [1]).

VI. SIMULATION EXAMPLES

To demonstrate the RISMP, we consider a scenario in
which the UAV is to navigate through a complex environment
comprised of 13 polyhedral obstacles which overlap to form
a corridor and a small room, as depicted in Fig. 2. The task
is to compute and fly a trajectory for the UAV from an initial
point in the corridor to a target node in the inner room.

A. Offline processing

We consider a Crazyflie 2.1 UAV with the nominal stock
cascaded controller structure that results yields a system
response well approximated by a second-order PD-controlled
system in (1) with nominal gains

K⋆
p = diag(7.78, 7.38, 11.30), (15a)

K⋆
v = diag(3.28, 3.27, 3.75), (15b)

To constitute K for the minimal PI synthesis, we sample
N = 10 gains

(Ki
p,K

i
v) = (K⋆

p ,K
⋆
v )diag(η), η ∼ U([0.9, 1.1]6). (16)

We consider the model parameters g = 9.81m/s2, m =
0.03kg, αmax = 0.1rad, fmax = 2mg = 0.2943N, Fmax =
0.02N. The synthesis of a common Lyapunov function and
robust PI set as per (10b) yields a level set Vmin = 0.24 In
our implementation, this is computed by CVX with SDPT3
and default numerical tolerances. The graph is constructed



(a) (b)

(c) (d) (e) (f)

(g) (h)

Fig. 2. Two scenarios (A,B) where the RISMP is used to compute a solution from a position close to an initial node in the corridor to a target node
in the inner room. (a), (b) The geometry of the world (red) with the 2D-projections of the invariant sets in the [p]1[p]2-plane and 100 realizations each
of the UAV state trajectory subject to different initial conditions x(t0) ∈ bnd(O1

max) at the time t0 = 0 and different realizations of the disturbance
(black). (c), (e) Top view of the same plots. (d) Zoom-in on the position of the UAV at the terminal time T > tK in scenario A. (f) Zoom in on the
position of the UAV in scenario B, showing how the UAV navigates the doorway. (g),(h) Time-series plots of the Lyapunov function in scenarios A and
B, respectively. The plots illustrate the inflated safe set Ok

max by V k
max (blue), the smaller ultimate set Ok

min by V k
min (green), and the exponential decay

of the Lyapunov function V k(t) associated with the node Vk in the path computed by the RISMP. The switching instants {tk}Kk=1 are shown in gray.

as in Sec. V-A starting from an initial set of 9000 nodes
(30×30×10) equidistantly sampled in space (5×8×2.5m).
After the collision checks and removal of infeasible nodes,
a total of 4019 nodes remain with an average of 6.7 directed
edges leaving each node. This computation takes approx-
imately 90s in our non-optimized Matlab implementation,
using quadprog for solving the QPs in (8). Using an X-
bit float representation, the graph of the size used in the
simulations can be stored in as little as

(2× 16 +X)× |E|+ 4×X × |V|+ 37×X bits, (17)

which for X = 32bit results in 294.13kB. While too large
to store on the Crazyflie 2.1 due to its limited memory, it

is well within the total usable memory when operating the
UAV with an onboard SD-card expansion deck.

B. Online Processing and Simulation Setup

In the simulations, we consider two different scenarios
that primarily differ in the initial conditions of the UAV,
referred to as Scenario A and B, respectively. A total of 100
simulations are run in each case, and for each such run, the
following simulation parameters are varied:

• the controller gains K ∼ U(K);
• the initial conditions x(t0) ∼ U(bnd(O1

max));
• the input disturbance realization ∆(t).



To compute an input disturbance, we let R̃ = eS(αmaxu)

be a constant maximal perturbation with a rotation vector
u ∼ U(S2) that is permitted by Assumption A3, take f to
point in the direction (I−R̃)e3, and define ∆ as a constant
disturbance that maximizes ∥∆∥2 subject to the sampled u.
In the simulations, the graph search is done using a standard
Dijkstra algorithm in the Boost Graph Library [24].
In this setting, it takes less than 2ms to find an optimal
solution in both scenarios, with K = 54 in scenario A and
K = 64 in scenario B. The resulting state trajectories from
100 simulations are shown in Fig. 2.

C. Discussion

As shown in Fig.2-(a),(b) in all 200 simulations of Sce-
nario A, B, the trajectories are collision free and reach the
target invariant set OK

min in less than 30s, and the terminal
state x(T ) ∈ OK

min for all T ≥ tK . See also the top view of
the trajectories in Fig.2-(c),(d). When the initial conditions
are shifted in scenario A and B, we get very different paths.
In scenario A, the UAV navigates over a wall with small
clearance, and in taking this route, it maintains its height
and moves above the small box in the inner room. Instead,
in scenario B, the UAV maintains its low height, see Fig.2-
(f) , chooses a different corridor, and goes around the small
box in the inner room.

In all simulations, it is verified that x(t) ∈
⋃K

k=1 Ok
max

at all times, as shown by the time-series plots of two of
the 200 Monte-Carlo runs Fig. 2-(g),(h), where on each
interval t ∈ [tk, tk+1], the Lyapunov function V k(t) (black)
is bounded by the associated V k

max (blue) rendering the
trajectory safe. Furthermore, V k(t) decays exponentially on
each such interval, and enters the terminal minimal PI set at
tK , which differs in scenario A and B and also among the
realizations in each scenario due to the uncertainty.

VII. CONCLUSIONS

We proposed a robust ISMP for quad-rotor UAVs using
an LMI-based computation of small ellipsoidal robust PI
sets subject to: (i) polytopic uncertainty in the controller
gains, (ii) additive input disturbances, and (iii) bounded
attitude tracking errors. We build upon the previous work
in [15], [20], and additionally provide an efficient method
of computing the inflated safe robust PI sets subject to
polyhedral obstacles and thrust constraints. The latter are
defined as sub-level sets to the Lyapunov functions used in
constructing the robust PI sets.

The method performs a majority of its computations
offline, and we demonstrate that a safe path can be computed
online in as little as 2ms for a complex indoor navigation sce-
nario with approximately 100m3 of free-space. Furthermore,
the resulting graph is small enough that it may be put in
memory in micro UAVs such as the Crazyflie 2.1.

Future works will validate these theoretical results exper-
imentally using a Crazyflie 2.1, and possibly consider more
complex costs for the graph edges.
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