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Aircraft Approach Management using Reachability
and Dynamic Programming

Abraham P. Vinod∗, Sachiyo Yamazaki, Ankush Chakrabarty, Nobuyuki Yoshikawa, and Stefano Di Cairano

Abstract— We study the problem of designing safe trajecto-
ries for aircraft approach management. Our tractable method
designs aircraft trajectories that 1) use only limited admissible
maneuvers near the airport, 2) maintains a user-specified
separation between aircraft during the entire duration of the
approach, and 3) minimizes deviations from user-specified times
of arrival at the airport. We use a first-come, first-serve frame-
work to design the trajectories for multiple aircraft by solving
a collection of single-aircraft trajectory planning problems. We
ensure the safety of the overall system by imposing reachability-
based constraints on each planning problem. We identify the
constraints as well as the trajectories for aircraft using dynamic
programming in a three-dimensional space. We validate the
efficacy and safety of our method using historical data from
Japan’s Haneda International Airport.

I. INTRODUCTION

Air traffic is poised to rise back to pre-pandemic levels by
the end of 2023 and continue its rapid growth [1]. Given the
limited space and congestion with air traffic around existing
airports, we need autonomous solutions for safe air traffic
management that will help reduce the work load on air
traffic controllers, and improve the operating efficiency of the
airports. However, these solutions must also be acceptable
for pilots and controllers, and compliant with current air
traffic control procedures to ensure the possibility of rapid
deployment. In this paper, we consider the problem of
autonomously designing safe aircraft trajectories during the
approach phase. The approach phase starts with the aircraft
entering the terminal maneuvering area (TMA) and ends
when the aircraft reaching a merge point near the airport.
At the merge point, the aircraft initiates a landing pattern,
and the aircraft is handed-off to the tower control. Once the
aircraft enters a landing traffic pattern, all motion parameters
until landing are fixed [2]–[4].

We consider three different maneuvers currently employed
for air traffic management near airports — holding pattern
(HOLD), point merge system (PMS), and speed decrement
(DEC). Each of these maneuvers introduces additional delay
in the aircraft’s arrival at the merge point. In a HOLD
maneuver, an aircraft travels in a pre-determined holding
pattern. In a DEC maneuver, the aircraft reduces its speed
while traveling along a straight path. In a PMS maneuver,
an aircraft flies along a sequencing leg (an arc around the
merge point) for a pre-specified duration, after which it
heads towards the merge point [4]. To increase the pas-
senger comfort and reduce fuel consumption, we enforce
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the following preference order when choosing maneuvers
for designing aircraft trajectories — DEC followed by PMS
followed by HOLD. In this paper, we propose a dynamic
programming-based algorithm to autonomously identify the
sequence of maneuvers the pilots of each aircraft must
execute, while respecting the desired order of preference,
maintaining desired separation between aircraft for safety,
and minimizing the deviation of the aircraft’s arrival time at
the airport from the desired time of arrival.

Air traffic management has been active area of research for
the past several decades [2], [3], [5], [6]. Popular methods to
solve air traffic management problems include mixed-integer
programming and dynamic programming. Existing mixed-
integer programming-based methods for aircraft trajectory
generation have mostly focused on PMS and/or HOLD ma-
neuvers [1], [7]. However, mixed-integer programming-based
solutions may not provide real-time guarantees, and therefore
may not be practical for busy airports. For real-time updates
to approach plans, recent literature also provides practical
heuristic solutions, but are limited to PMS-only trajectory
generation [8]. Dynamic programming-based methods have
been typically used for determining landing sequences [5],
[9], and not aircraft trajectory generation. Also, it is unclear
how these methods can be extended to include DEC, while
imposing a preference order for the maneuvers.

The main contribution of this paper is a real-time imple-
mentable algorithm for designing aircraft trajectories near
airport under maneuver, timing, and separation constraints.
Our method uses a first-come-first-serve (FCFS) frame-
work to split the air traffic management problem into a
collection of single-aircraft scheduling problems, identifies
reachability-based constraints on the single-aircraft schedul-
ing problem to ensure safety of the overall system, and
then solves the individual single-aircraft scheduling problem
using dynamic programming. To enable a tractable grid-
based implementation for the dynamic programming, we
propose a low-dimensional formulation of the trajectory opti-
mization problem for a single aircraft approaching the airport
that incorporates the maneuver constraints. We validate the
efficacy and safety of our method using historical data from
Japan’s Haneda International Airport.

II. PRELIMINARIES

Let N[a,b] be the set of natural numbers (including a and b)
between a,b ∈ N with a ≤ b, and ∥ · ∥ denote the Euclidean
norm. We use ⟨r,φ⟩ to denote a two-dimensional point in
polar coordinates whose distance from origin is r ≥ 0 and the
point has an orientation with respect to x-axis as φ ∈ [0,2π).



A. Reachability of a target tube

We briefly review the concept of reachability of a target
tube [10, §4.6]. Consider a nonlinear system,

xk+1 = fk(xk,uk) (1)

with state xk ∈X ⊆Rn and control uk ∈U ⊂Rm. For a hori-
zon K ∈ N, we wish to identify sets {Usafe(k,xk)}K−1

k=0 with
Usafe ⊂U such for an admissible policy π = {µ0, . . . ,µK−1}
with µk(xk)∈Usafe(k,xk), the state of the closed-loop system,

xk+1 = fk(xk,µk(xk)) (2)

belongs to a given (safe) set Sk+1 ⊆X for k∈N[−1,K−1]. We
view the collection of sets {Sk}K

k=1 as a “tube” within which
the state must stay using the available control, and the con-
trol problem of interest as the reachability of a target tube,
where Sk is the target set at time k.

We now consider the reachability problem with a target
tube {Sk}K

k=0 where Sk ⊆ X ×U for k ∈ N[0,K−1], and
SK ⊆ X as a terminal state constraint. For an initial state
x0, we can solve the reachability problem by solving,

J∗(x0) = min
π∈Π

Jπ(x0), (3)

where

Jπ(x0) = gN(xN)+
K−1

∑
k=0

gk(xk,µk(xk)), (4a)

gk(xk,uk) =

{
0, (xk,uk) ∈ Sk,

1, (xk,uk) ̸∈ Sk,
(4b)

gK(xK) =

{
0, xK ∈ SK ,

1, xK ̸∈ SK ,
. (4c)

In (4a), Jπ is the number of violations of the target tube
{Sk}K

k=0 by the closed-loop trajectory corresponding to a
policy π . The optimal policy minimizes the number of
constraint violations Jπ .

We solve (3) using dynamic programming [10]. Specifi-
cally, we define a sequence of cost-to-go functions {J∗k }K

k=0
with J∗K ≜ gK , and

J∗k (xk) = min
uk∈U (k,xk)

(
gk(xk,uk)+ J∗k+1( f (xk,uk))

)
, (5)

for k ∈ N[0,K−1]. From [10, §4.6], J∗ = J∗0 , and the set of
initial states that solve the reachability problem is given by
{x0 : J∗0 (x0) = 0}. Additionally, for each k ∈ N[0,K−1],

Usafe(k,xk) =
{

uk ∈ U
∣∣gk(xk,uk)+ J∗k+1( f (xk,uk)) = 0

}
. (6)

B. Problem statement

Consider the problem of generating safe trajectories for
N ∈N aircraft, where each aircraft i∈N[1,N] can only perform
maneuvers illustrated in Figure 1, which are familiar for
pilots, controllers, and air traffic control systems. We focus
on the lateral (latitude and longitude) motion of the aircraft
for simplicity, and ignore altitude changes. Additionally, we
use a polar coordinate system to describe the intermediate
points of interest, with the merge point as the origin.

Fig. 1. Typical aircraft trajectories (blue and brown) during the approach
phase. The aircraft, upon reaching the merge point, are handed-off to ground
control for landing (grey arrow). We are interested in ensuring separation
at all times when aircraft are within the PMS circle. The figure illustrates
various important waypoints (black).

Fig. 2. The aircraft passes through six segments in the approach phase
after starting at the START stage. In each segment, the aircraft can perform
a specific maneuver a ∈ N times.

As illustrated in Figure 2, the aircraft trajectory can be
divided into six segments after START — START-HOLD,
HOLD, HOLD-PMS, PMS, PMS-GOAL, and GOAL. We use
GOAL to indicate that the aircraft reached the merge point.

Initialization: We define the initial stage of the trajectory
as START, where the aircraft enters TMA defined as a
ball of radius Dstart > 0 around the merge point. We are
provided with the following information about the aircraft
at START — the current time t0 ≥ 0, the current orientation
of the aircraft with respect to the merge point φ0 ∈ [0,2π),
and the desired arrival time at the merge point tarrival > t0.
We denote the initial information associated with aircraft
i ∈ N[1,N] by the tuple Ii =

(
t(i)0 ,φ

(i)
0 , t(i)arrival

)
. By design,

the position of the aircraft i at START is
〈

Dstart,φ
(i)
0

〉
. We

assume that all aircraft enter the terminal maneuvering area
at an identical initial speed V0, which is reasonable based on
standard flightplans and controlled airspace rules.

Speed deceleration maneuver: The aircraft may also be
asked to perform speed decrements maneuvers DEC at any
or all of the three parts of the trajectory — between START
and HOLD entry point, between HOLD exit point and PMS
entry point, and between PMS exit point and the merge point.
In each of these segments, the aircraft performs an aircraft-
independent constant deceleration during a DEC maneuver
with the deceleration magnitude B > 0. We assume that the
aircraft’s speed can be reduced in steps of ∆V > 0 by a∆V
for some a ∈N[0,Ndec] for some Ndec ∈N and a pre-specified
speed decrement ∆V > 0.

Holding maneuver: Once the aircraft enters TMA, the
aircraft continues towards the HOLD entry point, which
is located at ⟨Dhold,αhold⟩ with Dhold ∈ (0,Dstart). Upon



reaching the HOLD entry point, the aircraft may be asked
to perform a ∈N[0,Nhold] hold maneuvers for some Nhold ∈N,
or continue towards the merge point. In a HOLD maneuver,
the aircraft follows a pre-defined loop that originates and
terminates at the HOLD entry point, and each hold maneuver
introduces a delay of Thold > 0 minutes.

PMS maneuver: The aircraft continues towards the PMS
entry point, which is located at

〈
Dpms,αpms

〉
with Dpms ∈

(0,Dhold). We will refer to the circle centered at the merge
point with radius Dpms as the PMS circle. Upon reaching
the PMS entry point, the aircraft may be asked to continue
towards the merge point, or subtend an angle θpms = aθ

step
pms

at the merge point by traveling along the PMS circle at a
constant angular rate ωpms. Here, a ∈ N[0,Npms] with Npms ≜⌊

Θmax
pms/θ

step
pms

⌋
for some Θmax

pms ∈ (0,2π) and θ
step
pms ∈ (0,Θmax

pms).
We will assume ωpms = Vpms/Dpms = (V0 − ϑm∆V )/Dpms,
where Vpms denotes the speed of the aircraft at the PMS entry
point that may be computed using ϑm, the number of velocity
decrements requested during the maneuvers START-HOLD
and HOLD-PMS. A PMS maneuver delays the aircraft by
aTpms, where Tpms ≜ (Dpmsθ

step
pms )/(V0−ϑm∆V ). Upon exiting

the PMS circle, the aircraft heads towards the merge point.
Trajectory optimization problem: We design aircraft tra-

jectories to optimize the following problem:
• Performance objective: The aircraft must minimize de-

viation (if any) from its desired arrival time.
• Maneuver constraints: The aircraft motion is subject

to constraints imposed by the maneuvers. Also, we
prefer DEC maneuvers over PMS maneuvers, and PMS
maneuvers over HOLD maneuvers, when possible.

• Information constraint: We have the initial information
of aircraft Ii, only when the aircraft i enters TMA.

• Safety constraint: For safety, the aircraft must maintain
a separation of Dsep > 0 between any other aircraft,
when the both aircraft are at least Dpms-close to the
merge point (not farther than Dpms).

We use the information constraint to account for the limita-
tions of the radars employed by typical airports as well as
to accommodate any unexpected delays faced by an aircraft
during its journey. We restrict the safety constraint to aircraft
that are within or on the PMS circle for simplicity.

Problem 1. Design an algorithm to construct aircraft tra-
jectories comprised only of the admissible maneuvers (DEC,
PMS, and HOLD, in their order of preference), such that
each aircraft’s trajectory minimizes the performance ob-
jective while satisfying constraints arising from maneuver,
information, and safety/separation constraints.

Due to the information constraint and to ensure tractability,
we formulate a FCFS-based algorithm to solve Problem 1.
FCFS-based algorithms are popular in air traffic management
as they are easy to implement and they reduce pilot workload
by not modifying the operating instructions once relayed [1]–
[3], [6]. However, FCFS-based algorithms can be suboptimal
for airport throughput. To optimize throughput, constrained
position switching-based algorithms may be used, which

allows limited changes to relayed instructions [9].

III. TRAJECTORY OPTIMIZATION FOR SINGLE AIRCRAFT

In this section, we formulate the single aircraft trajectory
optimization problem as a low-dimensional Markov Deci-
sion Process (MDP). The proposed formulation enforces the
maneuver constraints by design, and we choose a reward
function motivated by the performance objective as well as
the maneuver preferences.

We cast the problem of trajectory optimization for a single
aircraft as a discrete-time, mixed-state MDP with discrete
action space. Denoting the six segments after START (see
Fig. 2) of the aircraft trajectory using m ∈N[0,5], the aircraft
trajectory design starts with the aircraft in START-HOLD
segment m = 0, and terminates at the GOAL segment m = 5.
Therefore, we use m analogous to “time” to define the MDP.

State space: The state x ∈ X ≜ R× [0,2π)×N[0,3Ndec] at
stage m is given by the triplet

xm = (∆tm,φm,ϑm), (7)

where ∆tm ≜ tm − tarrival with tm ∈ R denoting the time an
aircraft enters segment m, φm denotes the orientation of the
aircraft with respect to the merge point at the start of the
segment m, and ϑm denotes the number of executed speed
decrements prior to the segment m. By construction, the
speed of the aircraft at the start of segment m is given by

Vm =V0 −ϑm∆V, (8)

and the initial state of the MDP is x0 = (t0 − tarrival,φ0,0).
Action space: At each segment m ∈N[0,5], we can apply a

discrete action a ∈ A (m)⊂ N. Specifically,

A (m) =


N[0,Nhold], m = 1 (HOLD),

N[0,Npms], m = 3 (PMS),

/0, m = 5 (GOAL),

N[0,Ndec], otherwise.

(9)

Transition function: We model the aircraft’s motion dur-
ing the approach as a point mass constrained to the path
described in Figure 1.

For DEC maneuver (m ∈ {0,2,4}), the next state under
a speed decrement action a ∈ A (m) = N[0,Ndec] is xm+1 =
(∆tm+1,ϑm+1,φm+1), where

∆tm+1 = ∆tm +
2BD(m)

gap − (a∆V )2

2B(V0 − (ϑm +a)∆V )
, (10a)

φm+1 =


αhold, m = 0,
αpms, m = 2,
φm, m = 4,

(10b)

ϑm+1 = ϑm +a, (10c)

where D(m)
gap is the distance between the current position and

the entry point of the next segment. Specifically,

D(m)
gap =


∥⟨Dstart,φ0⟩−⟨Dhold,αhold⟩∥, m = 0,

∥⟨Dhold,αhold⟩−
〈
Dpms,αpms

〉
∥, m = 2,

Dpms, m = 4.

(11)



See Appendix A for the derivation of (10a).
For HOLD (m = 1) and PMS (m = 3) maneuvers, the next

state under action a ∈ A (1) = N[0,Nhold] and a ∈ A (3) =
N[0,Npms] are xm+1 = (∆tm+1,ϑm+1,φm+1) respectively, with

∆tm+1 =

{
∆tm +aThold m = 1,

∆tm +aTpms m = 3,
(12a)

φm+1 =

{
αhold, m = 1,

αpms +aθ
step
pms , m = 3,

(12b)

ϑ
+ = ϑ . (12c)

Reward function: We define the reward function as follows,

r(s,a) =

{
TerminalReward(∆t5) m = 5,
−ActionPenalty(m)a, otherwise,

(13)

where TerminalReward :R→R is a terminal reward function
on ∆t5, and ActionPenalty : N[0,4] →R penalizes actions and
enforces the preference order for the maneuvers. Specifically,
TerminalReward is a continuous function that rewards min-
imal deviation of ∆t5 from zero and decays with increasing
deviation from zero, i.e., we get the maximum reward when
the aircraft i reaches the airport at t(i)arrival. On the other
hand, ActionPenalty enforces the order of preference with
ActionPenalty(0) = ActionPenalty(2) = ActionPenalty(4) <
ActionPenalty(3)< ActionPenalty(1).

Since MDP has a low-dimensional state-space and a
single-dimensional discrete action space, we can leverage
dynamic programming to design an optimal single-aircraft
trajectory. Specifically, we set up value functions V ∗

m : X →
R for m ∈ N[0,5] defined by the recursion,

V ∗
5 (∆tm, ·, ·) = TerminalReward(∆t), (14a)

V ∗
m (xm) = max

a∈A (m)

(
r(xm,a)+V ∗

m+1(xm+1)
)
, (14b)

for m ∈ N[0,4]. Given value functions {V ∗
m }m∈N[0,5] , we can

identify the optimal action at any state x by,

a∗ = arg max
a∈A (m)

(
r(xm,a)+V ∗

m+1(xm+1)
)
. (15)

Equations (14) and (15) enable the design of trajectories
for single aircraft, and incorporate the performance objective
and maneuver constraints in Section II-B. In a practical
implementation, we define a grid over X and perform the
backward recursion described in (14) to obtain an approxi-
mation of the value functions {V̂m}m∈N[0,5] .

IV. SAFE TRAJECTORY OPTIMIZATION FOR MULTIPLE
AIRCRAFT

In this section, we propose a FCFS framework that solves
Problem 1, by solving a collection of single aircraft trajectory
optimization problems under additional constraints in the
action space. Under FCFS framework, during the design of
the trajectory for aircraft i∈N[2,N], we know the trajectory of
aircraft j ∈N[1,i−1]. Consequently, we can use the reachabil-
ity of target tube reviewed in Section II-A to identify the set
of admissible waypoints and actions for aircraft i that do not
violate the separation constraint. The reachability analysis

TABLE I
STAGE COSTS FOR ASAFE COMPUTATION FOR SAFE TRAJECTORY

OPTIMIZATION FOR MULTIPLE AIRCRAFT BASED ON SECTION II-A

g Indicator function Equation numbers
g5 I(5,) (38)
g4 max(I(4,3), I(4,4), I(4,5)) (34), (21), (39)
g3 max(I(3,3), I(3,4)) (26), (37)

g0,g1,g2 0 -

characterizes a restricted safe action space Asafe that ensures
safety (see (6)). Thus, by replacing A in (14) and (15)
with Asafe, we can enforce the safety constraint involving
multiple aircraft in the single aircraft trajectory optimization,
and solve Problem 1.

For the state x(i)m ∈X defined in (7) and the input (action)
a(i)m ∈A (m) defined in (9), the nonlinear dynamics fm : X ×
A (m)→ X in (1) are characterized by (10) and (12).

Next, we complete the definition of the reachability prob-
lem (3) by identifying the indicator functions gm : X ×
A (m) → {0,1} that characterizes safe state-actions pairs
(x(i)m ,a(i)m ) for each m ∈ N[0,4], such that no collision occurs
at all time between the segments m and m+1 between the
aircraft i and an aircraft j ∈ N[1,i−1].

Table I list the definitions of gm using I(mi,m j), where

I(mi,m j) are defined by considering state-action pairs (x(i)mi ,a
(i)
mi )

that result in collision when aircraft i and j are segments mi
and m j respectively. The use of ‘max’ in the definition of
gm ensures that gm = 1 if any of the associated indicator
functions evaluates to one (i.e. a constraint is violated).

We now briefly discuss the derivations for I(mi,m j). From
Figure 1, we must consider five different scenarios.

1) Both aircraft have m = 4: In this scenario, both air-
craft are between PMS exit point and the merge point (see
Figure 3.a), and can perform speed decrements. Specifically,
each aircraft k ∈ {i, j} undergoes a DEC maneuver of a(k)4
speed decrements respectively. Then, each aircraft proceeds
to the merge point with a constant speed.

This particular scenario occurs for τ ∈ T
(i, j)
(4,4) , with

T
(i, j)
(4,4) ≜

⋂
k∈{i, j}

[t(k)4 , t(k)5 ] =

[
max

k∈{i, j}

(
t(k)4

)
, min
k∈{i, j}

(
t(k)5

)]
. (16)

The safety constraint in this scenario is,∥∥∥〈r(i)(τ),φ (i)(τ)
〉
−
〈

r( j)(τ),φ ( j)(τ)
〉∥∥∥≥ Dsep, (17)

for all τ ∈ T
(i, j)
(4,4) . From the triangle inequality (Figure 3.a),

min
τ∈T

(i, j)
(4,4)

|r(i)(τ)− r( j)(τ)| ≥ Dsep =⇒ (17). (18)

By equations of motion, we have

r(k)(τ)

=

 Dpms −V (k)
4

(
τ − t(k)4

)
+ B

2

(
τ − t(k)4

)2
, t(k)4 ≤ τ ≤ t(k)4,int,

Dpms −D(k)
dec −V (k)

5

(
τ −
(

t(k)4 + a(k)∆V
B

))
, t(k)4,int < τ ≤ t(k)5 ,

(19)



a) Both aircraft have m = 4, where the lower bound on LHS of (17) is from
triangle inequality (c ≥ |a−b| for any triangle with sides a, b, and c).

b) Both aircraft have m = 3, where the aircraft separation can be expressed
exactly using the difference between φ (i)(τ) and φ ( j)(τ).

c) Aircraft i has m= 4 and aircraft j has m= 3, where the aircraft separation
is analyzed using the parallelogram law.

Fig. 3. Various scenarios considered for the safety constraint.

with t(k)4,int = t(k)4 + a(k)∆V
B since each aircraft k decelerates for a

duration of (a(k)∆V )/B, V (k)
m given by (8), and D(k)

dec denoting
the distance traveled by aircraft k,

D(k)
dec =

(
V (k)

4

)2
−
(

V (k)
5

)2

2B
. (20)

We encode the safety condition in (18) for aircraft i ∈
N[2,N] using an indicator function I(4,4) : X ×A (4)→{0,1},

I(4,4)

(
x(i)4 ,a(i)4

)
=


0, min

j∈N[1,i−1]

min
τ∈T

(i, j)
(4,4)

|r(i)(τ)− r( j)(τ)| ≥ Dsep,

1, otherwise.
(21)

2) Both aircraft have m= 3: In this scenario, both aircraft
are on PMS segment (Figure 3.b). Specifically, each aircraft
k ∈ {i, j} travels along the PMS circle, subtending an angle
of θ

(k)
pms = a(k)3 θ

step
pms at a constant rate ω

(k)
pms =

V0−ϑ3∆V
Dpms

during
the PMS maneuver.

This particular scenario occurs for τ ∈ T
(i, j)
(3,3) , with

T
(i, j)
(3,3) ≜

⋂
k∈{i, j}

[t(k)3 , t(k)4 ] =

[
max

k∈{i, j}

(
t(k)3

)
, min

k∈{i, j}

(
t(k)4

)]
. (22)

We define φ (k)(τ) as the orientation of aircraft k ∈ {i, j} with
respect to the merge point at τ ∈ T

(i, j)
(3,3) , with

φ
(k)(τ) = αpms +ω

(k)
pms

(
τ − t(k)3

)
. (23)

By design, φ (k)
(

t(k)3

)
= αpms and φ (k)

(
t(k)4

)
= αpms +θ

(k)
pms.

The safety constraint in this scenario is,∥∥∥〈Dpms,φ
(i)(τ)

〉
−
〈

Dpms,φ
( j)(τ)

〉∥∥∥≥ Dsep, (24)

for all τ ∈ T
(i, j)
(3,3) . Since the bisector of the angle subtended

by the arc connecting
〈

Dpms,φ
(i)(τ)

〉
and

〈
Dpms,φ

( j)(τ)
〉

at the merge point is also a perpendicular bisector of the line
joining them (see Figure 3.b), LHS of (24) can be simplified,∥∥∥〈Dpms,φ

(i)(τ)
〉
−
〈

Dpms,φ
( j)(τ)

〉∥∥∥= 2Dpms sin

(
|φ (i)(τ)−φ ( j)(τ)|

2

)
.

Consequently, we can reformulate (24) as

min
τ∈T

(i, j)
(3,3)

|φ (i)(τ)−φ
( j)(τ)| ≥ Φ

(i, j)
(3,3) ≜ 2sin−1

(
Dsep

2Dpms

)
⇐⇒ (24). (25)

Similarly to (21), we encode (25) for aircraft i ∈ N[2,N]

using an indicator function I(3,3) : X ×A (3)→{0,1},

I(3,3)

(
x(i)3 ,a(i)3

)
=


0, min

j∈N[1,i−1]

min
τ∈T

(i, j)
(3,3)

|φ (i)(τ)−φ ( j)(τ)| ≥ Φ
(i, j)
(3,3),

1, otherwise.
(26)

3) Aircraft i has m = 4, aircraft j ∈N[1,i−1] has m = 3: In
this scenario, aircraft i is between PMS exit point and GOAL
(see Figure 3.c), while aircraft j is on PMS segment.

This particular scenario occurs for τ ∈ T
(i, j)
(4,3) , with

T
(i, j)
(4,3) ≜

[
t(i)4 , t(i)5

]⋂[
t( j)
3 , t( j)

4

]
, (27)

and the safety constraint in this scenario is,∥∥∥〈r(i)(τ),φ (i)
4

〉
−
〈

Dpms,φ
( j)(τ)

〉∥∥∥≥ Dsep, (28)

for all τ ∈ T
(i, j)
(4,3) . By parallelogram law, the LHS of (28) is∥∥∥〈r(i)(τ),φ (i)

4

〉
−
〈

Dpms,φ
( j)(τ)

〉∥∥∥2

=
(

Dpms − r(i)(τ)
)2

+2Dpmsr(i)(τ)
(

1− cos
(

φ
(i)
4 −φ

( j)(τ)
))

, (29)

Thus, we have two disjoint sufficient conditions for (28):

Dpms − r(i)(τ)≥ Dsep, OR (30a)

Dpms − r(i)(τ)< Dsep and cos
(

φ
(i)
4 −φ

( j)(τ)
)
≤ cthresh, (30b)

where

cthresh = 1−
D2

sep

2Dpms(Dpms −Dsep)
. (31)

Here, we have (30a) by requiring that the first term in (29) to
be at least D2

sep and observing that the second term in (29) is
nonnegative. On the other hand, we have (30b) by requiring
that the second term in (29) to be at least D2

sep.

Define t(i)create-sep > 0 such that r(i)
(

t(i)4 + t(i)create-sep

)
=

Dpms − Dsep. We can compute t(i)create-sep by solving either
a linear or a quadratic equation (see (19)). Since r(i) is



a decreasing function in τ , (30a) is trivially satisfied for
τ ∈

[
t(i)4 + t(i)create-sep, t

(i)
5

]
. Thus, from (30b),

min
τ∈T

(i, j)
(4,3)

∣∣∣φ (i)
4 −φ

( j)(τ)
∣∣∣≥ Φ

(i, j)
(4,3) ≜ cos−1 (cthresh) =⇒ (28), (32)

with

T̂
(i, j)
(4,3) =

[
t(i)4 , t(i)4 + t(i)create-sep

]⋂[
t( j)
3 , t( j)

4

]
⊂ T

(i, j)
(4,3) . (33)

We encode the safety condition in (32) for aircraft i ∈
N[2,N] using an indicator function I(4,3) : X ×A (4)→{0,1},

I(4,3)

(
x(i)4 ,a(i)4

)
=


0, min

j∈N[1,i−1]

min
τ∈T̂

(i, j)
(4,3)

∣∣∣φ (i)
4 −φ ( j)(τ)

∣∣∣≥ Φ
(i, j)
(4,3),

1, otherwise.
(34)

Here, I(4,3) depends on
(

x(i)4 ,a(i)4

)
, since we require φ

(i)
4 in

(30), and ∆t4, ϑ4, a(i)4 for the computation of t(i)create-sep (and
thereby, T̂

(i, j)
(4,3) ).

4) Aircraft i has m = 3, aircraft j ∈ N[1,i−1] has m = 4:
In this scenario, aircraft i is on PMS segment, while aircraft
j is between PMS exit point and GOAL. By arguments used
to derive (32), a sufficient condition for safety is,

min
τ∈T

(i, j)
(3,4)

∣∣∣φ (i)(τ)−φ
( j)
4

∣∣∣≥ Φ
(i, j)
(3,4) = Φ

(i, j)
(4,3), (35)

with

T̂
(i, j)
(3,4) =

[
t(i)3 , t(i)4

]⋂[
t( j)
4 , t( j)

4 + t( j)
create-sep

]
, (36)

where t( j)
create-sep > 0 is such that r( j)

(
t( j)
4 + t( j)

create-sep

)
=

Dpms −Dsep.
Similarly to (34), we encode (35) for aircraft i ∈ N[2,N]

using an indicator function I(3,4) : X ×A (3)→{0,1},

I(3,4)

(
x(i)3 ,a(i)3

)
=


0, min

j∈N[1,i−1]

min
τ∈T̂

(i, j)
(3,4)

∣∣∣φ (i)(τ)−φ
( j)
4

∣∣∣≥ Φ
(i, j)
(3,4),

1, otherwise.
(37)

Here, I(3,4) depends on
(

x(i)3 ,a(i)3

)
, since we require ∆t3

and ϑ4 for the computation of φ (i) (see (23)), and a(i)3 to
determine t(i)4 (and thereby, T̂

(i, j)
(3,4) ).

5) At least one aircraft has m= 5: This scenario considers
the case where one of the aircraft has been handed-off
to tower control for landing. For the case where aircraft
i ∈ N[2,N] has m = 5, we require the separation between the
preceding and succeeding aircraft reaching the merge point to
maintain some pre-specified time separation Tsep > 0. Thus,
we define an indicator function I(5,) : X →{0,1},

I(5,)

(
x(i)5

)
=

 0, min j∈N[1,i−1]

∣∣∣t( j)
5 − t(i)5

∣∣∣≥ Tsep,

1, otherwise.
(38)

Algorithm 1: Safe trajectory generation for aircraft i

Input: Aircraft information {I j}i
j=1, approach parameters

(Dstart,Dhold,Dpms,αhold,αpms,Nhold,Thold,Npms,θ
step
pms ,

∆V,Ndec,B,Dsep,Tsep), grid ∆tgrid, φgrid, state-action pairs

{(x( j)
m ,a( j)

m )}
4
m=0 and x( j)

5 of aircraft j ∈ N[1,i−1] (i ≥ 2)

Output: State-action pairs {(x(i)m , â(i)m )}
4
m=0 and x(i)5 for

aircraft i, that together characterizes its trajectory
1: Compute {Ĵm}5

m=0 using (5) and Table I
2: Compute {Âsafe(m)}5

m=0 using (6), where J∗ ⇒ Ĵ
3: Compute {V̂m}5

m=0 using (14), where A ⇒ Âsafe

4: Compute â using (15), where A ⇒ Âsafe and V ∗ ⇒ V̂

On the other hand, to enforce the time separation constraint
for aircraft i ∈ N[2,N] has m = 4, we define an indicator
function I(4,5) : X ×A (4)→{0,1},

I(4,5)

(
x(i)4 ,a(i)4

)
=

 0, min j∈N[1,i−1]

∣∣∣t+,(i)
4 − t( j)

5

∣∣∣≥ Tsep,

1, otherwise,
(39)

where t+,(i)
4 = t(i)5 corresponding to

(
x(i)4 ,a(i)4

)
.

We ignore the rest of the scenarios, since they have at least
one aircraft with m ≤ 2. In other words, one of the aircraft
is farther from the merge point by Dpms, and no separation
constraint needs to be imposed.

Remark 1 (IMPLEMENTATION OF I(mi,m j)). First, recall
that the global minimum of an optimization over an empty
interval is +∞ (optimization is infeasible). Consequently,
as an example, I(4,4)

(
x(i)4 ,a(i)4

)
= 0 for any (x(i)4 ,a(i)4 ), when

T
(i, j)
(4,4) = /0. Second, most of the indicator functions I(mi,m j)

defined in this section requires the computation of the global
minimum of a collection of one-dimensional functions over
an interval, where each function is a composition of | · | and
a quadratic/linear function. Using simple arguments from
calculus, we can solve these global optimization problems
without requiring solvers.

A. Summarizing the proposed method

We summarize the proposed method, which solves Prob-
lem 1, in Algorithm 1. For each new aircraft i, Algorithm 1
solves two dynamic programming problems.

Since each dynamic programming problem involves a
three-dimensional state space (two dimensions are contin-
uous and one dimension is discrete) and a one-dimensional,
discrete action space, we can approximate the dynamic
programming recursions via a grid. We denote the approx-
imations using (̂·), and use ⇒ to denote replacements of
functions/sets with their grid-based approximations.

V. SIMULATIONS WITH DATA FROM HANEDA AIRPORT

We validated our method in numerical simulations using
historical data from the Haneda International Airport. We
collected aircraft names as well as their scheduled arrival
times for 30 aircraft from [11]. We chose Dstart = 100 nm
(nautical miles), Dhold = 60, Dpms = 45, αhold =αpms =−75◦,



TABLE II
SUMMARY OF THE NUMERICAL VALIDATION USING 4-HOUR DATA FROM

HANEDA INTERNATIONAL AIRPORT WITH 30 AIRCRAFT. WE REPORT

(0.05,0.5,0.95)-QUANTILES FOR THE UTILIZATION.

Property Quantity
Number of safety violations 0

Aircraft that reach within 1 min. of tarrival 66.67%
Aircraft that reach within 2 min. of tarrival 99.03%

Utilization of DEC 83.3% / 93.3% / 96.6%
Utilization of PMS 66.6% / 73.3% / 93.3%

Utilization of HOLD 13.3% / 23.3% / 33.3%

Fig. 4. Arrival schedule and result

Nhold = 5, Thold = 3 min., Npms = 150, θ
step
pms = 1◦, ∆V = 10

knots, Ndec = 5, Dsep = 2.5 nm, and Tsep = 1 min. We chose
φgrid as a uniform grid in [0,2π) in step sizes of π/180, and
∆tgrid as a grid over five hours in step sizes of 10 seconds.
We assumed that the aircraft reached TMA 1 hour before
the scheduled arrival time, chose ARLON (a fix near Haneda
Airport) as the merge point, and set up appropriate entry
points for HOLD and PMS maneuvers.

Table II summarizes various performance and safety met-
rics associated with the method. As desired, no collisions
occurred during the simulation. Additionally, the utilization
quantiles show that the trajectories following the desired
preference order. Note that the computation time per aircraft
was less than 200 s on a standard desktop computer, running
non-optimized Python code.

Figure 4 shows the arrival schedule. As expected, the
proposed method spreads out the arrival schedule and spaces
out the trajectories to avoid collisions, while minimizing
deviations.

VI. CONCLUSION

We propose a tractable method using reachability and
dynamic programming to design aircraft trajectories for safe
air traffic management. Our FCFS-based method utilizes a
low-dimensional formulation of the single aircraft trajectory
optimization problem, and characterizes the system-level
safety constraints as constraints in the available actions for
the single aircraft at each segment.

Our future work will investigate the use of constrained po-
sition switching to optimize airport throughput, and consider
more realistic aircraft dynamics.
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APPENDIX

A. Derivation for ∆tm+1 using equations of motion

We derive (10a) and (12a) using equations of motion.
In the DEC maneuver with a speed decrements, the aircraft

decelerates for a period of (a∆V )/B and then travels rest
of the distance until the next segment at a constant speed
Vnext = Vcurrent − a∆V where Vcurrent = V0 −ϑm∆V . The dis-
tance travelled during deceleration is

Ddec =
(V 2

next −V 2
current)

2(−B)
=

(a∆V )(Vnext +Vcurrent)

2B
. (40)

For Dgap in (11), the distance remaining after deceleration is

Drem = Dgap −Ddec =
2BDgap − (a∆V )(Vnext +Vcurrent)

2B
. (41)

The relative time at the next segment is

∆t+ = ∆t +Time to decelerate+Time to next segment (42)

= ∆t +
a∆V

B
+

Drem

Vnext
(43)

= ∆t +
a∆V

B
+

2BDgap − (a∆V )(Vnext +Vcurrent)

2BVnext
(44)

= ∆t +
2BDgap +2(a∆V )Vnext − (a∆V )(Vnext +Vcurrent)

2BVnext
(45)

= ∆t +
2BDgap +(a∆V )(Vnext −Vcurrent)

2BVnext
(46)

= ∆t +
2BDgap − (a∆V )2

2BVnext
. (47)

On the other hand, for the HOLD and PMS maneuvers, the
action a increments ∆t by aThold and aTpms respectively.
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