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Data-Driven Monitoring with Mobile Sensors and Charging Stations
using Multi-Arm Bandits and Coordinated Motion Planners
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Abstract— We study the problem of data-driven monitoring
using an autonomous search team. We consider a typical
monitoring task of classifying a search environment into in-
teresting and uninteresting regions as quickly as possible using
a search team comprised of mobile sensors (e.g., drones) and
mobile charging stations (e.g., ground vehicles). For widespread
deployment in the physical world, the search team must
also accommodate noisy data collected by the mobile sensors,
overcome energy constraints on the mobile sensors which limit
their range, and ensure collision avoidance for the charging
stations. We address these challenges using a novel, bi-level
approach for the monitoring task, where a high-level planner
uses past data to determine the potential regions of interest for
the drones to visit, and a low-level path planner coordinates the
paths for the entire search team to visit these regions subject to
the posed constraints. We design the high-level planner using
a multi-armed bandit framework. For the low-level planner,
we propose two approaches: an optimal integer program-based
motion planner and a real-time implementable graph-based
heuristic planner. We characterize several theoretical properties
of the proposed approaches, including anytime guarantees,
upper bounds on computing time, and task completion time.
We show the efficacy of our approach in simulations, including
one in Gazebo where we identify harvest-ready trees using an
autonomous heterogeneous search team.

I. INTRODUCTION

Monitoring large areas using autonomous search teams
has several critical applications, including environmental
monitoring, search and rescue operations, and wildlife track-
ing [1]–[4]. In this paper, we propose algorithms for au-
tonomous search teams to identify regions containing inter-
esting objects or phenomena. Our focus is on heterogeneous
search teams comprising mobile sensors, such as range-
limited drones with noisy sensors, and ground robots. The
ground robots collaborate with drones to address constraints
from the physical environment, such as the energy limitations
of drones. Our approach is motivated by the limitations of
drone platforms available in the market today, which are
often constrained in range due to battery and communica-
tion limitations and are often only equipped with low-cost,
lightweight sensors that provide noisy measurements.

Several strategies have been proposed for multi-agent
search [2]–[4]. Popular approaches include algorithms based
on submodular maximization [5], algorithms combining
Voronoi-based search [6] with function approximation [7],
[8], active sensing/perception algorithms [9], graph-based
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Fig. 1: Data-driven multi-agent search under noisy obser-
vations. Measurements of cells determine confidences that
inform the high-level planner on which cells to visit. Based
on this, the low-level planner computes trajectories for the
agents subject to various constraints, ensuring safe sensor
deployment when collecting additional data.

search algorithms [10], [11], and algorithms based on statis-
tical learning [12], [13]. However, these works may require
perfect sensing, may not have finite-time guarantees on the
search performance, and/or may generate trajectories for the
mobile sensors that are suboptimal in terms of energy usage.

Recently, bandit-based algorithms have been proposed
for data-driven monitoring [1], [14], [15]. While [14], [15]
propose algorithms to identify the top-k interesting regions,
their approaches require prior knowledge of the number
of interesting regions in the search environment and may
not extend to large search teams or mobile sensors with
energy limitations. Recently, a bandit-based approach [1] was
proposed to identify all interesting regions, but [1] treats
the motion and energy constraints on the search team as
soft constraints that may be violated. In this work, we build
upon the approach in [1] to propose a bandit-based data-
driven monitoring strategy, and use coordinated control of
the heterogeneous search team to guarantee satisfaction of
motion and energy constraints.

The problem of coordinated control of heterogeneous
teams of aerial and ground vehicles have gained attention
to tackle the energy limitations of drones [2]–[4]. Examples
of recent works include approaches based on satisfiability
modulo theories [16], approaches that rely on assigned roles
for the search team members via partitioning [17], and ap-
proaches that solve vehicle routing problems [18]. However,



these works may be limited to static goals due to the need
for offline planning, may not scale to large search teams, and
may not adapt to dynamic assignments of sub-teams formed
by a ground vehicle and its associated aerial vehicles. In this
paper, we propose an optimal, integer program-based motion
planner and a real-time implementable, graph-based heuristic
planner to overcome these limitations.

The main contribution of this work is a bi-level approach
for the monitoring task that uses online data for agent
deployment and uses optimization or graph-based planning
to coordinate the path planning for the search teams. We
provide theoretical guarantees for the proposed approach, in-
cluding anytime guarantees (the algorithm provides a useful
result, even when terminated prematurely), and finite upper
bounds on compute time and monitoring completion. We also
demonstrate our approach in several simulations, including
a Gazebo simulation based on precision agriculture.

Notation: For a set S, |S| denotes its cardinality, and S∁
denotes its complement with respect to some set G ⊃ G.

II. PROBLEM STATEMENT

Search environment: We model the search environment as
a set G of grid cells. We collect all cells that are occupied by
obstacles or are no-fly zones in a known set O ⊂ G. We will
use I ⊂ G \ O to denote the set of interesting cells, which
is a priori unknown. Specifically, I is the set of cells that
are occupied by objects/phenomena of interest. We wish to
characterize I using data collected by a search team.

Search team: We use a search team with Nd ∈ N mobile
sensors (e.g., drones) from now on simply sensors, and Nc ∈
N charging stations (e.g., autonomous trucks) from now on
simply stations, where Nc ≤ Nd. While both the sensors and
stations can move in the search environment, we constrain
their motion to enforce energy limitations on the sensors
and slower relative speed of the stations with respect to the
sensors. We assume that the sensors can move to one of their
neighboring cells in any direction at each time step (like a
king piece in chess), excluding the cells in O. However, the
sensors run out of battery after traversing Td cells and need
to be recharged to continue. Assuming that the sensors and
stations have a speed of vd and vc respectively with vd > vc,
vd/vc ∈ N, Tc ≜ Td

vc
vd
∈ N, the stations can move at most

Tc < Td cells in the same duration as that of the mobile
sensors covers Td cells. Similarly to the sensors, the stations
can move to any of their neighbouring cells, but can move
only at every Td

Tc
time steps. For any cell l ∈ G, we denote the

set of neighboring cells in all directions by N (l) ⊆ G\O. We
can also accommodate other motion models for the sensors
and the stations, e.g., axis-aligned movements.

Sensing: When a sensor visits a grid cell, it receives a
noisy, binary measurement (data) of whether that cell is
interesting or not. Formally, every grid cell i ∈ G has a
corresponding Bernoulli random variable νi with a priori
unknown mean µi. The mean µi may be influenced by
the underlying spatial distribution of the interesting cells
as well as the imperfections of the noisy sensors and the
perception algorithms used by the search team. We assume

that the Bernoulli random variables for any two cells in G
are mutually independent.

Labeling error criterion: For a known threshold θ ∈ (0, 1),

Sθ ≜ {i ∈ G : µi ≥ θ} (1)

the set Sθ, is the set of grid cells that are sensed as interesting
with a probability of at least θ and is an approximation of I
given the noisy data collected by the search team. Motivated
by [1], we tolerate a labeling error for any grid cells i ∈ G
close to the threshold θ. Formally, for a (small) labeling error
tolerance ϵ > 0, a (keep) set K ⊆ G such that Sθ+ϵ ⊆ K ⊆
Sθ−ϵ, is an acceptable approximation of Sθ (thereby of I).
We encode this as a probabilistic low labeling error criterion,

P [(Sθ+ϵ \ K(pterm)) ∪ (K(pterm) \ Sθ−ϵ) = ∅] ≥ 1− δ, (2)

at some termination time pterm ∈ N for the search algorithm,
and for a given labeling error probability δ ∈ (0, 1).

We now state the two problems tackled by this paper:

Problem 1. Design a data-driven algorithm for the search
team that terminates in finite time, meets the labeling error
criterion (2) upon termination, and ensures that motion and
energy constraints on the search team are satisfied.

Problem 2. Determine upper bounds on the time to termi-
nate the search for the algorithm solving Problem 1.

III. PROPOSED APPROACH

We propose a bi-level iterative approach to solve Prob-
lems 1 and 2, as illustrated in Figure 1. Our approach consists
of a high-level and a low-level planner.

The high-level planner identifies a set of epoch goals based
on the past data (Section III-A). Epoch goals are cells that
the search team must visit in the current epoch to collect
new measurements. We use epoch p ∈ N to denote time in a
slower time scale used by the high-level planner, as compared
to time steps t ∈ N which denotes time in a faster time scale
used by the low-level planner.

Given the current set of epoch goals, the low-level planners
generate motion plans for the search team to visit every
epoch goal and take measurements while satisfying motion
and energy constraints on the team. We propose two low-
level planners — an optimal, integer program-based mo-
tion planner (Section III-B) and a real-time implementable,
graph-based heuristic planner (Section III-C). Finally, the
high-level planner uses the noisy data collected by the search
team to generate a new set of epoch goals, and we repeat
these steps until a termination criterion.

A. High-level planner: Data-driven monitoring via bandits

The proposed high-level planner is inspired by the bandit-
based monitoring algorithm proposed in [1]. Specifically,
we cast the search problem as a |G|-armed bandit problem,
where the bandit arms are grid cells. The high-level planner
is a sequential decision maker that processes the collected
information to decide on which grid cells must be visited
at each epoch We use upper confidence bounds, typical



Algorithm 1 Bandit-based monitoring under motion and
energy constraints (High-level planner)

Input: Set of grid cells G, threshold θ ∈ (0, 1), labeling
error tolerance ϵ > 0, labelling error probability δ ∈
(0, 1), number of epoch goals D ∈ N, obstacle set O

Output: {K(p)}p∈N, sequence of (keep) sets
1: Initialize p← 0, K(p)← ∅, and R(p)← ∅
2: while R(p) ∪ K(p) ̸= G do
3: Define Ep as the top D elements in the list of

unlabelled cells i ∈ G \ (K(p) ∪ R(p)), sorted in
descending order based on J(i, p, δ) (3)

4: Use a low-level planner Algorithm 2 or Algorithm
3 to deploy the search team to visit cells in Ep while
avoiding O, take measurements along the way, and
update history H(p+ 1)

5: Update sets of labelled cells K(p+1) and R(p+1)
based on (4) using H(p+ 1), G, θ, δ, and ϵ

6: Increment epoch p← p+ 1
7: end while

of bandit-based algorithms [1], [19]–[21], to sample the
unlabeled cells that are “most likely” to be interesting.

Let Hi(p) be the history of measurements taken at cell
i ∈ G collected by the search time until epoch p, and
define H(p) = {Hi(p)}i∈G . Then, at epoch p, we choose
D (typically, D ≥ Nd) distinct cells that achieve the top-D
values of a function J : G × N× (0, 1)→ R ∪ {∞},

J(i, p, δ) = µ̂i(p) + Ui(p, δ), (3a)

µ̂i(p) =

∑
h∈Hi(p)

h

|Hi(p)|
, (3b)

Ui(p, δ) = 2

√
2 log(log2(2|Hi(p)|)) + log (12|G|/δ)

2|Hi(p)|
, (3c)

with µ̂i(p) = Ui(p, δ) = ∞, whenever Hi(p) = ∅. Here,
δ ∈ (0, 1) is a given (small) labelling error probability. After
getting the data for the current epoch, we update the sets
K(p+ 1) and R(p+ 1) as follows,

K(p+ 1) = {i ∈ G : µ̂i(p+ 1)− Ui(p+ 1, δ) ≥ θ − ϵ}, (4a)

R(p+ 1) = {i ∈ G : µ̂i(p+ 1) + Ui(p+ 1, δ) ≤ θ + ϵ}. (4b)

Since Ui(p, δ) is a non-increasing function of |Hi(p)|, the
sets K(p) and R(p) are monotonic in p, and their cardinality
are non-decreasing in p. Equations (3) and (4) are motivated
by the desire to obtain anytime guarantees as well as
ensuring a low labelling time (see Section IV).

We summarize the high-level planner in Algorithm 1,
which also summarizes the proposed approach illustrated in
Figure 1. In Step 4, Algorithm 1 assumes access to a low-
level planner that can deploy the search team to visit all
epoch goals, identified in Step 3, in finite time. We discuss
two such low-level planners in Sections III-B and III-C.

B. Low-level planner: Optimal method via integer program

We now describe an optimization-based planner that pro-
vides an optimal deployment plan for the search team. In

large search environments, we can not expect the mobile
sensors to cover all cells in Ep using a single charge of
their batteries. In the proposed optimization-based low-level
planner, we deploy the search team such that the mobile
sensors always start and end their flights on a charging
station within Td moves, while minimizing the number of
such flight cycles. The use of flight cycles ensures that the
mobile sensors never run out of battery, and the search
team constantly switches between having all mobile sensors
being charged on charging stations and having all mobile
sensors moving around in the search environment taking
measurements. Informally, the optimization-based low-level
planner solves the following problem at each epoch p,

min. Number of flight cycles, (5a)

s. t. Search team respects motion constraints, (5b)

Search team visits all cells in Ep but none in O, (5c)

Mobile sensors never run out of battery. (5d)

We cast the optimization problem (5) as an integer pro-
gram (IP), and solve it using off-the-shelf solvers [22].

We use the following set of binary decision variables in
the IP formulation: xijkl, yabkl, λk ∈ {0, 1} for every

(Sensor/station index): i ∈ D ≜ N[1,Nd], a ∈ C ≜ N[1,Nc],

(Time in a flight cycle): j ∈ Td ≜ N[1,Td], b ∈ Tc ≜ N[1,Tc],

(Flight cycle count): k ∈ K ≜ N[1,K],

(Grid cell location): l ∈ G ≜ N[1,|G|], (6)

where xijkl = 1 if mobile sensor i is at grid cell l at time
step j in the flight cycle k, xijkl = 0 otherwise; yabkl = 1
if station a is at grid cell l at time step b in the flight cycle
k, yabkl = 0 otherwise; and, λk = 1 if flight cycle k is
necessary for the search team to solve (5), λk = 0 otherwise.
Here, K is a user-specified upper bound on the number of
flight cycles. The number of variables in the IP for each
epoch p is K(1 + |G|(NdTd +NcTc)). In what follows, the
constraints are enforced for all indices i, j, k, l, a, and b as
described in (6), unless stated otherwise.

Motion constraints:

xi00l = 1 and ya00d = 1, ∀l ∈ X0, d ∈ Y0, (7a)∑
m∈N (l)

xi(j−1)km ≥ xijkl, (7b)∑
m∈N (l)

ya(b−1)km ≥ yabkl, (7c)∑
a∈C

yabkl ≤ 1, (7d)∑
l∈G

xijkl =
∑

d∈G
yabkl = λk, (7e)

λk ≥ λk+1, ∀k ∈ N[1,K−1]. (7f)

Constraint (7a) requires the mobile sensors and the charging
stations start at the initial locations with X0,Y0 ⊂ G as the
set of grid cells initially occupied by the search team (sensors
and stations, respectively). Constraints (7b) and (7c) require
that the sensors and the stations on grid cell l ∈ G can move
only to one of their neighboring cells N (l). Constraint (7d)
requires no two stations to occupy the same grid cell at any
time to avoid collisions. Collision avoidance among mobile



Algorithm 2 Low-level planner: Integer program

Input: Epoch goals from high-level planner Ep, initial
search team configuration (X0,Y0), obstacle set O,
search team parameters (Td, Tc, Nd, Nc,K,G)

Output: Paths for the search team
1: Compute x∗

ijkl, y
∗
abkl, λ

∗
k by solving an integer program,

minimize
∑

k∈N[1,K]
λk,

subject to (7), (8), and (9).
(10)

2: Compute paths for the search team by extracting all
indices (i, j, k, l) and (a, b, c, d) such that x∗

ijkl = 1
and y∗abcd = 1, then creating a sequence of grid cells
to traverse through these indices i, j, k, l, a, b, c, and d

sensors may be enforced by a constraint similar to (7d), but
may also be easily enforced by requiring the sensors to fly at
different altitudes. Constraint (7e) links the binary variables
corresponding to flight cycles λk to the search team paths.
Specifically, λk = 0 requires the search team to visit no cells
in G during the flight cycle k, i.e., the path of the search team
terminates prior to flight cycle k. On the other hand, when
λk = 1, each sensor and station visit exactly one cell in G at
each time step in the flight cycle k. Constraint (7f) encodes
the temporal constraint among flight cycles, i.e., λm+1 = 1
for any m ≤ K−1 implies that λk = 1 for every 1 ≤ k ≤ m.

Visit constraints: The followig constraints enforce (5c) by
requiring that every cell m ∈ Ep is visited by some sensors
at some time step in some flight cycle, and the search team
(both sensors and stations) never visits any grid cell in O.∑

(i,j,k)∈D×Td×K
xijkm ≥ 1, ∀m ∈ Ep, (8a)

xijkm = yabkm = 0. ∀m ∈ O, (8b)

Battery constraints:∑
(j,l)∈Td×G

xijkl ≤ Td,
∑

(b,l)∈Tc×G
yabkl ≤ Tc, (9a)

|xi0(k+1)l − xiTdkl| ≤ 2(1− λk+1), ∀k ∈ N[1,K−1], (9b)

|ya0(k+1)l − yaTckl| ≤ 2(1− λk+1), ∀k ∈ N[1,K−1], (9c)

xi0kl ≤
∑

a∈C
ya0kl, xiTdkl ≤

∑
a∈C

yaTckl

(9d)
Constraints (9a) require the path lengths of sensors and

stations to respect the energy and velocity constraints. Con-
straints (9b) and (9c) require the positions of sensors and
stations to remain unchanged between flight cycles, and are
trivially satisfied when λk+1 = 0. Constraints (9d) require
every sensor to start and end its path within a flight cycle on
a grid cell occupied by one of the stations.

We summarize the IP-based low-level planner in Algo-
rithm 2. However, IPs are NP-hard problems and it may
become challenging to solve (10) for large G. This motivates
the heuristic-based low-level planner discussed next.

C. Low-level planner: Heuristic via graph-based planning

We will refer to the space-time coordinates at which a
sensor runs out of energy as restpoints. In Algorithm 2,

constraints (9d) require the stations to reach restpoints be-
fore the corresponding sensor reaches them. To propose a
heuristic, low-level planner, we relax (9d), and allow a sensor
to reach a restpoint before any station has arrived. If a
sensor reaches the restpoint early, we assume that the sensor
waits at the restpoint for the station to rendezvous, and then
continues on with the sensor’s assigned path upon begin
recharged. Additionally, we relax the collision avoidance
constraint (7d), since we can generate collision-free paths
for the stations using a protocol-based conflict resolution
algorithm as introduced in [23].

We summarize the heuristic, low-level planner in Algo-
rithm 3. Algorithm 3 uses the relaxation on the charging
constraint to further divide the low-level planning problem
into two stages — the first stage that designs paths for the
sensors to visit all epoch goals in Ep, and the second stage
that designs paths for the stations to visit all the restpoints
necessitated by the sensor paths designed in the first stage.
Motivated by the limited energy on the mobile sensors, we
use Dijkstra’s algorithm, a graph-based planning algorithm,
to design obstacle-free shortest paths for the search team.

First, we call assignSensors, to compute the shortest
(obstacle-free) paths from the sensors’ initial locations X0

to the epoch goals. We also distribute these goals among
the mobile sensors based on their shortest path distance
with random breaking of ties to ensure that no sensor has
more than Md ∈ N epoch goals, where Md ≥ |Ep|/Nd.
assignSensors only assigns epoch goals to the sensors,
and does not prescribe the sequence of visits.

Next, we call getSensorPaths, which assigns the se-
quence of visiting epoch goals for each sensor and generates
feasible paths. We enumerate all possible visiting orders (at
most Md!) for each sensor, and choose the sequence and path
that has the smallest path length. Alternatively, one could use
traveling salesman problem solvers [24].

To follow the sensor paths obtained from
getSensorPaths, we must interject these paths with
restpoints that occurs after every Td moves due to energy
limitations of the sensors. We compute a list of restpoints
by calling getRestPoints. Each sensor may have
multiple restpoints, which we collect in a set R = {Ri}i∈D
with Ri ≜ {ri1, ri2, . . . , ...ri|Ri|}. The stations must visit
all restpoints in R, while satisfying a visitation temporal
constraint — rij must be visited before ri(j+1) for any
j ∈ N[1,|Ri|] and i ∈ D. The sets Ri are guaranteed to be
finite, since the longest sensor path that may be computed
by getSensorPaths is finite.

Next, we call assignStations to assign both the
restpoints to stations as well as to satisfy the visitation
temporal constraint. First, assignStations segregates
the restpoints temporally by defining R(τ) = {riτ : i ∈
D} for τ ∈ N[1,LR] with LR ≜ maxi∈D |Ri|, and then
distributes R(τ) among the stations based on the shortest
path distance between R(τ) and the previous locations of the
stations. Similarly to assignSensors, we cap the number
of restpoints assigned to each station at each τ by Mc ∈ N
with Mc ≥ LR/Nc.



Algorithm 3 Low-level planner: Graph-based heuristic

Input: Epoch goals from high-level planner Ep, initial
search team configuration (X0,Y0), obstacle set O,
search team parameters (Td, Nd, Nc,Md,Mc,G)

Output: Sensor and station paths (SePaths,StPaths)
1: SeAlloc← assignSensors(Ep,Md, Nd,X0,G,O)
2: SePaths←getSensorPaths(SeAlloc,X0,O)
3: R ←getRestPoints(SePaths,Td)
4: StAlloc←assignStations(R,Mc, Nc,Y0,G,O)
5: StPaths←getStationPaths(StAlloc,Y0,O)

Finally, we call getStationPaths to generate a short-
est path for each station that connects the stations’ initial lo-
cation Y0 to cover all waypoints from assignStations.

Algorithm 3 uses graph-based planning to ensure real-time
implementability (see Section IV). However, due to the relax-
ation of (9d) as well as the use of greedy assignment of epoch
goals and restpoints, the paths generated by Algorithm 3 may
be significantly suboptimal compared to Algorithm 2 in terms
of the time taken to cover Ep.

IV. THEORETICAL GUARANTEES

We now state various theoretical guarantees provided by
the proposed approach and address Problem 2.

Proposition 1 (ANYTIME ALGORITHM). Let δ ∈ (0, 1) be
the labeling error probability. At any epoch p ∈ N, the sets
K(p) and R(p) maintained by Algorithm 1 satisfy K(p) ⊆
Sθ−ϵ and R(p) ⊆ S∁θ+ϵ, with probability of at least 1− δ.

The key takeaway from Proposition 1 is that the keep set
K(p) computed by Algorithm 1 always inner-approximates
Sθ−ϵ. Consequently, Algorithm 1 may be prematurely ter-
minated if required, and the intermediate solution K(p) and
R(p) will contain only interesting and uninteresting cells
respectively (upto a tolerance ϵ), with high probability.

Proposition 2 (FINITE TIME GUARANTEES). Algorithm 1
terminates within Pmax ∈ N epochs, and satisfies the
labeling error criterion (2) with

Pmax ≜ maxi∈D∆ O (ϕi) +
1

Nd

∑
i∈D∁

∆

O (ϕi) , (11)

ϕi =
1

γ2
i

log

(
|G|
δ

log

(
|G|
γ4
i δ

))
, (12)

γi = |µi − θ|+ ϵ, (13)

with ϕi, γi defined for every i ∈ G, and D∆ is the union of
a grid cell with the smallest γi with a set of d− 1 grid cells
with the largest γi among all cells i ∈ G.

By Proposition 2, Algorithm 1 terminates at some pterm ≤
Pmax epochs, and returns K(pterm) that satisfies the labeling
error criterion (2). Specifically, K(pterm) outer-approximates
Sθ+ϵ and inner-approximates Sθ+ϵ with high probability (2).

Corollary 1. Given a search environment and a search team,
let Kmax be the maximum number of flight cycles needed by
Algorithm 2 to cover any collection of epoch goals starting

from any configuration of the search team. Then, Algorithm 1
with Algorithm 2 as the low-level planner terminates while
satisfying (2) in not more than PmaxKmax time steps.

Corollary 1 provides an upper bound on the time steps re-
quired by a search team that are deployed using Algorithms 1
and 2 to complete the search, and satisfy (2). Note that the
computation of Kmax involves a min-max computation, and
while its solution always exists and is finite, it may be hard
to compute explicitly. However, one can obtain reasonable
estimates of Kmax via Monte-Carlo simulations, if desired.

Proposition 3. (COMPUTATION TIME COM-
PLEXITY) The compute time for each call of
the heuristic, low-level planner Algorithm 3 is
Tmax = O

(
Nd · |G|2

[
|Ep|+Md! +Nc · |G|Td

+Mc! · Nc

Nd

])
.

Corollary 2. Given a search environment and a search team,
the overall compute time for Algorithm 1 with Algorithm 3
as the low-level planner to terminate while satisfying (2) is
of the order PmaxTmax.

Since protocol-based conflict resolution is also meant for
real-time implementation [23], Algorithm 3 can be modified
to generate collision-free paths using similar ideas without
losing the presented real-time implementation guarantees.

V. NUMERICAL SIMULATIONS

We now validate the proposed algorithms via simulations.
We investigate the time-optimality and the scalability of the
proposed algorithms in varying sizes of search environments.
We also demonstrate the ability of the proposed approach
to quickly identify interesting cells, owing to the use of the
bandit-based framework, and study the effect of varying team
sizes on the proposed approach. We used a standard computer
with Intel Core i7-7700K CPU (4.20GHz, 8 cores) and 62.8
GB RAM, running Python 3.8 for the computations.

We consider a grid G with some pre-defined known
obstacles cells O ⊆ G and pre-defined unknown interesting
cells I ⊆ G. We consider three different configurations:

1) Small: Grid size |G| = 25, Nd = 4 sensors, Nc = 2
stations, and |O| = |I| = 4 (16% of G),

2) Medium: |G| = 100, Nd = 10, Nc = 5, |O| = 16 (16%
of G), and |I| = 10 (10% of G), and

3) Large: |G| = 400, Nd = 20, Nc = 10, |O| = 41
(10.25% of G), and |I| = 20 (5% of G).
Observe that the search environment is sparsely populated
by interesting cells with |I| ≤ 0.16|G|, as typical in envi-
ronmental monitoring problems.

Figure 2 shows a snapshot of the search environments.
The drones are represented with green crosses (×), charging
stations with blue circles ( ), interesting cells with red stars
(⋆), obstacles with black squares (■).

We perform a Monte-Carlo simulation where the values
of µi for i ∈ I is chosen randomly between [0.8, 1] and the
values of µu for u ∈ (G\O)\I are chosen randomly between
[0, 0.2] at the start of each simulation. Additionally, during
the trial, the measurements hl obtained upon a mobile sensor
visiting cell l ∈ (G \O) is drawn randomly from a Bernoulli
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Fig. 2: Various scenarios considered in this paper.

distribution with mean µl. A trial is complete when all the
cells are classified as either interesting or uninteresting. For
D = Nd, θ = 0.5, ϵ = 0.01, and δ = 10−5, we empirically
observed that the proposed approach classified the search
environment correctly in all of the simulations.

Table I reports the median, the 10-th, and the 90-th
percentiles over 100 seeds of the following metrics:

1) Compute time (s): The compute time required to
execute the monitoring of the environment till completion,

2) Number of low-level planner steps (Total): The total
number of time steps taken to complete the monitoring,

3) Number of low-level planner steps (Interesting): The
number of time steps required to identify the interesting cells,

4) Number of high-level steps (total): The number of
epochs required to complete the monitoring.

All the metrics mentioned above operate based on the
principle of “lower is better”. While Algorithm 2 (IP-based
low-level planner) was able to solve the small and the
medium scenarios, it timed-out in the large scenario. On the
other hand, Algorithm 3 (heuristic low-level planner) was
able solve all three scenarios, and generate motion plans
faster than the IP-based solver. As expected, the number
of epochs and the time steps taken by the heuristic low-
level planner to complete the monitoring is much higher as
compared to the IP-based low-level planner.

Figure 3 shows the progress of the fraction of cells
classified with the number of epochs. First, observe that
the proposed completes identifies all the interesting cells
before identifying all the uninteresting cells. Additionally,
the gap between the epoch at which Algorithm 1 identifies
all the interesting cells and the epoch at which it terminates
increases with increasing G. Both of these observations may
be attributed to the bandit framework used in Algorithm 1
that prioritizes the pursuit of the most promising cells.
See [1] for more details.

Finally, we validate our approach in a high-fidelity sim-
ulation environment motivated by a precision agriculture
application. Here, the orchard consists of fruit-bearing trees
(interesting cells, red), trees without fruit (green) and im-
passable terrain (blue), see Figure 4. We implemented the
search environment using Gazebo in ROS with the firefly
drone models in the rotors simulation package [25]
and the waffle models in the turtlebot3 package [26].
We used existing, standard controllers to achieve set-point
stabilization, track paths generated by the low-level planner,
land drones land next to the charging stations when charging.

The setup corresponds to a Medium scenario (see Fig. 3),
and illustrates how the proposed bi-level planner may be
deployed in practice.

VI. CONCLUSION

We introduced a bi-level approach for the multi-agent
environment monitoring problem. The high-level bandit-
based planner is data-driven and does not rely on pre-
determined search trajectories. The low-level planner creates
paths for the drones and the charging stations which are
practically implementable and satisfy the physical constraints
in the environment. We introduce two different methods
for the low-level planner — an optimal IP-based planner,
and a heuristic graph-based planner. We also present several
theoretical properties of the proposed approach and demon-
strate its efficacy in simulations. Albeit the IP formulation
guarantees optimal paths, they are computationally expensive
for real-time implementation. The heuristic planner is sub-
optimal compared to the IP-based planner, but it offers quick
solutions that allow for real-time implementation.
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APPENDIX

A. Proof sketches for Section IV
Proof of Proposition 1): The proof follows from similar

arguments used in [1, Prop. 1] and Lemma 1 in [27].
Proof of Proposition 2): The proof follows from similar

arguments used in [1, Thm. 1]. The key insight used is
that the sufficient number of samples required for successful
classification, with high confidence, of a grid cell i ∈ G
can be tightly upper-bounded by O(ϕi) (see (6) in [27] with
ω =

√
δ/(2|G|)).

Proof of Proposition 3): Recall that the shortest paths are
evaluated using Dijkstra’s algorithm which has a complexity
of O(|G|2) [28]. assignSensors assigns each sensor to
each epoch goal in Ep to one of Nd sensors after evaluating
the shortest path

(
O
(
|Ep| ·Nd · |G|2

))
. getSensorPaths

computes at most Md! paths for each one of the Nd to
arrive at the shortest path corresponding to the optimal
sequence of epoch goal visits O

(
Md! ·Nd · |G|2

)
, ignoring

the complexity of getRestPoints (O(Nd|G|)) The max-
imum number of restpoints for Nd sensors is O(Nd|G|/Td).
assignStations uses Dijkstra’s algorithm to identify
the assignment to Nc stations

(
O
(
Nd ·Nc · |G|3/Td

))
.

The complexity for getStationPaths follows simi-
larly to getSensorPaths with Md replaced with Mc(
O
(
Mc! ·Nc · |G|2

))
.
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