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Abstract
Haptic communication will be a key technology for extended reality (XR), robotics, and re-
mote manipulation. The deformation magnitude of 3D deformable objects is a key attribute
for realizing fine-grained remote manipulation. The typical solutions for sending the deforma-
tion magnitudes over wireless channels are to perform digital compression and transmission
considering the channel quality, i.e., digital source- channel coding. However, the key prob-
lems of the solutions are 1) still large traffic and 2) catastrophic quality degradation due to
channel quality fluctuation. This paper proposes a graph- based analog joint source-channel
coding for 3D haptic com- munication. Specifically, Graph Fourier Transform (GFT)-based
energy compression efficiently removes the redundancy across deformation magnitudes. In
addition, the integration of unequal error protection and analog modulation prevents catas-
trophic degradation and gradually improves the reconstruction quality according to the in-
stantaneous channel quality. Evaluation results using the deformation magnitude of various
3D objects show that the proposed scheme prevents quality degradation due to channel quality
fluctuations and provides accurate deformation magnitude for remote users.
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Abstract—Haptic communication will be a key technology
for extended reality (XR), robotics, and remote manipulation.
The deformation magnitude of 3D deformable objects is a
key attribute for realizing fine-grained remote manipulation.
The typical solutions for sending the deformation magnitudes
over wireless channels are to perform digital compression and
transmission considering the channel quality, i.e., digital source-
channel coding. However, the key problems of the solutions are
1) still large traffic and 2) catastrophic quality degradation due
to channel quality fluctuation. This paper proposes a graph-
based analog joint source-channel coding for 3D haptic com-
munication. Specifically, Graph Fourier Transform (GFT)-based
energy compression efficiently removes the redundancy across
deformation magnitudes. In addition, the integration of unequal
error protection and analog modulation prevents catastrophic
degradation and gradually improves the reconstruction quality
according to the instantaneous channel quality. Evaluation results
using the deformation magnitude of various 3D objects show
that the proposed scheme prevents quality degradation due to
channel quality fluctuations and provides accurate deformation
magnitude for remote users.

I. INTRODUCTION

Haptic communication is an emerging technique to provide
a sense of touch and object deformation to remote users and
robots [1]. In particular, untethered transmission of object
deformation is required for dexterous manipulation of 3D
objects by remote users [2]. In addition, the reproduced
deformation plays a key role in many applications as shown in
Fig. 1. To reproduce the object deformation to remote users,
a sender sends the magnitude of the external contact force for
the 3D deformable object, i.e., deformation magnitude, at each
instant. The deformation magnitude for the 3D deformable
object is represented as a time series of 3D point clouds with
the attribute of the magnitude [3]. Fig. 2 shows an example
of the deformation magnitude for the 3D object. Here, the 3D
object receives an external contract force in the x-axis, and the
3D points with block color in Fig. 2 (b) through (d) represent
strong deformation magnitude at the 3D point.

The deformation magnitudes corresponding to 3D sam-
ples are distributed unevenly in 3D space to reproduce the
various deformations at remote users. To efficiently provide
the non-uniformly sampled signals, graph signal process-
ing (GSP) based schemes [4]–[6] for non-uniform 3D samples
have been proposed as shown in Fig. 3 (a). The existing GSP-
based schemes consider the 3D points as vertices in a graph
and transform the graph signals into frequency representations.
They used graph Fourier transform (GFT) for energy compres-
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Fig. 1. Exemplification architecture of 3D haptic communication.

(a) Original 3D samples
of the object

(b) Deformation magni-
tude at time t1

(c) Deformation magni-
tude at time t2

(d) Deformation magni-
tude at time t3

Fig. 2. Examples of deformation magnitude at each instant (t1 < t2 < t3).
Here, we consider that an external contact force is from the right side of the
object. The 3D points with block color in (b) through (d) represent strong
deformation magnitude at the 3D point.

sion of the graph signals and applied quantization over the
GFT coefficients. Finally, the quantized GFT coefficients are
entropy coded for compression. The entropy-coded bits are
then passed to the transmission side. The transmission side
uses channel coding for error resilience and determines the
modulation format based on the measured channel quality.

A key challenge in existing graph-based schemes is the
high-quality, low-delay delivery of graph signals over wireless
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(b) Proposed graph-based AJSCC scheme
Fig. 3. Framework of the graph-based DJSCC and proposed graph-based AJSCC schemes.

channels. Although the existing schemes require accurate
channel estimation for proper source and channel coding, the
channel conditions of wireless networks are unreliable. In
particular, the channel conditions vary unexpectedly, resulting
in inaccurate channel estimation and rate control for source
and channel coding. Inaccurate channel estimation and rate
control cause catastrophic quality degradation in the recon-
structed deformation magnitude, i.e., the cliff and leveling off
effects [7, 8]. A typical solution to prevent catastrophic quality
degradation is retransmission. However, it is unsuitable for
haptic communication due to the strict delay constraint of
haptic applications.

As mentioned above, the existing graph-based schemes may
cause critical issues in 3D haptic communication: 1) quality
drop and 2) quality saturation. This paper proposes a novel
graph-based analog joint source-channel coding (AJSCC)
scheme to discuss the feasibility of 3D haptic communica-
tion. To overcome the above-mentioned issues, the proposed
scheme integrates GFT for energy compaction, unequal power
allocation for quality maximization, and analog modulation to
prevent cliff and leveling-off effects. In addition, the proposed
scheme adopts blind data detection [9] for decoding the trans-
mitted deformation magnitudes with negligible communication
overhead.

Evaluations using the simulated deformation magnitudes
show that the proposed scheme reconstructs high-quality de-
formation magnitudes based on the instantaneous channel
quality and available bandwidth. In addition, we discuss the
effect of the graph shift operators and deformation objects on
the reconstruction quality.

The contributions of this paper are three-fold:

• We consider 3D object deformations as graph signals to
realize energy compression of irregular structure signals.

• We adopt GFT with various graph shift operators before
analog modulation to find better energy compaction for

3D haptic communication.
• Although the existing AJSCC schemes cause large com-

munication overhead for signal decoding, the proposed
scheme can reconstruct the transmitted signals with only
one constant value using blind data detection.

II. RELATED WORK

A. Haptic Codec

Haptic codec solutions are mainly proposed for 1D vibro-
tactile signals to reduce traffic in haptic communication. The
existing haptic codec solutions can be categorized into three
groups: transform coding [10]–[12], analysis-by-synthesis cod-
ing [13, 14], and hybrid solutions [15, 16]. For example, PVC-
SLP in [15, 16] is the state-of-the-art hybrid solution. It
integrates Sparse Linear Prediction (SLP) and 1D DCT for
traffic reduction.

The aforementioned solutions can reduce traffic, but they
suffer from catastrophic quality degradation due to the all-or-
nothing behavior of entropy and channel coding, as well as
unrecoverable quantization errors.

B. GSP-Based Point Cloud Delivery

In the point cloud, a large number of 3D points are sampled
non-uniformly in the 3D space to represent the real world
environment. One of the key issues in point cloud coding
is to compact the energy of the attributes of the 3D points.
Some studies have used GFT for energy compaction of 3D
coordinate and color attributes [17, 18]. In addition, a recent
work [19] uses a graph neural network (GNN) architecture for
energy reduction of the point cloud.

The proposed scheme uses GFT for 3D haptic data, i.e.,
deformation magnitudes in each 3D point, to discuss the
impact of the graph-based solution on future 3D haptic com-
munication. Although an effect of GFT-based decorrelation on
3D coordinate and color attributes is discussed in the existing



studies, we can see that GFT-based energy compression can
have another great gain in 3D deformation magnitudes.

III. PROPOSED SCHEME

Fig. 3 (b) shows the overview architecture of the proposed
scheme. A sender obtains a time series of deformation magni-
tudes from the haptic sensors and then constructs graph signals
from the measured deformation magnitudes. It performs a
GFT over the graph signals for each instant to compress the
signal energy. The GFT coefficients are then power-assigned
to minimize the mean square error (MSE) between the original
and reconstructed signals and mapped directly to the transmis-
sion symbols. At the receiver, blind data detection is used to
decode the received signals with low communication overhead,
and finally, inverse GFT (IGFT) is used on the filtered GFT
coefficients to reconstruct the deformation magnitudes at each
instant.

A. Energy Compaction

1) Graph Construction: The proposed scheme constructs
graph signals from the measured deformation magnitudes in
3D space. Specifically, each deformation magnitude in the 3D
space can be regarded as the vertex of a weighted and undi-
rected graph G = (V ,E,W ), where V and E are the vertex
and edge sets, respectively. The vertices of N samples have
two attributes with 3D coordinates p = [x, y, z]T ∈ R3×N

and deformation magnitudes d ∈ R1×N in N points. W is an
adjacency matrix, and each element Wi,j ∈ W represents the
edge weight between vertices i and j. The proposed scheme
considers the Gaussian kernel [20] for the calculation of each
edge weight Wi,j .

Wi,j = exp

(
−∥pi − pj∥22

ϵp

)
, (1)

where ϵp is a hyperparameter of the Gaussian kernel, such as
the sample variance or standard deviation of 3D coordinate
attributes.

2) GFT: The proposed scheme uses GFT on the constructed
graph signals to obtain the frequency domain coefficients.
GFT for the graph signals is defined by the parameterized
graph shift operator L [21] based on the adjacency matrix
W , the degree matrix D, and the parameter tuple S =
(m1,m2,m3, e1, e2, e3) consisting of scalar multiplicative pa-
rameters m1, m2, m3 and scalar exponential parameters e1,
e2, e3 as follows:

L = m1D
e1 +m2D

e2WDe3 +m3I, (2)

where I is the N ×N identity matrix and D is the diagonal
degree matrix of the adjacency matrix W . The degree matrix
can be derived as:

D = diag(D1, . . . , DN ), Di =

N∑
n=1

Wi,n. (3)

Table I lists the well-known graph shift operators. In Sec. IV-C,
the effect of the graph shift operators on the reconstruction
quality is discussed in detail.

TABLE I
WELL-KNOWN GRAPH SHIFT OPERATORS BASED ON PARAMETER TUPLE

S Operator
(1,−1, 0, 1, 0, 0, 0) D −W Regular graph Laplacian
(1, 1, 0, 1, 0, 0, 0) D +W Signless graph Laplacian

(0,−1, 1, 0,−1, 0, 0) I −D−1W Random-walk graph Laplacian
(0, 1, 0, 0,−1, 0, 0) D−1W Mean aggregation

The graph shift operator is a real symmetric matrix, and
thus the operator will have a complete set of orthonormal
eigenvectors and corresponding positive eigenvalues. The pro-
posed scheme uses eigenvalue decomposition to obtain the
eigenvectors Φ ∈ RN×N and eigenvalues Λ of the graph shift
operator as L = ΦΛΦ−1.

The GFT coefficients f ∈ R1×N can be obtained by
multiplying the eigenvectors by the deformation magnitudes
d as f = d Φ, and the magnitudes can be reconstructed from
the GFT coefficients as d = f Φ−1.

B. Power Allocation

After the proposed scheme obtains GFT coefficients from
deformation magnitudes, unequal transmission power is as-
signed to each GFT coefficient before transmission to mini-
mize the MSE between the original and reconstructed defor-
mation magnitudes. Specifically, power allocation for ith GFT
coefficient can be written as:

xi = gi · fi. (4)

This means that the ith transmission symbol xi is the ith GFT
coefficient scaled by the factor gi. Here, the optimal scaling
factor gi is obtained by minimizing the MSE under the power
constraint with an average power budget of P as follows:

min MSE = E
[
(xi − x̂i)

2
]
=

N∑
i

σ2λi

g2i λi + σ2
, (5)

s.t.
1

N

N∑
i

g2i λi = P, (6)

where x̂i is an estimate at the receiver, λi is the power of
the i-th GFT coefficient, and σ2 is a noise variance. Using
the method of Lagrange multipliers, the best gi is obtained
as [22]:

gi = cλ
−1/4
i , c =

√
NP∑N
j

√
λj

. (7)

The power-assigned GFT coefficients are then mapped, two
by two, to I (in-phase) and Q (quadrature-phase) components,
i.e., analog modulation, for the coefficient transmissions.

The transmitted symbols are impaired via wireless links. Let
yi denote the ith received symbol and ni denote an effective
additive white Gaussian noise (AWGN) with a variance of σ2.
Here, the fading attenuation is considered in the noise variance.
The received symbol yi over wireless links can be modeled as
yi = xi + ni.



C. Metadata-Less Signal Decoding

At the receiver side, the received GFT coefficients are
extracted from the I and Q components. A minimum
MSE (MMSE) filter is a typical filter to reduce the communi-
cation noise from the received analog modulated coefficients.
The MMSE filter is derived as follows [22]:

f̂i =
giλi

g2i λi + σ2
· yi. (8)

However, the MMSE filter requires λi of all GFT coefficients
at the receiver, so the sender must send λi as metadata.
This metadata overhead will cause significant performance
degradation and consume extra transmission power [23].

The proposed scheme uses blind data detection [9] to
reconstruct high-quality GFT coefficients with negligible com-
munication overhead. The proposed scheme scales the GFT
coefficients with an optimal scaling factor according to Eq. (7).
With λi = |fi|2, Eq. (7) can be rewritten as

gi = c|fi|−1/2. (9)

In this case, the received symbol is

yi = gi · fi + ni = c|fi|−1/2fi + ni. (10)

Here we can estimate the amplitude of fi using a zero-forcing
estimator and the sign of fi using the sign of the received
symbol. For example, for high quality wireless channels (ni ≃
0), we obtain an estimate of fi as follows:

f̂i = (yi/c)
2 · sgn(yi). (11)

In this case, the proposed scheme sends only the constant c
as metadata for decoding the received symbols. Finally, the
receiver reconstructs the deformation magnitudes d̂ by taking
the IGFT for the filtered GFT coefficients f̂ .

IV. PERFORMANCE EVALUATION

A. Simulation Settings

1) Performance Metric: We consider the MSE between
the original and reconstructed deformation magnitudes as the
quality of 3D haptic communication.

2) 3D Deformation Dataset: The following benchmark
point clouds of 3D objects are used to simulate the deformation
magnitudes: pencil 10 0 with 2,731 points and milk color
with 13,704 points. pencil 10 0 is first considered to dis-
cuss the baseline performance of the proposed and baseline
schemes. milk color is used to discuss the effect of a large
3D object on the reconstruction quality.

To simulate the deformation magnitudes, we consider a two-
dimensional surface in 3D space. The four corners of the
surface are (ymin, zmin), (ymin, zmax), (ymax, zmin), (ymax,
zmax) where ymin and zmin are minimum coordinates in y-
axis and z-axis and ymax and zmax are maximum coordinates
in y-axis and z-axis, respectively. We consider the surface
to be at xmin at t0, shifted by ∆x for each slice, and
finally approaching xmax after T slices. For t-th slice, the
deformation magnitude for i-th 3D point can be obtained as:
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Fig. 5. Average power spectrum of the DCT coefficients and GFT coefficients
for pencil 10 0 across all the slices.

mi = |xi − xt|/(xmax − xmin), where xt is x-coordinate at
t-th slice. In this paper, the number of slices T is set to 100
and thus ∆x = (xmax − xmin)/T .

3) Wireless Settings: The digital-modulated and analog-
modulated are impaired by an AWGN channel. For digital-
based schemes, the digital modulation formats are either
quadrature phase shift keying (QPSK), 16-ary quadrature-
amplitude modulation (16-QAM), or 64-ary QAM (64-QAM).
We also set the same channel symbol rate in all the comparison
schemes.

B. Baseline Performance

This section evaluates the baseline performance of the
conventional DJSCC and the proposed AJSCC schemes under
channel quality fluctuations. For the comparison, we consider
five baselines: graph-based DJSCC at the modulation formats
of QPSK, 16-QAM, and 64-QAM, and AJSCC with/without
decorrelation.

The DJSCC schemes use GFT with the regular graph Lapla-
cian for the simulated deformation magnitudes to transform the
magnitudes into the frequency representations, and uniformly
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quantize the frequency representations followed by entropy
coding. Finally, the digital modulation formats are used to
transmit the bit stream. The AJSCC schemes consider the
simulated deformation magnitudes as the ordered 1D signals.
Here, the AJSCC with decorrelation scheme performs 1D-
DCT (discrete cosine transform) on the signals, while the
other scheme does not use any decorrelation techniques. Other
operations, i.e., unequal power allocation, analog modulation,
and blind data detection, are the same as the proposed scheme.

Fig. 4 shows the reconstruction quality of the deformation
magnitudes as a function of the wireless channel SNRs. Here,
the channel symbol rate at each slice is set to 1,365 symbols.
In addition, the proposed scheme uses the random-walk graph
Laplacian as the graph shift operator and the variance-based
hyperparameter ϵp. From the evaluation results in Fig. 4, we
can make the following observations:

• The proposed scheme gradually improves the reconstruc-
tion quality of the deformation magnitudes with the
improvement of the wireless channel quality.

• The channel quality fluctuation causes a cliff effect in
low-channel SNR regimes and a leveling-off effect in
high-channel SNR regimes in the DJSCC schemes.

• The AJSCC schemes prevent cliff and leveling-off effects
by removing quantization and entropy coding from the
sender operations. However, the quality of the DCT-based
AJSCC scheme is lower than that of the proposed scheme.

For example, the proposed scheme achieves 2.0 dB and
19.0 dB improvement at the channel SNR of 30 dB compared
to the DJSCC with 64-QAM modulation format and the DCT-
based AJSCC, respectively.

To discuss the advantages of the proposed scheme in detail,
Fig. 5 shows the average power spectrum of DCT coeffi-
cients and GFT coefficients for pencil 10 0 over all slices.
The power values of the high frequency GFT coefficients
are relatively lower than those of the high frequency DCT
coefficients. For example, the sum of the square roots of the
DCT coefficients and GFT coefficients in Fig. 5 is 292.4 and
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33.6, respectively. As discussed in Eq. (5), the MSE of the
AJSCC schemes decreases when the sum of the square roots of
λi is small. As a result, the proposed scheme can achieve better
performance compared to the DCT-based AJSCC scheme.
We then evaluate the effect of the available bandwidth on
the performance of the AJSCC schemes by decreasing the
number of transmission symbols. Fig. 6 shows the quality of
the AJSCC schemes as a function of channel symbol rates for
each slice at wireless channel SNRs of 10 dB and 20 dB. We
can see the following observations.

• The proposed scheme can maintain almost the same
quality regardless of the number of symbols received,
even though only 10% of the GFT coefficients can be
received due to the bandwidth limitation.

• DCT-based and no decorrelation schemes gradually de-
grade the reconstruction quality as the number of received
symbols decreases.

C. Effect of Graph Shift Operators and Hyperparameters

In the previous section, we evaluated the performance of the
proposed scheme using the random-walk graph Laplacian and
variance-based hyperparameters under heterogeneous channel
quality and bandwidth availability. The proposed scheme can
use different graph shift operators listed in Table I to encode
and decode graph signals. In addition, the adjacency matrix
W in Eq. (4) is highly dependent on the hyperparameter
ϵp. In particular, the sample variance (var) or the standard
deviation (std) of the point distances is often used for ϵp. In this
section, we will discuss the effects of graph shift operators and
hyperparameters on the quality of 3D haptic communication.

Fig. 7 shows the MSE of the deformation magnitudes
in the proposed scheme with different graph shift operators
and hyperparameters as a function of the wireless channel
SNRs. We can see that the random walk graph Laplacian
with the sample variance hyperparameter achieves the best
performance. In this paper, we consider typical graph shift
operators for graph signal coding and decoding. We leave the
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optimization of graph shift operators to maximize the quality
of 3D haptic communication as a future work.

D. Effect of Deformable Objects

In the previous sections, a relatively small 3D object with
2, 731 3D points was used to demonstrate the advantage
of the proposed scheme. In this section, we consider the
simulated deformation magnitudes using a large 3D object to
demonstrate the scalability of the proposed scheme. Fig. 8
shows the MSE of the deformation magnitudes for the point
cloud of milk color (N = 13,704).

Compared with a small 3D object in Fig. 4, the quality
of the DJSCC schemes becomes lower for the same wireless
channel quality. For example, the proposed scheme achieves
30.4 dB and 21.7 dB improvement at the channel SNR of
30 dB compared to the DJSCC with 64-QAM modulation
format and DCT-based AJSCC coding, respectively.

V. CONCLUSION

In this paper, a graph-based AJSCC scheme was proposed
for future 3D haptic communication. To transmit high-quality
3D deformation magnitudes over unreliable wireless channels,
the proposed scheme integrates GFT-based energy compaction,
MSE-minimized power allocation, and analog modulation.
Evaluation results show that the proposed scheme achieves
better quality than the existing DJSCC and AJSCC schemes,
even under channel quality fluctuation and bandwidth limita-
tion.
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