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Abstract

With the advent of 5G and beyond communication technologies, the consumer Internet of
Things (IoT) devices are evolving from the current-generation to the next-generation. Next-
generation IoT devices can support multiple communication interfaces and perform more
functions. Accordingly, IoT network technologies must adapt to the emerging next- generation
IoT devices. Routing is an inevitable technology in multi-hop IoT networks. However, as
ToT devices become more and more diverse, IoT networks become more complex. As a
result, the routing problem becomes more and more complicated for traditional protocols
and mathematical optimization approaches to provide optimal solutions. Machine learning
based routing techniques have been recently proposed and can outperform traditional routing
methods in complex network environments. To that end, this paper presents a machine
learning based routing link scheduling scheme for heterogeneous wireless IoT networks. We
formulate the routing link scheduling problem as a combinatorial optimization problem, which
is then parameterized for application of machine learning algorithm and the parameterized
problem is solved using primal-dual approach with zero duality gap. A heterogeneous graph
neural network (HetGNN) algorithm is proposed to update the primal- dual problems. We
evaluate the proposed Het GNN model under networks with randomly deployed heterogeneous
nodes. Compared with a convolutional neural network (CNN) model and a homogeneous
GNN (HomGNN) model, the proposed HetGNN model can improve network throughput,
reduce link capacity violation and interference link violation.
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Abstract—With the advent of 5G and beyond communication
technologies, the consumer Internet of Things (IoT) devices are
evolving from the current-generation to the next-generation.
Next-generation IoT devices can support multiple communi-
cation interfaces and perform more functions. Accordingly,
IoT network technologies must adapt to the emerging next-
generation IoT devices. Routing is an inevitable technology in
multi-hop IoT networks. However, as IoT devices become more
and more diverse, IoT networks become more complex. As a
result, the routing problem becomes more and more compli-
cated for traditional protocols and mathematical optimization
approaches to provide optimal solutions. Machine learning
based routing techniques have been recently proposed and can
outperform traditional routing methods in complex network
environments. To that end, this paper presents a machine
learning based routing link scheduling scheme for heterogeneous
wireless IoT networks. We formulate the routing link scheduling
problem as a combinatorial optimization problem, which is then
parameterized for application of machine learning algorithm
and the parameterized problem is solved using primal-dual
approach with zero duality gap. A heterogeneous graph neural
network (HetGNN) algorithm is proposed to update the primal-
dual problems. We evaluate the proposed HetGNN model
under networks with randomly deployed heterogeneous nodes.
Compared with a convolutional neural network (CNN) model
and a homogeneous GNN (HomGNN) model, the proposed
HetGNN model can improve network throughput, reduce link
capacity violation and interference link violation.

Index Terms—Routing link scheduling, heterogeneous IoT
network, graph neural network, primal-dual method, combina-
torial optimization.

I. INTRODUCTION

With the advent of 5G and beyond communication tech-
nologies, consumer IoT devices are evolving from the current-
generation to the next-generation. The current-generation
IoT devices are equipped with fewer resources and perform
simple functions. On the other hand, the next-generation IoT
devices are installed with more resources and can perform
more functions. Take smart meters for example, current-
generation meters support one communication interface
such as Wi-Fi (IEEE 802.11) or Wi-SUN (IEEE 802.15.4)
and collect metering data only. Next-generation meters can
support multiple communication interfaces, such as both
Wi-Fi/Wi-SUN and 5G, collect metering data, and sense
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power supply information, which is critical for smart grid
maintenance. However, it is impractical to completely remove
the deployed current-generation devices during the migration
phase. Accordingly, next-generation IoT networks will consist
of mixed current and next-generation devices. Customers
expect more from next-generation IoT networks. Therefore,
new network technologies need to be developed for next-
generation IoT networks to meet consumers’ expectations.

IoT networks are typically multi-hop. As a result, routing
is inevitable. Routing consists of route discovery and route
scheduling. Both route discovery and route scheduling are
high-complexity problems. The route discovery can be NP-
complete [1], e.g., maximizing throughput in a multi-hop
wireless network is proved to be NP-hard as a result of
wireless interference [2]. It has also been proved that both
centralized and distributed route scheduling problems are
NP-complete in 2D mesh topology [3].

Route scheduling is more complex than route discovery,
especially in carrier sense multiple access (CSMA) based
multi-hop wireless networks, where wireless interference
presents great challenges. Route scheduling in wireless
networks is a spectrum resource allocation problem. It
aims to schedule channel access for data transmission to
avoid mutual transmission interference and channel access
delay, thus improving network efficiency. For example, the
time synchronized channel hopping (TSCH) is a scheduling
mechanism provided in IEEE 802.15.4 standard. However, the
conventional scheduling mechanisms such as TSCH require
clock synchronization, which is intractable to be realized in
wireless 10T networks, especially in multi-hop IoT networks.
Machine learning based routing techniques have been recently
proposed and can outperform traditional routing methods
in complex network environments [4], which makes them
promising approaches for next-generation IoT networks.

Besides wireless interference, the emerging heterogeneous
IoT networks add more complexity into routing problems.
The heterogeneity such as device heterogeneity, data hetero-
geneity and communication capability heterogeneity must be
considered for next-generation IoT network technology de-
velopment since more capable devices can play an important
role to improve network performance, e.g., the devices with
multiple communication interfaces can significantly improve
IoT network performance [5]. However, most existing routing



technologies are designed for current-generation homoge-
neous networks without considering network heterogeneity.
This paper focuses on route scheduling in multi-hop
heterogeneous wireless IoT networks. We present a machine
learning based routing link scheduling scheme by formulating
a routing link scheduling problem as an optimization problem,
which is then parameterized for applying graph neural
network techniques. The parameterized problem is solved
using the primal-dual approach with a zero duality gap.
The rest of this paper is organized as follows. Section II
presents related works. Section III provides system model and
problem formulation. The scheduling policy parameterization
is given in Section IV. Section V introduces the primal-dual
problem formulation. Performance evaluation is conducted in
Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORKS

Efficient scheduling of transmissions is a key problem in
wireless networks. The main challenge stems from the fact
that optimal link scheduling involves solving a maximum
weighted independent set problem, which is known to be NP-
hard [6]. No efficient global optimal algorithm is available
yet for routing link scheduling in device-to-device networks,
especially for a densely deployed network with a large
number of mutually interfering links [7].

Paper [8] studies the problem of joint routing, link
scheduling and power control to support high data rates
for broadband wireless multi-hop networks. The authors
address the problem of finding an optimal link scheduling
and power control policy that minimizes the total average
transmission power in a wireless multi-hop network. It is
found that optimum allocations do not necessarily route
traffic over minimum energy paths. Work [9] proposes a
joint routing and scheduling optimization in time-sensitive
networks using graph convolutional network (GCN) based
deep reinforcement learning for time-sensitive applications.
Numerical simulations demonstrate that the proposed algo-
rithm has good convergence and outperforms the benchmark
methods in terms of the average end-to-end delay. Authors
in [10] introduce a number of routing scheduling algorithms
that, using certain knowledge about the network structure,
guarantee stability for certain injection rates. The authors
provide some results regarding both the maximum latency
and queue length and also evaluate how the lack of global
knowledge about the system topology affects the performance
of the routing scheduling algorithms. Paper [11] proposes a
TSCH based scheduling method for multi-hop time sensitive
networks. A scheduling scheme is designed to minimize the
schedule length and the maximum end to end delay. Link
level simulations verify the performance improvement of the
proposed scheme over the existing schemes.

Owing to the complexity of routing scheduling problems,
machine learning techniques have been recently applied
to routing scheduling. Work [6] presents link scheduling
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Figure 1: Heterogeneous Wireless IoT Network System
Model

technologies using graph neural networks. The fast heuris-
tics based on GCN are proposed to be implemented in
centralized and distributed manners. Test results show that
the proposed centralized heuristic can reach a near-optimal
solution quickly, and the distributed heuristic based on a
shallow GCN can reduce by nearly half the suboptimality
gap of the distributed greedy solver with minimal increase
in complexity. Authors in [4] propose a deep reinforcement
learning based dynamic routing optimization algorithm for
delay-sensitive applications featuring the proximal policy
optimization method and the front-convergent actor-critic
network technique. Authors consider the packet survival time
to make up for the shortage of the time-to-live mechanism
in conventional IP networks. Experimental results show that
the proposed algorithm outperforms two traditional routing
protocols in terms of minimizing delay and packet loss rate.
However, the aforementioned works deal with homogeneous
wireless networks.

This paper studies routing link scheduling in heteroge-
neous IoT networks. We assume that network topology and
routes are given. Our objective is to schedule efficient data
transmission along the given routes. To that end, we propose
machine learning based routing link scheduling techniques
to improve heterogeneous IoT network performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present our system model and routing
link scheduling problem formulation.

A. System Model

This paper assumes symmetric communication connec-
tivity, i.e., edge (link) is directionless. However, a routing
link is directional. We consider a heterogeneous wireless IoT
network consisting of single-link data node set S, multi-
link data node set M and data centers as illustrated in
Fig. 1, where some edges are used in routing and others
are not involved in routing. Single-link data nodes support
one communication interface, multi-link data nodes support



multiple communication interfaces and data centers are
considered as multi-link nodes. A single-link data node can
communicate with neighboring single-link nodes, multi-link
nodes and data centers using a low-speed communication
interface. On the other hand, a multi-link data node can
communicate with neighboring single-link data nodes using
the same low-speed communication interface and with
neighboring multi-link data nodes and data centers using
a high-speed communication interface.

The total data node set is V = S U M indexed with k =
{1,2,---,|S],|S|+1,- - ,|S|+|M]|}. The data sets for data
nodes are denoted as x = {x1, T2, - Z|§|41, " * , T|S|+|M]| }»
where the data of a data node include self data and potential
relay data in the routing process. The edge set is denoted
as & C V x YV with £ = £ U &>, where & contains the
edges between nodes belonging to M and data centers, and
&1 represents the rest of the edges.

The network topology and routes from all data nodes to
data centers are given as illustrated in Fig. 1. The route
set is denoted as R = {Ri,Ra, -+ ,Rnor} with each
route containing a sequence of ordered nodes, i.e., links,
where NoR is the number of routes and NoR > |S| + | M|
since a data node may have multiple routes. It can be seen
that each routing link overlaps an edge. Without loss of
generality, we assume that & links are high-speed long
range communication links such as 5G links and &; links
are low-speed short range communication links such as Wi-
Fi/Wi-SUN links. A route can consist of & links only or
&5 links only or both & and & links. We assume that &;
links such as 5G links do not interfere with each other and
&1 links such as Wi-Fi/Wi-SUN links can however interfere
with each other. Our objective is to schedule routing links
for efficient data transmission to avoid transmission collision
and random backoff delay incurred by the CSMA mechanism
in Wi-Fi/Wi-SUN channel access mechanisms.

B. Routing Link Scheduling Problem Formulation

The route scheduling in shared medium wireless networks
can be divided into two categories: whole route scheduling
and routing link scheduling. In whole route scheduling,
the non-interfering routes can be scheduled to transmit
simultaneously. In routing link scheduling, the non-interfering
links can be scheduled to transmit simultaneously. However,
whole route scheduling is less efficient than routing link
scheduling, especially in data centric networks, where all
routes have one of the data centers as the destination node,
as a result, the routes that could be scheduled to transmit
simultaneously are the routes heading towards different data
centers. On the other hand, it is possible that multiple links on
different routes or on same route can be scheduled to transmit
simultaneously without causing interference. Therefore, this
paper focuses on the routing link scheduling.

Before formulating the routing link scheduling problem,
we briefly introduce the link interference in shared medium

wireless communication. A set of links 4 2 a1 — by,
Lo 2 azy — by, -+, L, 2 an, — b, are interfering links
if and only if there exists at least one b; such that b; is
a neighbor of at least two a;s. There are different ways a
node can discover its neighbors, e.g., via probe and response
mechanism. For two & links L; and L;, we use notation
LiNL;= () to indicate interference free.

Denote as £ = {Ly,Ls,---,Ly} the set of & and &
links that are on routes 1, Ro, - -- , Rnor- The link capacity,
i.e., channel capacity, for link I; is denoted as C};. The vector
q € {0,1}*! shows if the links in £ have data to transmit,
i.e., the starting nodes of links have data to transmit, with
¢; = 1 indicating yes and ¢; = 0 indicating no. Our goal is
to determine a scheduling decision vector p € {0, 1}V*! to
transmit as much data as possible with p; = 1 indicating link
L; scheduled to transmit and p; = 0 indicating otherwise.

We formulate the routing link scheduling problem in
heterogeneous wireless IoT networks as an optimization
problem. More specifically, the routing link scheduling
problem is formulated as following optimization problem

N

p(Lx) = arg max ;pixi (1)

st. LyNL;=0, forall L; & L; € &,
pi=pi=1,1<14, j<N,i#j 2
x; <EglC;], for all p; =1 3)
pi €{0,1}, 1 <i<N 4)
pi=1lonlyifg, =1, 1<i:<N 5

where condition (2) is the interference constraint such that the
scheduled &, links do not interfere with each other, condition
(3) is the link capacity constraint such that the amount of
data scheduled for a link does not exceed the expected link
capacity, condition (4) is the scheduling decision constraint
such that a link is either scheduled or not scheduled and
condition (5) is the data availability constraint such that a
link is scheduled only if the starting node of the link has data
to transmit. For the link capacity constraint (3), we use the
expected link capacity to take dynamic channel conditions
into account. The expected link capacity cab be dynamically
estimated using a wireless channel model.

IV. LINK SCHEDULING POLICY PARAMETERIZATION FOR
HETEROGENEOUS GRAPH NEURAL NETWORK

The routing link scheduling policy parameterization and
graph neural network embedding are introduced in this
section.

A. Routing Link Scheduling Policy Parameterization

The optimization problem (1) is a combinatorial optimiza-
tion problem, which is generally NP-hard [7], [12]. Directly
solving optimization problem (1) can be intractable due to
the discrete policy variables and constraints. To tackle the



challenge, we parameterize the scheduling policy p(L,x)

for the application of machine learning techniques with a

mapping function ¥ (W, L, x), where the parameter set W

is of controllable dimension. Accordingly, the optimization
problem (1) can be rewritten as

N
v = U, )
(W, Lx) = arg max ; W(W)z; (6)
s.t. L;N Lj = (Z), for all L; & Lj € 51, \I/Z(W)

=V;(W)=1,1<4 j<N,i#j ()

U, (W)e{0,1}, 1<i<N 9

U,(W)=1lonlyifg; =1, 1<i<N (10)

Denote in matrix form, let Ay : {0, 1}/VI*V represent the
presentation matrix of nodes involved in routing links. In the
i-th column of Ay, the element with entry 1 indicates that
this node is used in link L; as either the starting node or the
ending node. Similarly, we can define Ag : {0,1}/S*V to
represent the usage of single-link nodes in all routing links
and A : {0,1}*N (o represent routing link interference
matrix with the entry [A;];; = 1 indicating links L; and
L; interfere with each other. With these notations, we can
rewrite the optimization problem as

(W, L,x) = arg max xTAy U (W) (11)
s.t. AsAI\I/(W) S ]l|5| (12)
V(W) e{0,1}, 1<i< N (14)
U;(W)=1lonlyifg =1, 1<i<N (15

B. Heterogeneous Graph Neural Network Embedding

Link scheduling is usually formulated as a non-convex
combinatorial problem, which is generally difficult to get
the optimal solution [7]. Traditional methods to solve this
problem are mainly based on mathematical optimization
techniques with high computation complexity. To overcome
the high computational complexity, machine leaning based
approaches have been introduced recently, e.g., the GNN
techniques have been employed in link prediction, node
classification and graph regression [13].

Our system model shown in Fig. 1 can be represented
as a heterogeneous graph since there are different types
of nodes and edges. Therefore, we propose the HetGNN
technique for our optimization problem. The node features
include node type (single-link or multi-link), amount of data,
neighbors (single-link neighbors and multi-link neighbors),
its involvement in routing links (number of links involved,
starting node or ending node of links), etc. The edge features
include edge type (€1 or &), edge capacity, node pair, edge
usability in routing, edge direction in routing, interference
edges, etc. The given routes can be considered as meta-paths
in graph neural networks.

For a node k € V, its neighbor set is denoted as N (k).
The node embedding is defined as
hY = o(Fy+

> (Wp1(e € &)+ Wg,(e € &)hE),

uweN (k)
e=(u,k)

(16)

where F is the feature vector of node k, Wg, is the
parameter set for £; edges, Wg, is the parameter set for
&, edges, hf takes account of the routing involvement of
edge e and o is node activation function such as the rectified
linear unit (ReLU).

For an edge e € £, the edge embedding is defined as

hé =0, (hY +hY), with (u, k) =e (17)

where h” and h) are embedded feature vectors of nodes
connected by edge e and o, is edge activation function.

Accordingly, for a route R € R, the meta-path embedding
is defined as

R _ v £
hi =om(hpay, Wiga), re) a8)

£ %
Br(1r1 1), RO D) PR R))

where ¢, is meta-path activation function.

V. PRIMAL-DUAL ALGORITHM FOR UNSUPERVISED
TRAINING

The problem (11) is also a combinatorial optimization
problem. The primal-dual method is a standard approach
in the design of algorithms for combinatorial optimization
problems [8], [14]. Accordingly, we apply primal-dual
method to solve the problem (11).

We follow work [15] in the primal-dual problem formula-
tion. The primal problem is

P= max xTAy U (W) (19)
st @ < EglC], for all U;(W) = 1 20)
AsA V(W) < Lis (21)

U; (W) e{0,1}, 1 <i<N (22)

U, (W)=1lonlyifgi=1, 1<i<N (23)

The Lagrangian form of primal problem (19) is defined
by associating Lagrange multipliers g with the capacity
constraint and A with the interference constraint, i.e., the
Lagrangian problem can be written as

L[W, A} = XTAV\II(W) + ZMZ\IIZ(W) (J,‘i — EH[CA)

+AT(ASAT(W) — 1s)) (24)

The dual function is obtained by maximizing the La-
grangian over the primal variables as

glA] = max L[W,A]. (25)

W, ¥ (W)e{0,1}



As a result, the dual problem is defined as

D = ming[A].

min (26)

The primal problem is non-convex [15], which implies that
the duality gap can be non-zero, i.e. D > P. Therefore, this
is called a duality relaxation on the primal problem.

For some problems, the duality gap is zero. For routing
link scheduling problems, when the channel between each
pair of nodes is deterministic, the problem is known to be
NP-hard. Introducing fading channels can vanish the duality
gap [15], i.e. P = D. More specifically, work [15] provides
the following theorem

Theorem 1. [f the channel cumulative distribution function
(cdf) is continuous, then P = D.

Assuming the optimal set of dual variables A* is available,
the primal updates can be formulated as

W(t+1)=W(t) + ¢ VwU(W)(ALx + ATALA(1))
(27

and the dual updates can be formulated as

it +1) = [ui(t) — €U, (W(t)(z; — Eu[Ci])] ", (28)
Alt+1) = [A(t) — e (AsAT(W(H) — 11s)] ", (29)

where [-]* denotes componentwise maximum between 0 and
the value inside the square brackets, while €, is a properly
selected stepsize.

As we can notice, (28) cannot be computed without
explicit knowledge of fading channel distribution H and
data distribution x. We solve this by sampling a realization
H(¢) and update according to:

pilt + 1) = (i) = e Wi (W(0) (s — C;(HE)]T, (30)

which enables us to use the observed capacity C;(H(t))
directly without the need to know the explicit fading channel
condition. The unsupervised HetGNN training process is
presented in detail in Algorithm 1.

VI. NUMERICAL EXPERIMENTS

This Section presents the performance evaluation of the
proposed HetGNN scheme. In the simulation, we randomly
deployed nodes in a [0,100m]? square with 1 data center
(red square), a set of single-link nodes (red circles) and a
set of multi-link nodes (green circles). An example of node
deployment is shown in Fig. 2 with 30 single-link data nodes
and 5 multi-link data nodes. We calculate the channel capacity
matrix by channel gains with the shadowing model

log(X,) ~ Gaussian(0, 0%) 31
and dual-slope path-loss model [16]
p Kod™ it d <dp
PL(d) = Kod;g% if d > dy (32)
b

Algorithm 1 Primal-Dual Unsupervised Training Algorithm

Input 1: Node set V =8 + M
Input 2: Network topology
Input 3: Route set R
Discover neighbor set for each node
Configure routing link set £
Construct interference links for each routing link
fortcZ do

Update node features

Update edge features

Embed all the routes (metapaths) and generate current
scheduling policy W(W (t))

Observe total data amount collected by the data
centers

Update primal and dual variables

W(t+1)=W(t)+ ¢ VwO(W)(ALx + ATALA(1))
pit + 1) = [pi(t) — & ¥, (W(t))(z; — Eu[Ci]))] "
At +1) = [A(t) — e:(AsAT(W(t) — Lis)] "

R A A S

— —
—_ =]

_.
»

13: end for

with Ko = 39dB a1 = 2 as = 4 d, = 60m. The channel
capacity is computed as

C = BW log,(1 + SNR), 33)

where bandwidth (BW) for £; links is 2.4GHz and for &;
links is 5GHz, noise power spectral density is -174dBm and
power is ImW.

To determine single-link neighbors and &; interference
links, we define a communication distance threshold Dy,
which is also an interference threshold. For each pair of
nodes ¢ and j, we calculate distance d;;. For a single-link
node i, a node j € N; if di; < Dy, where node j can
be either single-link or multi-link. In the simulation, the
threshold Dy is set to 25m. The multi-link nodes can directly
communicate with the data center.

We discover routes for randomly deployed data nodes
by modifying Dijkstra’s shortest path algorithm to fit the
heterogeneous networks. More specifically, we modified the
algorithm to take node type and edge type into account. One
route is discovered for each data node. If the route lengths
are the same for two candidate routes, a route with more &y
links is selected.

We used three metrics including data throughput, link
capacity violation and interference violation to evaluate the
performance, where link capacity constraint is violated if the
scheduled data exceeds the link capacity and interference
constraint is violated if the interfering £ links are scheduled
simultaneously. The CNN model and HomGNN model
are used as benchmarks. We used PyTorch for simulation
implementation.

For each node deployment scenario, data packets are
generated with a random expectation and a fixed variance.
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The average amount of data generated has the same order as
the channel capacity. The multi-link data nodes are expected
to have larger average data packets. Fig. 3 shows a distribution
of data packet size for the node deployment shown in Fig.
2, where packet size unit is byte.

We conducted extensive simulations. Due to space limita-
tion, we show the results of two node deployment scenarios
with 24 single-link data nodes, 5 multi-link data nodes and
1 data center. It is interesting to observe that locations of
multi-link nodes play important role in network performance.

Fig. 4 shows one of two deployments, for which Fig. 5
shows data throughput, CNN model delivers 808.27 bytes of
data per scheduling step, HomGNN model delivers 828.27
bytes of data per scheduling step, and the proposed HetGNN
model delivers 829.57 bytes of data per scheduling step.
Accordingly, HetGNN improves improves CNN throughput
by 2.6% and has similar throughput as HomGNN model.

Fig. 6 shows average link capacity violation, CNN model
over schedules 0.88 bit of data per scheduling step, HomGNN
model over schedules 0.7 bit of data per scheduling step
and our HetGNN model over schedules 0.73 bit of data
per scheduling step. As a result, HetGNN improves CNN
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performance by 17% and has a similar performance as the
HomGNN model.

Fig. 7 shows average link interference violation, CNN
model violates interference constraint 0.38 time per schedul-
ing step, HomGNN model violates interference constraint
0.22 time per scheduling step and HetGNN model violates
0.21 per scheduling step. Therefore, HetGNN reduces inter-
ference constraint violation over the CNN model by 45%
and has a similar performance as the HomGNN model.

In summary, for the node deployment shown in Fig. 4, the
proposed HetGNN model outperforms the CNN model and,
however, performs similarly as the HomGNN model. This
is because the multi-link nodes are close to the data center,
and therefore, the advantage of multi-link nodes is limited.

The second node deployment is shown in Fig. 8, for
which Fig. 9 shows data throughput, the CNN model delivers
807.57 bytes of data per scheduling step, HomGNN model
delivers 808.17 bytes of data per scheduling step, and the
HetGNN model delivers 827.7 bytes of data per scheduling
step. Accordingly, HetGNN improves CNN throughput by
2.5% and improves HomGNN throughput by 2.4%.

Fig. 10 shows average link capacity violation, CNN
model over schedules 1.55 bits of data per scheduling
step, HomGNN model over schedules 1.02 bits of data
per scheduling step and our HetGNN model over schedules
0.82 bit of data per scheduling step. As a result, HetGNN
improves CNN performance by 47% and improves HomGNN
performance by 20%.

Fig. 11 shows average link interference violation, CNN
model violates interference constraint 3.08 times per schedu-
ing stepe, HomGNN model violates interference constraint
2.83 times per scheduling step and HetGNN model violates



2.75 times per scheduling step. Therefore, HetGNN reduces
interference constraint violation over the CNN model by
11% and reduces interference constraint violation over the
HomGNN model by 3%.

In summary, for the node deployment shown in Fig. 8,
the proposed HetGNN model outperforms both CNN and
HomGNN models. This is because the multi-link nodes are
away from the data center, and therefore, the advantage of
multi-link nodes is explored by HetGNN model.

VII. CONCLUSIONS

This paper studies the routing link scheduling problem
in heterogeneous IoT networks consisting of heterogeneous
data nodes forming different types of links. The routing link
scheduling problem is formulated as an optimization problem
with link interference and channel capacity as constraints.
Instead of applying a conventional optimization-based routing
scheduling approach, we apply machine learning techniques.
Accordingly, the optimization problem is parameterized. Due
to the NP-Hard complexity of the optimization problem,
the parameterized problem is further solved by applying a
primal-dual approach. The formulated primal-dual problems
are proved to have zero duality gap. We train primal-
dual problems using heterogeneous graph neural network
(HetGNN) techniques to learn unknown environments and
link conditions for routing link scheduling policy. Compared
with CNN and HomGNN models, the proposed HetGNN
model can improve data throughput by up to 2.6%, reduce link
capacity violation by up to 47% and lower link interference
violation by up to 45%.
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