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Abstract
Harmonics are important signatures in motor current indicating motor operating conditions
and faults in motor maintenance. However, harmonics of motor faults are generally very
weak and with frequency-dependent magnitudes, making it difficult to extract harmonics
from noisy measurements, especially when the motor speed is varying. This paper introduces
a novel weighted sparsity-driven and graph-model-based method to extract harmonics in the
time-frequency domain. The method utilizes sparsity of harmonics in the frequency domain
and their smoothness in the time domain due speed variation, and uses a frequency-dependent
weight to leverage the magnitude of different harmonics. We formulate the harmonic signature
extraction as a regularized optimization problem, and solve it us an alternating direction
method of multipliers (ADMM). Results on experimental data show that the proposed method
can effectively extract weak harmonic components in noisy measurements with improved
performance over other existing methods.
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Abstract: Harmonics are important signatures in motor current indicating motor operating
conditions and faults in motor maintenance. However, harmonics of motor faults are generally
very weak and with frequency-dependent magnitudes, making it difficult to extract harmonics
from noisy measurements, especially when the motor speed is varying. This paper introduces
a novel weighted sparsity-driven and graph-model-based method to extract harmonics in the
time-frequency domain. The method utilizes sparsity of harmonics in the frequency domain
and their smoothness in the time domain due speed variation, and uses a frequency-dependent
weight to leverage the magnitude of different harmonics. We formulate the harmonic signature
extraction as a regularized optimization problem, and solve it us an alternating direction
method of multipliers (ADMM). Results on experimental data show that the proposed method
can effectively extract weak harmonic components in noisy measurements with improved
performance over other existing methods.
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1. INTRODUCTION

Induction motors are important drive machines for indus-
tries because they are cost-effective, robust, and endurable
for different environmental conditions. As induction mo-
tors are widely used in mining, cement, automotive, oil
and gas, and manufacturing industries, preventive main-
tenance of induction motors also receives increasing atten-
tions.

In recent decades, motor current signature analysis(MCSA)
(Pillay and Xu (1996)) has been used to detect motor
faults for its non-invasive property. When a motor fault
occurs, the rotating magnetic field becomes asymmetric,
inducing extra frequency components as fault signatures
in the stator current. MCSA-based methods aim to extract
fault signatures that indicate abnormalities.

One type of fault signature is side-band frequencies around
the supply frequency, such as broken-bar fault signature
and eccentricity fault(Thomson and Fenger (2001)). How-
ever, side-band fault signatures, such as broken-bar fault
signature, may be difficult to extract because their small
magnitudes and proximity to the supply frequency, espe-
cially when the slip of motor speed is very small.

Another type of fault signature is harmonics in a relatively
higher frequency band, such as slot harmonics. When
rotor bars cross the magnetic field generated by the
stator windings, slot harmonics are generated in the stator
current (Vas (1992)). Since slot harmonics are affected by

the air gap between the stator and rotor and the speed of
the rotor, they can be used for eccentricity detection(Faiz
and Moosavi (2016)), in-turn fault defects(Bonet-Jara
et al. (2022)), and sensorless speed control(Hurst et al.
(1998)).

Due to the extreme contrast in the number of rotor bars,
slot harmonics are of higher frequency than the side bands
of the supply frequency(Cameron et al. (1986)), which
make it relatively easier to separate it from the operating
frequency. However, the magnitude of slot harmonics is
still very small, even submerged by noise, making it
challenging to extract from noisy measurements. Existing
techniques that specialize in extracting that sideband may
be not suitable for detecting harmonics along with the
noise.

To address these issues, this paper proposes a technique
to extract anomalous signals by a novel signal processing
technique to extract fault signatures effectively. The con-
tributions of this paper are as follows.

(1) We propose a weighted-sparsity-driven and graph-
model-based method to extract motor fault signa-
tures in the time-frequency domain.

(2) We formulate the fault signature extraction problem
as a regularized optimization problem by imposing
sparsity of fault signatures in the frequency domain
and smoothness of fault signature in the time-domain,
and putting frequency-dependent weight on the fre-
quency spectrum, and then solve the problem us-



ing an alternating direction method of multipliers
(ADMM) algorithm.

(3) We demonstrate with experimental results that not
only high-frequency slot harmonics but also low-
frequency sidebands of the supply frequency can be
extracted as fault signatures simultaneously using our
proposed method.

2. SLOT HARMONIC EXTRACTION

2.1 Physical model of slot harmonics

Theoretical studies have been conducted to formulate slot
harmonics(Cameron et al. (1986), Henao et al. (2005)).
Slot harmonics are induced in the stator current when
rotor bars cross through the magnetic field generated by
the stator windings. The slot harmonics can be expressed
by the following equation(Vas (1992))

fh = [(kR± nd)
(1− s)

p
± ν]fs, (1)

where k is an integer number, R is the number of rotor
bar, nd is the order of dynamic eccentricity, s is the motor
slip, p is the number of pole pair, ν is the order of static
eccentricity, and fs is the operating frequency.

When nd = 0, (1) represents the frequency of static
eccentricity. When a static eccentricity fault is present,
the magnitude of the slot harmonics increases. When
nd = 1, 2, . . . , it represents the frequency of dynamic
eccentricity. When dynamic eccentricity exists, it will
appear as a sideband frequency of slot harmonics.

2.2 Weighted sparsity-driven and graph-based model

To process non-stationary signals, the short-time Fourier
transform (STFT) is used, representing the signal in the
time-frequency domain. Signals are divided into short
sections via overlapped time windows, and each section’s
frequency spectrum is analyzed using the fast Fourier
transform (FFT). This process, applied to stator current
in single or three-phase systems, produces a spectrogram
matrix Y, showing the frequency spectrum of each signal
section. The matrix’s rows correspond to fixed frequencies,
with the frequency range limited to [0, Fs/2] to avoid
redundancy, where Fs is the sampling rate. Associated
with the mth node (time window) of the graph, a Nf -
dimensional frequency spectrum vector Ym ∈ CNf is
achieved by analyzing the time-domain measurements
ym ∈ R2Nf via Fourier transform (FT) or other methods
such as minimum-variance-based spectral analysis Liu
et al. (2022) for better denoising performance. Let

Ym = Xm +Nm, for m = 1, . . . ,M, (2)

where X = [X1,X2, · · · ,XM ] represents the denoised
spectrogram and Nm is signal noise. Due to variable
operating speed and load, the fault signature frequency
varies, appearing as a curve in the spectrogram matrix.

To explore the data structure of X, we have prior knowl-
edge that X includes only a few number of frequency
components. When the motor is in ideal healthy condition,
X only includes the operating frequency component. If
there is a fault, extra frequency components such as slot

harmonics and fault frequency components will be intro-
duced to X. In both cases, X is sparse in the frequency
domain. Therefore, we can impose sparsity on X. Consid-
ering the harmonic magnitude decreases with the increase
of frequency, a weighted sparsity regularizer is considered
for recovering the sparse components, with weights related
to the frequency.

To further explore the data structure of X and moti-
vated by recent advancements in graph-model based sig-
nal denoising techniques (Chen et al. (2014); Liu et al.
(2020): Liu et al. (2023)), we model the denoised spec-
tra measurements on a graph G = (V,A), where V =
{v1, ..., vm, ..., vM} is the set of nodes, represented by se-
quential moving time windows. The spectrum Xm is the
measurement at node vm.A ∈ RM×M is the graph shift, or
a weighted adjacency matrix that represents the pairwise
proximity between nodes, which can be estimated using
the STFT frequency spectra as

Ai,j =
|YH

i Yj |√
YH

i Yi

√
YH

j Yj

, for |i− j| < d, (3)

where the superscript H indicates the matrix Hermitian
transpose, d is the maximal distance of connected neigh-
borhood nodes in the graph. We formulate the harmonic
extraction problem as a regularized optimization problem
as

min
X

M∑
m=1

1

2
∥Xm −Ym∥22 + λR1(X) + βR2(X). (4)

Here R1(X) and R2(X) are regularization terms. R1(X)
enforces the sparsity of the graph signal by utilizing
weighted L1 norm as

R1(X) =

M∑
m=1

|W ⊙Xm|1 =

M∑
m=1

|diag(W)Xm|1 , (5)

whereW is a frequency dependent one-dimensional weight
vector, and ⊙ represents element-wise product. By weight-
ing the frequency spectrum Xm, the low-magnitude har-
monic frequency component can be well detected.

R2(X) encourages the smoothness of graph signals, mean-
ing that adjacent nodes are expected to have similar fault
signatures in the frequency domain, which can be formu-
lated as

R2(X) =
1

2
∥X− ĀX∥2F . (6)

where Ā is a normalized graph shift matrix whose entries

are computed as Āi,j =
Ai,j∑
j
Ai,j

to ensure that the sum of

each row of Ā equals to 1; and the subscript F denotes
the Frobenius norm.

2.3 Weight design

This weight vector W in (5) is designed to be frequency
dependent, with the magnitude of the weights decreasing
as the frequency increases. To explore the magnitude vari-
ation of the stator current with respect to the frequency,
we study the physical model of induction machines. Fig.
1 shows an equivalent circuit of an induction motor when
we ignore the motor slip, which circuit is similar to that
of a transformer(Kron (1951)).



Primary winding (stator) Secondary winding (rotor)

Fig. 1. Equivalent circuit of induction motor. The circuit
is similar to that of a transformer, where the stator is
considered the primary and the rotor is the secondary.

Assume a simple structure with a stator as the primary
and a rotor as the secondary, each containing a coil and
a resistor, where V1 is the applied voltage, L, R, I, and
E are reactance, resistance, current, and induced voltage,
respectively. The footnote 1 represents the primary side,
and the footnote 2 represents the secondary side. When
three-phase alternating voltage is applied to the primary
side, a stator current is generated, which is inversely pro-
portional to the equivalent primary impedance. Any fault
occurred in the motor will be reflected in the equivalent
impedance, and consequently in the stator current. Since
the excitation current is very small compared to the stator
current, the impedance of the stator on the primary side
can be expressed by

|Z|1 =
√
CR

2R2
1 + CL

2ω2L2
1 + |Z|′2, (7)

where ω is the angular frequency, and CR and CL are
the coefficients of inductance and resistance, and |Z|′2 is
the equivalent impendance of the secondary winding. The
magnitude of the current can be obtained by

|I|= |V |
|Z|1

=
|V |

2πL1CL

√(
CR

2πL1CL

)2

R2
1 + f2 + |Z|′2

≈ |V |( C1√
C2 + f2

+ C0), (8)

where I is the stator current, V is the supply voltage, and
C0, C1, and C2 are constants related to motor parameters.
In induction motors, these constants are closed tied by
several factors such as skin effect, saturation, and slip
between synchronous speed and rotor speed.

Fig. 2 shows the admittance with respect to frequency
when C0 = 1.5, C1 = 0.25, and C2 = 0.02, where the
admittance decreases monotonically with frequency.

Since the current is proportional to the admittance, the
envelop of current spectrum also decreases with frequency.
By setting the admittance as a weight vector, small-
magnitude harmonics at higher frequency band can be
extracted effectively. The ith entry of the weight vector
can be calculated as

W(i) =
C1√

C2 + f2
i

+ C0, for i = 1, ..., Nf , (9)

where Nf is the total number of discrete frequency con-
sidered in the spectrum and fi represent the ith discrete
frequency.
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Fig. 2. Admittance of stator winding. The admittance
decreases monotonically with frequency, resulting de-
creased harmonic magnitude with respect to fre-
quency.

2.4 Algorithm

To solve the optimization problem in (4), we utilize the
augmented Lagrangian approach and implement the al-
ternating direction method of multipliers (ADMM) for
its solution Boyd et al. (2011), and use the following
unconstrained objective function

min
X,U

M∑
m=1

1

2
∥Xm −Ym∥22 + λ

M∑
m=1

|Zm|1 +
β

2
∥X− ĀX∥2F

+
ρ

2
∥diag(W)X− Z+U∥2F . (10)

The entire process of extracting harmonic signatures is
summarized in Algorithm 1, where I denotes an identity
matrix and Sα(z) represents a soft-thresholding function
Donoho (1995)

Sα(z) = max (|z| − α, 0)
z

|z|
. (11)

Algorithm 1 ADMM solution of the proposed method

Input Y, Ā, β, ρ, Nf

k ← 1
U(0) ← 0, X(0) ← 1, Z(0) ←W ⊙X(0)

while ∥diag(W)X(k)−Z(k)∥
∥Z(k)∥ ≥ 10−6 do

For i = 1, ..., Nf

X(k)(i)← [(ρW(i)
2
+1)I+β(I− Ā)T (I− Ā)]−1

[Y(i) + ρW(i)(Z(k−1)(i)−U(k−1)(i))],
End
Zk ← Sλ/ρ(diag(W)X(k) +U(k−1)),

Uk ← Uk−1 + diag(W)Xk − Zk,
end while

Output X̂ = X(k)

3. EXPERIMENTS

3.1 Experiment setup

To demonstrate the effectiveness of our proposed method,
experiments were conducted on a 1 HP three-phase
squirrel-cage induction motor driven by a three-phase in-
verter, as depicted in Fig. 3(a). A servo-motor was pre-
cisely aligned on the shaft of the induction motor to serve
as an adjustable load, allowing for precise manipulation
of its speed and torque during the experiment. The stator



currents of the three-phase motor are collected through
three current sensors and subsequently stored via a com-
puter interface for detailed analysis.

In our comparative analysis, two identically specified ro-
tors were used. We intentionally created a broken-bar
defect in one of them by drilling into a rotor bar. Pictures
of both the healthy and the faulty rotors are displayed in
Fig. 3(b). In the experiments, we manually adjust the load
torque to mimic practical varying load operations.

(a) Configuration of experimental Setup. The induction motor has

32 stator slots, 28 rotor bars, and 2 pole pairs.

(b) The left figure shows a healthy rotor and the right figure shows

a broken-bar rotor.

Fig. 3. Experimental setup using healthy and faulty rotors.

3.2 Experimental results

In this experiment, the evaluation was performed on data
from an induction motor operating under varying load
conditions. Fig. 4(a) shows the data in the time domain
and Fig. 4(b) shows the data in the frequency domain of 0-
1000 Hz. From Fig. 4(a) we can see that the stator current
amplitude changes with time due to load variation. As
a result, the corresponding fault frequency (harmonics at
around 800Hz) also changes as indicated in Fig. 4(b).

To evaluate the proposed method, we compare it with
three existing methods, which are (a) short-time Fourier
transform (STFT), (b) minimum variance-based spectral
analysis (MV), and (c) sparsity-driven graph model-based
method (Graph-based)(Liu et al. (2023)). For all experi-
ments, we use time-domain stator current measurements
of 53s. For fair comparison, the same sliding time window
is used with a length of 2.5s and an overlap of 0.5s from
window to window. Other hyper-parameters are listed in
Table 1.

Fig. 5 shows the frequency analysis results for a healthy
rotor bar. Fig. 5(a) shows STFT, Fig. 5(b) shows MV,
Fig. 5(c) shows graph-based, and Fig. 5(d) shows the
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(b) Frequency domain

Fig. 4. Stator current of varying frequency operation in (a)
time-domain and (b) frequency-domain using Fourier
transform.

Table 1. Hyper parameters

Parameter β ρ λ C0 C1 C2

Value 0.01 0.02 0.03 1.5 0.25 0.02

proposed method. We consider frequency range from 0
to 100Hz which covers the sideband frequency range and
current magnitude from −50dB to 20dB. The magnitude
of the signal at the driving frequency of 50Hz is 10dB,
but the slot harmonics are about −60dB. We observe that
for STFT spectrum, there exists a large amount of noise
besides the operating frequency. The minimum variance
method is able to suppress the noise and the graph-based
method suppressed more. While our proposed method
clearly removed all noise in the spectral analysis. Further
investigation shows that our proposed method removes
noise over a wide frequency range as indicated in the
following results.

Fig. 6 shows an zoom-in view from 400Hz to 1000Hz. To
improve the visual contrast, the dynamic range of the color
bar is set from −75dB to −50dB. Comparing Fig. 6(a)
to Fig. 6(d), we can see that the proposed method is
able to extract harmonics effectively. Fig. 6(e) is a plot
of theoretical result according to (1). Comparing with this
Fig. 6(d), it can be seen that the extraction results are
theoretically supported.

Fig. 7 shows the frequency analysis results of stator current
with a broken-rotor-bar fault. Similar to Fig. 5, Fig. 7(a)
is STFT, Fig. 7(b) is MV, Fig. 7(c) is graph-based, and
Fig. 7(d) is the proposed method, with the same settings
as Fig. 5. It can be seen that the proposed method
is able to clearly extract driving signal as well as the
results for a healthy rotor bar in Fig. 5. Furthermore, the
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(d) Proposed Method

Fig. 5. Comparison of denoising results on healthy motor
current data using 5(a) STFT, 5(b) MV, 5(c) Graph-
based, and 5(d) Proposed method, respectively. It
can be observed that the proposed method effectively
reduce noise in the range of 0 - 100 Hz, and extract
driving frequency signature at 50Hz.
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(e) Slot harmonics via (1)

Fig. 6. Comparison of denoising techniques in the range
of 400 - 1000Hz. Four harmonics are identified, ν =
+5,+3,−1,−3 from top to bottom respectively. The
extracted feature signal (6(d)) is found to be consis-
tent with the theoretical equation (6(e)).

sideband signal, which appears around 50Hz due to rotor
bar damage, is also extracted. Similarly, a zoomed-in view
of Fig. 8 is shown in the frequency range 400Hz to 1000Hz.
Comparing with the theoretical result plotted in Fig. 8(e),
we can observe that the extracted slot harmonics agree
with the theoretical result very well.
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Fig. 7. Comparison of denoising results on stator current of
a motor with broken-bar fault using 7(a) STFT, 7(b)
MV, 7(c) Graph-based, and 7(d) Proposed method,
respectively. The proposed method can successfully
extract the low frequency broken-bar fault signature
around 50Hz operating frequency.

The results from Figs. 5-8 show that the proposed method
is able to extract low frequency fault signatures and
high frequency harmonics more effectively than existing
methods.

4. CONCLUSION

This study presented a novel weighted sparsity-driven and
graph-model based approach to extracting harmonic sig-
natures from noisy stator current of induction motor. Our
method demonstrated superior performance in identifying
slot harmonics and sidebands of the driving frequency,
outperforming traditional techniques like STFT and MV-
based spectral analysis. These advancements significantly
enhance fault detection capabilities, which is crucial for
predictive maintenance in various industrial applications.
The effectiveness of proposed method in noise reduction
and accurate harmonic extraction shows great potentials
for industrial applications.
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