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Abstract
In this paper, we propose a surrogate model based on neural networks, for the rapid evaluation
of the performance of permanent magnet synchronous motor designs, especially the detailed
torque waveform. In the training phase of our proposed method, motor design parameters are
taken as input and gap flux density information is taken as output, both fed to train neural
networks. In the test phase, gap flux density is predicted with the trained neural networks, the
torque waveform is subsequently reconstructed, and a peak-to-peak cogging torque amplitude
is estimated from the waveform. We compare the proposed method with conventional neural
network based surrogate models, in which torque information is directly used for training,
and confirm that the proposed method shows higher accuracy than conventional approaches,
especially when the training data size is small.
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Abstract—In this paper, we propose a surrogate model based
on neural networks, for the rapid evaluation of the performance
of permanent magnet synchronous motor designs, especially the
detailed torque waveform. In the training phase of our proposed
method, motor design parameters are taken as input and gap flux
density information is taken as output, both fed to train neural
networks. In the test phase, gap flux density is predicted with
the trained neural networks, the torque waveform is subsequently
reconstructed, and a peak-to-peak cogging torque amplitude is
estimated from the waveform. We compare the proposed method
with conventional neural network based surrogate models, in
which torque information is directly used for training, and
confirm that the proposed method shows higher accuracy than
conventional approaches, especially when the training data size
is small.

Index Terms—PMSM, surrogate model, neural network, gap
flux density, cogging torque

I. INTRODUCTION

Design optimization of electric machines using the surrogate
model approach is attracting a lot of interests because of
its advantage in computational speed compared with finite-
element analysis (FEA) based design approaches. The neural
network (NN) based machine learning method is one of the
promising ways to construct the surrogate model due to its
potential in predicting the highly nonlinear performance of
the electric machines [1]. However, a large amount of training
data is required to train these models with high prediction
accuracy, especially for complicated designs determined by a
large number of design variables. In particular, cogging torque
is one critical requirement for motor design, especially for
precise motion control applications. Some studies addressed
cogging torque prediction using NNs [3]. In prior studies,
torque information, such as peak-to-peak torque amplitude [4]
or Fourier components of the torque waveform [5], is often
fed as output of the NNs. Normally, those approaches require
large number of training data, because torque waveform of
slotted motors is often nonlinear and extremely sensitive to
slight changes in design parameters around the air gap region,

such as slot-opening, tooth shoe height, and shape of the
magnets. On the other hand, in principle, torque can be derived
from Maxwell stress tensor, which includes the information
of magnetic flux density distribution at the air gap. In this
study, we propose a surrogate model, in which NNs are used
for predicting gap flux, and torque waveform is subsequently
reconstructed in order to estimate the cogging torque. We show
that this two-step modeling approach achieves better accuracy
compared with conventional machine learning models.

II. MATERIALS AND METHODS

A. Training and test data preparation

The design of an example surface-mounted permanent
magnet synchronous motor (SPMSM) is shown in Fig. 1.
For machine learning purposes, motor design candidates are
generated by tuning the values of 9 design parameters marked
in the figure. A FEA simulation with no-load is conducted for
each design and gap flux density distribution as well as torque
is computed at each time step. The gap flux density is divided
into space and time harmonics, as

Br(θ, t) =
∑
k,l

br,k,l e
−j(kθ+l t

T ). (1)

Bθ(θ, t) =
∑
k,l

bθ,k,l e
−j(kθ+l t

T ). (2)

Fig. 1. SPM motor structure with 9 design variables.



The dataset is divided into test data and training data. We
prepare plural training datasets with different size correspond-
ing to the unique test dataset, in order to investigate the data
size dependence of the proposed method.

B. Surrogate model using neural networks

In a full-connected NN shown in Fig. 2 (a), the design
parameters defined in Fig. 1 are treated as input to the NN,
and a space/time harmonic component defined in (1) or (2) is
output. Each NN has a single output node and in total 546
NNs are independently trained for each of br,k,l and bt,k,l.
In the test phase, as illustrated in Fig. 2 (b), Br and Bθ are
reconstructed by using predicted space/time components, and
subsequently, torque waveform is computed based on Maxwell
stress tensor, as

τ(t) =
r2gl

2

∫ 2π

0

BrBθdθ, (3)

where rg and l is the gap radius and the axial length,
respectively. Finally, peak-to-peak amplitude of the cogging
torque is estimated.

For a comparison purpose, we also test two types of conven-
tional NN approaches using the same training/test dataset: (A)
The peak-to-peak amplitude of the cogging torque is directly
fed to a NN as training data and it is directly predicted in the
test phase; (B) Fourier components of the torque waveform are
fed to NNs as training data, torque waveform is reconstructed
from predicted fourier components in the test phase, and peak-
to-peak amplitude is estimated.

Fig. 2. (a) Structure of a NN for a single output. (b) Surogate model for
cogging torque prediction using using multiple NNs for gap flux Fourier
components.

III. INITIAL RESULTS

The reproduced gap flux distribution of three example
designs, which are randomly selected from the test data, are
shown in Fig. 3. Each predicted curve shows a good fit
to the true gap flux computed by FEA. Fig. 4(a) shows a
comparison between true and predicted values of peak-to-
peak torque amplitude for test data, in which the proposed
method is applied with 2000 training data. A good match
between the true and the prediction is observed. The root-
mean-square errors (RMSEs) of three surrogate models, i.e.,
two conventional approaches (A)(B) and the proposed method
(C), with the dependence on the training data size, are shown
in Fig. 4 (b). The proposed method shows smaller RMSEs

than conventional approach (A), where the peak-to-peak torque
amplitude is directly fed to a NN, for all the training data
size. In addition, the proposed method shows smaller RMSEs
than conventional approach (B), where the Fourier components
of torque waveform is fed to NNs, especially when training
data size is smaller than 4000, whereas two approaches show
almost the same accuracy when training data size is 4000 or
more.

These results show that the proposed two-step method is
especially helpful in providing a surrogete model with small
training data. In the future we will further investigate the
effectiveness of the method in the process of multi-objective
design optimization of rotating machines, as well as on-load
condition. Details will be presented in the full paper.

Fig. 3. Examples of predicted and true gap flux of test data.

Fig. 4. (a) Prediction vs true plot of peak-to-peak torque amplitude, where
the proposed method is applied with 2000 training data. (b) RMSE values
with three types of approaches with the dependence on the training data size.
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