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Abstract
Typical electric motor design process involves time- consuming finite-element simulations.
In recent years, machine learning and deep learning techniques have been investigated for
the development of surrogate models which provide rapid evaluation of motor designs. One
drawback of these techniques is the requirement of large dataset in order to achieve reasonable
prediction accuracy. In this paper, we present strategies in developing data-efficient machine
learning and deep learning surrogate models for electric motors: reducing input dimensions,
utilizing physics knowledge for hybrid models, and applying feature extraction methods using
geometrical and topological data analysis tools.

Biennial IEEE Conference on Electromagnetic Field Computation (CEFC) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Data-efficient Machine Learning Methods for
Electric Motor Surrogate Models

Bingnan Wang
Mitsubishi Electric Research Laboratories

201 Broadway
Cambridge, MA 02139 USA

bwang@merl.com

Yusuke Sakamoto
Advanced Technology R&D Center

Mitsubishi Electric Corporation
Amagasaki, Japan

sakamoto.yusuke@df.mitsubishielectric.co.jp

Abstract—Typical electric motor design process involves time-
consuming finite-element simulations. In recent years, machine
learning and deep learning techniques have been investigated
for the development of surrogate models which provide rapid
evaluation of motor designs. One drawback of these techniques
is the requirement of large dataset in order to achieve reasonable
prediction accuracy. In this paper, we present strategies in
developing data-efficient machine learning and deep learning
surrogate models for electric motors: reducing input dimensions,
utilizing physics knowledge for hybrid models, and applying
feature extraction methods using geometrical and topological
data analysis tools.

Index Terms—Electric machines, surrogate model, machine
learning

I. INTRODUCTION

Electric machines are widely used in households and various
industries, and their technologies and design principles are
well established. However, the requirements for motor design
and customization, especially for new applications such as
electric vehicles and aircraft, and factory automation, always
pose new challenges to motor designers. Parameter sweeping
or iterative optimization methods are often utilized in order
to evaluate a large number of design candidates before iden-
tifying the optimal design for a specific task. Thee accurate
analysis of each motor design candiate often relies on finite-
element analysis (FEA) based numerical simulations, which
are time-consuming, especially when various operating points
are evaluated for one design. It is therefore desirable to
seek alternative analysis methods of FEA to rapidly predict
motor performances. Surrogate model based optimization has
been investigated to speed up the process [1]. Due to the
highly nonlinear nature, the accuracy of conventional surrogate
models suffers when predicting certain motor performances
such as torque waveform and efficiency map. In recent years,
machine learning and deep learning methods have found many
applications and been applied to motor design [2], [3], due to
their capability of emulating highly nonlinear functions. One
main challenge with this approach is the large dataset size of-
ten required to achieve reasonable prediction accuracy. In this
paper, we present three strategies for data-efficient machine
learning models for electric motor design optimization pur-
poses: One, reduce input dimension of machine learning model
for motor design; two, combine with physics-based methods

for hybrid modeling; three, apply advanced feature extraction
with geometrical and topological data analysis methods.

II. DATA-EFFICIENT MACHINE LEARNING METHODS

A. Reducing Input Dimension

With the popularity of convolutional neural network (CNN)
for image recognition and classification, one commonly used
approach is to represent a motor design with a 2D image,
which is fed into a CNN based deep learning model, to
predict the motor performance [4]. It has been shown that
such deep learning models can achieve very good accuracy for
highly nonlinear current-dependent torque profiles. However,
one main drawback is the large amount of data needed to train
the deep models, which typically have millions of trainable
parameters. One main reason is that the image-based input has
high dimension. A highly involved model is need to extract
features in these images. Alternatively, one can represent a
motor design with a list of parameters that are most relevant
to the motor characteristics. With parameter-based input, the
dimension can be reduced significantly. Simpler machine
learning models can be built and trained to make predictions
with much less amount of data.

In [5], the surrogate models of a surface-mount permanent
magnet (SPM) motor are tested and compared. An SPM motor
is described as a 2D RGB image of dimension 224 × 224 for
image-based models, while a list of 9 parameters is used for
input for parameter-based models. While image-based models
can achieve higher accuracy especially for highly nonlinear
cogging torque, they require more data, dedicated hardware,
and longer training time. On the other hand, parameter-based
models are much lighter weight, requires less data, much faster
to train, and can achieve comparable accuracy for multiple
performance metrics.

Even when image is preferred input method for complicated
geometry, it is still possible to reduce the dimension for
example by considering symmetry in the design, and image
resizing and transformation techniques. By doing so we can
remove redundant information from the input and best utilize
the available data to effectively train our surrogate models.



B. Hybrid Modeling

Another effective strategy for data-efficient machine learn-
ing models is to combine with physical knowledge and build
hybrid models. For electric motors, simplified analytical and
semi-analytical models have the advantage in computation
speed, while suffering in calculation accuracy when saturation
is involved. Nonetheless, the output of these physics-based
models can be used as a good estimation for a more accurate
machine learning model.

In [6], we proposed a physics-assisted neural network
(PANN) surrogate model for SPM motor cogging torque
prediction. The hybrid model combines a NN with a physics-
based model using semi-analytical subdomain method. The
subdomain model first provides an approximation of the
cogging torque for a given motor design, which is used
as an additional input to the NN, which is further trained
with dataset generated from FEA simulations to make more
accurate predictions. We implemented the method for SPM
cogging torque prediction, which is very challenging as it is
highly nonlinear and extremely sensitive to small changes in
geometry near the air gap. We showed that the trained PANN
model can achieve much improved accuracy compared with
the subdomain model calculation, as well as the conventional
NN approach, especially when the size of the training dataset
is small. Depending on the design task, different physics-based
models can be used for the hybrid modeling process.

C. Applying Advanced Feature Extraction Methods

For designs with irregular geometries such as topologically
optimized motors, it is preferable to represent them as images
instead of geometrical parameters. In this case, CNN based
deep learning models are typically needed to make reasonable
predictions on the motor performance. While one main advan-
tage of CNN based network is the capability of extract features
automatically through the training process, it falls short in
the explainability as to what features are exactly learned, and
the generalization capability to unseen data. In addition, they
are susceptible to noisy data and tend to overfit with training
data, and can have difficulty in generalizing over unseen data.
On the other hand, geometric data analysis methods offers
a mathematically rigorous way of extracting the geometry
information from a data space. In particular, topology data
analysis (TDA) deals with qualitative geometric information,
which studies the connected components of a space, such
as the classification of loops and higher dimensional sur-
faces within the space. Compared with other straightforward
geometric methods, which quantitatively describe geometric
properties such as curvatures, topology describes geometric
properties in a much less sensitive way to the choice of
metrics [7]. Therefore TDA offers a way of analyzing data
that is insensitive to particular choices of metrics, robust to
noises, and can withstand transformations and distortions of
images.

We have proposed to apply TDA for deep learning based
electric motor design, in particular, the prediction of nonlinear
2D flux map of interior permanent magnet (IPM) motor with

random rotor structures [8]. We extracted topological features,
namely, persistence diagrams and Betti sequences, from the
cross-section images of motor design candidates; together
with the cross-section images, we trained a two-channel deep
learning model for the prediction of 2D flux map of a motor
design. The two-channel model includes one branch of deep
CNN model with images as input, while the topological
features extracted from the images are fed into the second
branch of a multi-layer perceptron (MLP) model; the output
of the two branches is concatenated and fed into a set of dense
layers before finally connecting to the flux map parameters.
We showed that the prediction accuracy using topological
features combined with cross-section images is consistently
better compared with models using motor cross section images
only, indicating that the model generalizes better with unseen
data with TDA. Other geometric data analysis methods can be
explored as well.

III. CONCLUSIONS

Deep learning techniques are recently investigated by re-
searchers for electric motor design surrogate modeling and
optimization purposes. One major challenge is the large
amount of data required to train such models, especially
for highly nonlinear motor performance prediction. In this
paper, we address this issue by proposing three strategies
to best utilize the available training data and improve the
model prediction accuracy. We showed with examples that by
reducing input dimension, applying physical knowledge for
hybrid models, and coupling with effective feature extraction
techniques in geometric and topology data analysis, data-
efficient deep learning models can be constructed.
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