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Abstract—In this paper, we propose a topological data analysis
(TDA) method for the processing of induction motor stator
current data, and apply it to the detection and quantification
of eccentricity faults. Traditionally, physics-based models and
involved signal processing techniques are required to identify and
extract the subtle frequency components in current data related
to a particular fault. We show that TDA offers an alternative
way to extract fault related features, and effectively distinguish
data from different fault conditions. We will introduce TDA
method and the procedure of extracting topological features from
time-domain data, and apply it to induction motor current data
measured under different eccentricity fault conditions. We show
that while the raw time-domain data are very challenging to
distinguish, the extracted topological features from these data are
distinct and highly associated with eccentricity fault level. With
TDA processed data, we can effectively train machine learning
models to predict fault levels with good accuracy, even for new
data from eccentricity levels that are not seen in the training
data. The proposed method is model-free, and only requires a
small segment of time-domain data to make prediction. These
advantages make it attractive for a wide range of data-driven
fault detection applications.

Index Terms—Electric Machines, Fault Detection, Machine
Learning, Topological Data Analysis

I. INTRODUCTION

ELECTRIC machines, especially motors, are broadly used
to drive many sectors in the modern society, such as

factories, data centers, household appliances, robots, electric
vehicles and aircraft, to name a few. The condition monitoring
and fault detection of these machines are increasingly impor-
tant to guarantee smooth operation and minimize down time,
which is also made possible with the advancement of sensing
technologies and the growth of internet of things. In particular
for electric motors, different kinds of mechanical faults and
electrical fault can happen, and eccentricity faults are among
the most common, where the rotor and stator are not concentric
anymore during rotation [1]. Specifically, eccentricity faults
can be categorized into three types: static eccentricity, dynamic
eccentricity, and mixed eccentricity. Static eccentricity occurs
when the center of the rotor is deviated from the central axis
of the stator bore, while the rotation center is still aligned
with the center of the rotor. Dynamic eccentricity occurs
when the rotation center and the stator bore central axis still
align, but the rotor center is displaced. Mixed eccentricity

is a combination of both static eccentricity and dynamic
eccentricity [1]. There are many reasons that can cause motor
eccentricity, and the air gap eccentricity can in turn damage
other parts of the motor and cause breakdown of the machine
if not corrected in time. During the manufacturing stage, it is
not feasible to produce motors with zero air gap eccentricity.
Static eccentricity may exist due to the imperfect alignment
between stator core assembly and the rotation center, or the
deviation of the stator core from a perfect circle. Similarly, a
small dynamic eccentricity can also exist due to the imperfect
alignment between center of the rotor and the rotation axis, or
imperfect shape of the rotor. In most motors, while a small
level of eccentricity is tolerated during manufacturing and
installation stage, quality control is necessary to ensure the
deviation is within a few percent. The eccentricity level can
increase throughout the operating lifetime of a motor due to
various reasons, such as the degradation of mechanical parts
including mounting structure assembly and bearings. The air
gap eccentricity induces unbalanced magnetic pull (UMP),
which may cause stator winding faults and rubbing between
stator and rotor with elevated eccentricity level, eventually
leads to failure of the machine. It is therefore essential to
inspect electric motors for eccentricity conditions for quality
control in the production stage, and for safe operation and
asset protection throughout the lifetime of the machines.

Electric machine fault detection has attracted significant
attention in the past a couple decades, and various methods
have been proposed and investigated, with sensing modalities
including noise and acoustic emission [2], vibration and cur-
rent [3]–[7]. Vibration analysis and motor current signature
analysis (MCSA) are two major methods for eccentricity fault
detection. In general, the UMP caused by eccentricity fault
can cause increased vibration, which can be measured by
accelerometers. Numerous signal processing techniques, and
more recently machine learning and deep learning models have
been developed and applied for vibration signal based electric
machine fault detection and classification [8]. One problem
this method faces is that many external vibration sources, such
as the mechanical unbalance of the motor installation, can be
mixed together in the measured vibration signal especially on
the factory floor, making the identification of fault related sig-
nals more challenging. Moreover, the sensitivity of vibration
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analysis also largely depends on the specific location of sensor
installation. Hence it can be unreliable to identify machine
faults such as eccentricity based solely on vibration signals.
One consequence is that Algorithms that perform well on a
particular dataset often fail to achieve similar performance on
a new dataset, and therefore cannot be generally deployed [8].

Alternatively, MCSA uses stator current as its sensing
modality, and has the potential to address the problems in
vibration based fault detection. Since it only uses stator current
signals and requires no additional sensor, MCSA is also
attractive as a low-cost solution that is easy to implement.
In case of eccentricity fault, the non-uniform air gap creates
additional harmonics in the permeance function and air gap
magnetic flux. Some of these harmonics show up in the
induced voltage or back-EMF in the stator windings, and are
eventually reflected in the stator current spectrum. Thorough
physics-based models have been established to understand the
signatures in stator current signals for each type of motor
faults including eccentricity [9]–[12]. However, MCSA based
eccentricity fault detection has its own challenges. While a
lot of the spatial harmonics caused by eccentricity can be
reflected in vibration signals, they do not show up in the time
harmonics and are missing from the stator current spectrum.
Moreover, the existence of certain fault signatures in stator
current depends on specific motor design parameters and is not
universal. For example, it has been proven that under certain
stator slot and rotor bar number combinations, some signatures
at slot harmonic frequencies due to static eccentricity are more
difficult to detect [10], [12]. Additionally, the eccentricity
fault signatures in frequency spectrum of stator current are
typically a few orders smaller than the dominating fundamen-
tal component of electric supply frequency. Many machine
learning models that perform well on vibration signals are not
directly applicable to MCSA as they often fail to distinguish
the much similar stator current signals measured at healthy and
faulty conditions. Therefore, physical models based on domain
knowledge typically need to be first established in order
to analyze the signals and identify fault related signatures,
followed by detailed spectral analysis to extract those features
to be used for fault detection.

In this paper, we investigate a mathematical method, namely
topological data analysis (TDA), for MCSA applications.
We show that it is very effective in extracting features in
stator current signals associated with eccentricity fault and
distinguishing data measured at different eccentricity levels.
The extracted topological features can then be used to de-
velop data-driven models for fault detection and quantification.
Compared with conventional signal processing methods, the
proposed approach is model-free, and requires only a very
short data sequence to effectively extract fault features and
make reasonable predictions. The basic idea and procedure
has been presented in our recent work [13], [14]. We have
since conducted more thorough theoretical and experimental
investigations to understand the capability of the method, and
significant updates have been made to this extended paper.

In order to make sure the extracted topological features are
indeed associated with eccentricity fault, not due to noises
in the measurement, we have developed a physical model to

generate simulation data under different fault conditions. We
apply the same TDA procedure to the simulation data, where
we are certain the only difference is from the eccentricity level,
and compare the results with those obtained from the experi-
mental data. Very similar behaviors in the obtained topological
features represented by Betti sequences are obtained in the
simulation case.

Previous work only studied eccentricity fault for a motor
under no-load condition, while the effectiveness of the TDA
based method for motors under different load conditions
was not investigated. In this paper, we perform experiment
and collected data for an induction motor under eccentricity
faults at multiple on-load conditions. When then process the
experiment data with TDA and investigate how the extracted
topological features are related to different load conditions
and different eccentricity levels. We also conduct various
tests using machine learning models for eccentricity fault
level estimation and prediction using time-domain data and
TDA processed data, and show that the method is effective
in extracting fault related features and enabling data-driven
eccentricity fault detection for on-load conditions, including
mixed load conditions. Potential applications of the method
under other faulty conditions are also envisioned and dis-
cussed.

The rest of the paper is organized as follows. In Section II,
we give an introduction to TDA, persistent homology, and its
calculation process; in Section III we describe the experiment
setup for motor stator current data acquisition under controlled
eccentricity conditions; in Section IV, we apply the TDA
process to the measured data from different eccentricity levels,
and validate that the extracted features are indeed associated
with eccentricity fault with simulation data; in Section V, we
present a data-driven approach for eccentricity level prediction
using the proposed TDA method and demonstrate its interpo-
lation and extrapolation capabilities; and finally in Section VI
we provide concluding remarks.

II. TOPOLOGICAL FEATURE EXTRACTION METHOD

In this section, we introduce the TDA method and the
process of extracting topological features and generating per-
sistence diagram and Betti sequence from a data space.

TDA offers a numerical procedure to extract shape infor-
mation from a given data space, such as connected com-
ponents and holes [15]. Generally, a few advantages make
TDA very attractive for many challenging data analysis tasks:
topological features are invariant under small and continuous
deformations; they are also coordinate-free, and more robust
against noises compared with other geometrical methods. In
fact, in recent years, TDA is an actively pursued research area,
and has been applied to a broad range of scientific problems,
including image analysis [16], time-series data analysis [17],
sensor networks [18], chemistry [19], material science [20],
etc. These developments are largely enabled by a powerful
tool named persistent homology [15], [21], [22].

The homology of a data space describes its topological fea-
tures, such as connected components and holes, and persistent
homology computes those features that persist across differ-
ent scales. Rigorous mathematical formulations and detailed
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descriptions can be found in multiple references [15], [21],
[22]. In this paper we aim to give a brief description of the
calculation procedure to obtain the persistent homology of a
data space, which is summarized as the following four steps:

First, we represent a given data space with a point cloud,
which is formed by a number of data points sampled from the
data space. Different sampling and embedding techniques can
be applied.

Second, we identify the simplicial complex of the point
cloud, which is a collection of topological building blocks
in different dimensions, or simplices, such as points, edges,
triangles, etc. In particular, Rips complex is a commonly used
algorithm to construct a simplicial complex, which assigns
a threshold value or filtration radius r, and only includes
complices with pair-wise Euclidean distance between their
data points no larger than r.

Third, homology Hi, which counts the number of topo-
logical features, is calculated from the constructed simplicial
complex, where the subscript i denotes the dimension. For
instance, H0 counts the number of connected components, and
H1 counts the number of holes.

Lastly, persistent homology is obtained through a filtration
process of Rips complex, which computes the homology
at different filtration radius r, and tracks the “birth” and
“death” of each topological feature at the corresponding r.
The evolution of homology across the whole range of r is
recorded as persistent homology.

Multiple algorithms to perform Rips complexes filtration
and persistent homology calculation have been developed,
validated and implemented. In this work, we use python
library Ripser.py for the computation of persistent homol-
ogy [23]. Once calculated, persistent homology can be rep-
resented in different forms, and persistence diagram is a
popular choice, which is composed of a set of points
(b, d)|b, d ∈ R2 and d > b, where each point corresponds to
the “birth” and “death” of one topological feature. To be more
specific, each point (b, d) denoted a topological feature being
“born” at radius b and “dead” at radius d.

Persistence diagram can be transformed into other rep-
resentations forms, such as persistence barcode, persistence
landscape, and Betti sequence. In this study, we plan to
use the extracted topological features of different data for
data-driven models, and it is often convenient to have them
represented as vectors of the same length to serve as input
data. Betti sequence, or Betti curve is a representation that
effectively achieves that [24], [25]. Assume D is a persistence
diagram with a finite number of off-diagonal points, with
α = (bα, dα) a point in the diagram, and maximum filtration
radius rmax > 0, let {ri}M1 be equally spaced points within
[0, rmax], the Betti sequence of D is a vector of length M
defined as β⃗ = (βi)

M
1 , with the entries βi count the number of

points in the persistence diagram at filtration radius ri. Define
the function:

fα(r) =

{
1, bα ≤ r ≤ dα,

0, otherwise,

Then we can obtain the points on a Betti curve through the
summation: βi =

∑
α∈D fα(ri).

While most people use TDA to reveal the major shapes
in data spaces in many applications, and either ignore the
smaller topological features or consider them as noises, we
apply TDA in an opposite manner, by filtering out the main
topology of the data space in our stator current data, and
instead focusing on the smaller features. We will show that
the extracted topological features are robust and quantitatively
different between data obtained under different eccentricity
levels. Data-driven models can then be developed for eccen-
tricity fault prediction based on the mapping between the
extracted topological features and fault severity level.

III. EXPERIMENT SETUP & DATA ACQUISITION

Fig. 1. The experiment setup for the study of induction motor eccentricity.

Before applying TDA, we first introduce the experiment
setup and data acquisition system for obtaining stator current
signals of a motor under different eccentricity conditions.

A 0.75 kW, three-phase, 2-pole-pair squirrel-cage induction
motor is modified and used in our investigation, which has 36
stator slots and 28 rotor bars, and a nominal air gap size of
0.28 mm. The line-to-line voltage and frequency are 200 V and
60 Hz, respectively. As shown in Fig. 1, a few modifications
are made to the motor to create different levels of static
eccentricity (SE) in a controlled manner. The original bearings
of the motor are removed, and the rotor is instead supported
by two custom-made mounting structures (only the mounting
structure on the load side is visible in the photo) through the
extended rotor shaft and a pair of new bearings installed on
the mounting structures. The stator assembly of the motor is
mounted on a linear stage so that its position is adjustable
in the horizontal direction using two pairs of micrometers. A
powder brake is connected to the test motor via the shaft and
serves as load. In addition, two pairs of displacement sensors
have been installed on the stator facing the air gap, in order to
measure the actual air gap size in both horizontal and vertical
directions when the motor is running [13], [14].

With this setup, different SE levels in the horizontal di-
rection can be created. In our experiment, a total of 6 SE
levels were created when the motor is stand still: 7.1%, 16.5%,
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31.1%, 42.5%, 47.5%, and 57.3% , where the percentage is
defined as the ratio of the maximum air gap deviation and the
nominal air gap size. For each eccentricity setting, the motor is
tested under 5 different load conditions: 0 N·m, 1.3 N·m, 2.0
N·m, 2.7 N·m, 3.5 N·m. Data from three phase current sensors
and four air gap sensors were recorded for each eccentricity
and load setting at 10 kHz sampling frequency. From the air
gap sensor readings, it was shown that the actual SE level
of the air gap is very close to the original setting in each
case, with variation within 3%. While dynamic eccentricity
(DE) level is not adjusted in the experiment setup, we do
observe a small DE of around 6% for all cases based on the
air gap sensor readings. Since a small eccentricity exists even
in motors considered healthy due to imperfect manufacturing
and installation process [1], therefore the measured DE is
reasonable. This mixed eccentricity effect creates side band
signals in the stator current spectrum at

fc = fs ± fr=

(
1± 1− s

p

)
fs (1)

and the higher harmonics. The amplitude of side band signals
increases with increasing eccentricity level (see, for example
Ref. [3]). Here fs = 60 Hz is the supply frequency, fr is the
rotation frequency, and p = 2 is the pole pair number of the
induction motor. Slip s depends on the load condition, and
increases with higher load.

With 6 different SE conditions, and 5 different load con-
ditions, data are recorded for a total of 30 test conditions.
Due to this large number of test conditions, in the subsequent
analysis, we will only show data from the most representative
cases.

For a comparison of the obtained stator current signals un-
der different test conditions, the time-domain and frequency-
domain phase A current signals at the smallest (7.1%) and
largest (57.3%) SE level, under smallest (0 N·m) and largest
(3.5 N·m) load conditions respectively are plotted in Fig. 2.
As shown in Fig. 2(a), current amplitude increases at on-load
compared with no-load condition; however, the time-domain
waveform is dominated by the fundamental component and it
is hard to distinguish the different eccentricity cases under the
same load condition. Detailed spectral analysis is needed to
identify the components related to eccentricity faults. Fig. 2(b)
shows the frequency spectrum obtained from 60s-long time-
domain signal for each case in order to resolve the fault
signals and their harmonics. Zooming in to the lower side
band corresponding to (1), we can observe from Fig. 2(c) two
things: one, the peak value of the component at higher SE
level is higher; two, the frequency increases from close to 30
Hz to around 30.8 Hz when the load condition changes from
0 to 3.5 N·m as the slip s increases.

IV. TDA ON ECCENTRICITY DATA

In this section, we perform TDA on the experiment data
under eccentricity, show that eccentricity related features can
be obtained with the process. We further present a simulation
model of motor under eccentricity fault built on modified
winding function method, and validate our findings with TDA
using simulation data.

Fig. 2. Phase A current signals measured under 4 different test conditions
listed in subfigure (c). (a) a segment of time-domain signals, (b) frequency
spectra obtained from Fourier transform using 60 s of time-domain data, and
(c) zoom-in around lower side-band fs − fr .

A. Experiment Data Analysis

We apply the TDA process described in Section II to the
measured stator current signals.

A point cloud is naturally formed by sampling the recorded
three-phase current data segment and placing them in 3D
Euclidean space. For each case, we take a segment of 1024
consecutive data points from the stator current data. Since the
data is measured at 10 kHz sampling frequency, the segment
of 1024 points corresponds to about 0.1 s measurement in
time domain. One data segment is also called one sample in
the subsequent analysis. The point clouds of the data segment
from the four test conditions corresponding to Fig. 2 are shown
in Fig. 3. Since the dominating component of the signals is a
periodic wave of fundamental frequency, the most significant
shape is a large circle in 3D space. For an ideal sinusoidal
signals, the point cloud forms a perfect circle; when other
frequency components exist, the points would deviate from the
perfect circle. Since the fault components are much smaller in
amplitude, it is difficult to tell the different eccentricity levels
from the point cloud shapes alone. For on-load conditions, the
radius of the circle increases, as shown in Fig. 3(c) and (d).
For subsequent TDA process, we normalize each data segment
to its maximum value to account for the change in current
amplitude at different load conditions.

With the point clouds, we can proceed with the homology
computation and obtain persistence diagrams. Fig. 4 shows
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Fig. 3. Point clouds of three-phase stator current data segments corresponding
to the four test conditions: (a) SE 7.1%, no load, (b) SE 57.3%, no load, (c)
SE 7.1%, load 3.5 N·m, and (d) SE 57.3%, load 3.5 N·m.

the computed H0 and H1 persistence diagrams corresponding
to the aforementioned four conditions. The most noticeable
differences lie in the H1 features, which correspond to the
small holes formed by neighboring points in the point clouds
during the filtration process. For an ideal sinusoidal wave, only
one large hole is formed by its point cloud. With phase current
data under eccentricity fault, the point cloud deviates from the
ideal circle due to the many frequency components that exist
in the data. When the eccentricity level is small, the deviation
is also small, and only a few features are formed in the H1

diagram; when the eccentricity level increases, the deviation of
the points from the ideal circle is larger, and these points are
more likely to form small circles during the filtration process.
Therefore more and more features show up in the H1 diagrams
with increasing eccentricity level. In addition, more features
show up at on-load conditions, as shown in Fig. 4(c) and (d).
Many features also tend to be further away from the diagonal
line compared with the no-load cases, meaning their lifespan is
longer. This is due to the fact that many harmonic components
in the current increases under high load, creating additional
topological features in the data space. For H0 features, which
are the connected components or clusters in a point cloud, the
difference is not as visible as the H1 diagram, since they all
fall on one single line. The difference in H0 will be more
straightforward when represented in Betti sequences, which
will be presented in the following paragraph.

Persistence diagram is an important visualization tool for
homology, but not quite convenient as input of machine
learning models. Next we convert the diagrams into Betti
sequences of the same lengths: for both H0 and H1 sequences,
the length is fixed at 1024 whereas the filtration ranges are of
[0, 0.045] and [0, 0.07] respectively. Fig. 5 show the computed
Betti sequences from the corresponding persistence diagrams
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Fig. 4. Computed persistence diagrams for both H0 and H1 features from
phase current data segments corresponding to the four test conditions shown
in Fig. 2.
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Fig. 5. (a) H0 and (b) H1 Betti curves calculated from measured stator
current data at different SE levels under no-load condition; (c) and (d) are
H0 and H1 Betti curves for data at different SE levels measured at 3.5 N·m
load respectively. Legend of each figure indicates corresponding SE level in
percentage.

for data at different SE levels at both no-load and on-load
conditions. While we cannot easily tell the differences of H0

features from the persistence diagrams, we can observe the
trend in the H0 Betti curves. When the filtration radius is 0,
all 1024 data points are separate, therefore all the Betti curves
start at 1024. Upon increasing filtration radius, more and more
neighboring points are connected; therefore the number of H0

features starts to decrease, eventually all points are connected
and there is only one feature left. With higher eccentricity
level, the amplitude of fault components increases, and the
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Fig. 6. (a) H0 (a) and (b) H1 Betti curves corresponding to five different
data segments from the same test condition with SE level 57.3% and load 3.5
N·m.

data points are further apart from one another due to their
deviation from the large circle (see Fig. 3); therefore the points
are connected at a later stage and these H0 features survive
longer, and the area under H0 Betti curve is monotonically
increasing with eccentricity level.

From the H1 Betti curves, we can see that the number
of features as a function of filtration radius changes with
eccentricity levels, and the peak position of the curves seems
to correlate with the SE level: peak shifts to higher filtration
radius r at higher SE level. These observations are more visible
at no-load condition as shown in Fig. 5 (a) and (b). At on-
load condition, the change in topological features embedded
in the measured signal is significant compared with the data
from no-load case under the same SE fault, which is reflected
in the line shape of the Betti curves shown in Fig. 5 (c) and
(d). Consequently, the difference between data from different
SE levels is not as distinct as the no-load cases. However, the
same trends are still visible for both H0 and H1 curves.

Another important merit of persistent homology is its ro-
bustness to noises: similar data structures yield similar per-
sistent homology. To verify, we compare the Betti curves ob-
tained from multiple data segments measured at the same test
condition. Fig. 6 show the Betti curves of five different data
segments at SE level 57.3% and load 3.5 N·m, and they are
quite consistent. The similarity of these Betti curves implies
that the temporal fluctuations between different samples of
time-domain data are filtered out by the proposed calculation
procedure, and one could stably extract the fault signature with
a relatively short segment of data of around 0.1 s.

Based on the above analysis, we conclude that the persistent
homology and Betti curves can effectively differentiate data
from different test conditions, while reliably providing similar
output for data from the same test condition.

B. Verification with Simulation Data

In order to verify that the differences observed in the Betti
curves are indeed due to the difference in eccentricity, we
have developed a numerical model and generated simulation
data under different eccentricity conditions corresponding to
experiment settings, and implemented the same TDA process
to compare with experiment results.

The numerical model takes in parameters including motor
design parameters, supply voltage, load condition and fault
condition, calculates the inductance terms between rotor and
stator windings of the motor for each rotor position, and

updates the dynamic signals during the operation of the motor
including stator current, speed, and torque. Signal processing
techniques such as FFT can then be applied to the simulated
stator current signal in order to obtain the frequency spectrum.
All signal components related to eccentricity faults can then
be identified.

The motor dynamics are described by coupled circuit equa-
tions. The inductance terms and their derivatives, which are
critical in determining the motor current and torque, are
calculated using modified winding function method (MWFM)
and updated at each rotor position [10], [12], [26]. For winding
i and winding j, the inductance is evaluated as

Lij(t) = µ0lr

∫ 2π

0

ni(ϕ, t)Mj(ϕ, t)g
−1(ϕ, t)dϕ, (2)

where µ0 is the free-space permeability, r is motor radius at
the air gap, l is the stack length, ni(ϕ, t) is the winding turns
function for winding i, and Mj(ϕ, t) is the modified winding
function for winding j. From the equation, we can see that
the air gap function g(ϕ, t), which describes the spatial and
temporal air gap profile, is especially important in calculating
the motor performance under eccentricity conditions. Under
SE and DE conditions, the air gap function can be written as:

g(ϕ, t) = g0Kc − δSEg0 cos(ϕ)− δDEg0 cos(ϕ− ωrt). (3)

where g0 is nominal air gap length, Kc is Carter’s coefficient
to quantify the slotting effect, δSE and δDE are the SE and DE
amplitude respectively. Detailed modeling process is described
in Ref. [27].

Dynamic simulations can then be conducted to obtain the
motor current signals at each condition. Fig. 7 shows the
simulated time-domain signal and the frequency spectrum
of stator current with SE level of 42.5% and DE level of
6% under no-load condition, together with the corresponding
experiment data. While the simulation does not match exactly
with experiment, due to unavoidable simplifications in the
model, key features of the signal due to eccentricity can be
identified with good accuracy: the time-domain waveform and
amplitude match well with experiment, the low frequency side-
band signals corresponding to (1) show up in the simulated
spectrum with good agreement with experiment. Therefore the
simulation model is sufficient for investigating motor under
different fault conditions that can be difficult to create exper-
imentally and subject to uncertainties in the measurements.

By changing the air gap profile in (3) while keeping all other
settings the same, we can simulate current signals at different
eccentricity levels. With the simulated data, we know for sure
that any difference in data obtained under different settings is
due to eccentricity only.

We run simulations at eccentricity conditions corresponding
to the experimentally measured values, obtain the stator cur-
rent data with the same sampling rate of 10 kHz for each case,
and process the simulated data with the same TDA procedure
as the experiment data , in order to validate our observations
from TDA with experiment data.

Fig. 8 shows the converted Betti curves for simulation
data obtained at all SE levels for both no-load and on-load
conditions. Comparing Fig. 8 with Fig. 5, we can see that,
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(a) (b)

(c) (d)

Fig. 7. The simulated ((a), (c)) and corresponding experiment measurement
((b), (d)) of phase current signal in time-domain and frequency-domain with
SE level of 42.5% under no-load condition.
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Fig. 8. (a) H0 and (b) H1 Betti curves calculated from simulated stator
current data at different SE levels under no-load condition; (c) and (d) are
H0 and H1 Betti curves for data at different SE levels measured at 3.5 N·m
load respectively. Legend of each figure indicates corresponding SE level in
percentage.

while the line shapes do not match exactly between simulation
and experiment data, the changes in the curves with increasing
eccentricity level have the same trend. For H0 curves, the
data points are generally further apart in the point cloud
at higher fault level, causing the features to disappear at a
larger filtration radius, therefore the area under H0 curve
monotonically increases with increasing eccentricity level.
Similarly for H1 curves, very few features exist at small fault
levels throughout the filtration process, while more features
appear due to the increased fault level. The peak position of
H1 curve appears at larger filtration radius for larger SE level.
For on-load conditions, as shown in (c) and (d) of Fig. 8 and
Fig. 5, the topological features are largely dominated by the
load, and the variations due to different SE fault is not as

obvious as no-load conditions. However the trend for both H0

and H1 curves is still visible.
With the comparison between simulation and experiment,

we can conclude that the extracted features through the TDA
process can be a good indication of eccentricity fault. While
noises exist in the experimentally measured data, they do not
hinder the effective extraction of topological features relevant
to the eccentricity fault, as verified by both the robustness of
the experiment data as shown in Fig. 6, and the comparison
with simulation data as shown in Fig. 8.

V. TDA FOR ECCENTRICITY LEVEL PREDICTION

From above analysis, we can see that TDA is effective in re-
vealing small fault signatures embedded in a large background
signal, and separating signals from different fault levels. In this
section, we present a data-driven approach of eccentricity fault
detection, quantification, and prediction based on TDA.
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Fig. 9. t-SNE plot in 2d for (a) time-domain phase current data, and (b) H0

and H1 sequences combined for different SE levels under no-load condition.

First we process and analyze the data. The experiment
data measured at each SE level and each load condition is
segmented into a total of 1170 samples, each of length 1024.
Same data segmentation is done for all 30 test conditions,
making the total number of data segments 35100. As discussed
in earlier sections, the time-domain data are dominated by the
fundamental component at supply frequency, and in sinusoidal
waveform for all test cases. There is no noticeable difference
between data from different SE levels under the same load
condition. For data from different load conditions, the current
amplitude will be different. A few exemplar data segments
for phase A current have been shown in Fig. 2(a). Another
example data segment for three-phase current has been shown
in Fig. 7(b). We will refer the segmented time-domain data as
TD dataset.

After data segmentation, we then apply the established TDA
procedure to obtain Betti sequences for all these data samples,
as detailed in Section IV-A. For each time-domain data seg-
ment, we calculate its H0 and H1 sequences. For convenience,
we make the length of each H0 and H1 sequence to be 1024.
Corresponding to TD dataset, we refer the compiled Betti
sequences as H0 and H1 dataset.

To visualize the differences of data at different eccentricity
levels, in Fig. 9 we show the t-distributed stochastic neighbor
embedding (t-SNE) plot [28], which is a commonly used
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tool to represent similarities of high-dimensional data in low
dimension, of both time-domain phase current data and their
corresponding Betti sequences under no-load condition. With
time-domain data, samples from all eccentricity levels are
mixed together with no clear clustering, indicating these data
segments are highly similar. The reason is that they are
dominated by the large 60 Hz signal, as shown in Fig. 2.
For Betti sequences, however, the data samples do cluster
according to their respective eccentricity level. We point out
that the dominant 60 Hz signal only corresponds to the feature
value at very large filtration distance in H1 Betti sequences,
due to the large hole in the point clouds shown in Fig. 3,
and has little impact on the profile of the Betti curve. In this
sense, the thresholded Betti curve serves as a “nudge filter”
that effectively removes the dominant time-domain signal,
and magnifies the behavior of small signals where the fault
signatures reside.

In this work, we demonstrate that with an effective feature
extraction method, complicated machine learning models and
deep learning models are not needed for data-driven fault
detection and quantification. Only simply regression models
will be used in the following tests.

For practical motor eccentricity fault detection applications,
we can envision two different scenarios, one in the manufac-
turing and assembling stage, the other throughout the operation
lifetime of the motor.

A. Scenario I: SE Level Estimation

In the manufacturing stage, the main goal is to inspect
the manufactured and assembled motors for quality control,
to ensure the eccentricity level is below a threshold value.
Since a large number of motors of the same model will be
mass produced in the factory, it makes sense to collect data
covering a wide range of eccentricity conditions with a test
motor, and develop a data-driven model to make predictions
on the eccentricity level using new data measured on other
motors of the same type.

To mimic this scenario, we shuffle the data from all eccen-
tricity levels and split them into training and test sets, with a
split ratio of 80:20. The same shuffling and splitting process
is applied to TD, H0, and H1 datasets. Models will be trained
and tested on each type of data separately, as well as combined
H0 and H1 (referred to as H0 + H1) for comparison. In
addition, we train and test models with data for each separate
load condition, as well as for all load conditions to evaluate
the impact of load to the prediction performance.

While many different models can be developed, we show
the results from simple k-nearest neighbor (k-NN) regression
models [29] to demonstrate the capability of TDA. For a
given new data sample, the k-NN algorithm simply search for
its nearest neighbors from the training data, and predict the
eccentricity level using the average level of these neighbors.
We implemented the algorithm using scikit-learn [30] library
in Python. Standard Euclidean distance is used in searching
for nearest neighbors. All points in each neighborhood are
weighted equally for prediction. During training, we compare
the prediction of SE level from the model and ground truth,

and find the optimal number of nearest neighbors to minimize
the root-mean-squared-error (RMSE). During testing, we eval-
uate each model performance by calculating the root-mean-
squared-error (RMSE) and mean-absolute-error (MAE) on test
data.

The results of calculated MAE for trained models are
summarized in Table I. For each load condition, as marked
in bold font, the best model performance on estimating the
SE level of test data is from model trained with H0 and H1

Betti sequences combined. In particular, at no-load condition,
the trained model can make perfect prediction with 0 error.
The MAE error increases slightly at higher load conditions,
which is still well below 3%. When all five load conditions
are considered together, the test MAE error is only slightly
above 1%. On the other hand, the models trained with raw
TD data always perform worst.

TABLE I
MEAN ABSOLUTE ERROR (MAE) OF SE LEVEL ESTIMATION WITH K-NN

MODELS TRAINED ON TIME-DOMAIN (TD) CURRENT DATA AND BETTI
SEQUENCE DATA RESPECTIVELY, UNDER DIFFERENT LOAD CONDITIONS.

Load (N·m) TD H0 H1 H0 + H1

0 6.89 0.38 0.01 0.00
1.3 6.58 0.58 2.93 0.31
2.0 10.45 1.40 1.31 0.53
2.7 12.99 2.33 5.79 2.06
3.5 13.89 2.78 6.13 2.35
All 10.82 2.3 4.6 1.12

We can further visualize the model performance with violin
plot, which shows the distribution of predicted SE values for
data from each SE level. The results for models with data
from all load conditions, which correspond to the last row in
Table I, are plotted in Fig. 10. For each SE level, the horizontal
marker shows the mean of predicted SE value over all test data
samples, and the probability density is added in shaded blue
to show how the prediction values are distributed. As we can
see, the model performs poorly with TD data, and the mean
for each SE level is far from the true value. With H0 and H1

data alone, the model performance is already much improved.
While the mean is very close to the true value, there are some
outliers as shown in the probability density. When both H0 and
H1 data are used, best performance is reached with minimal
error.

B. Scenario II: SE Level Prediction

On the other hand, during the service of a motor, it is not
possible have measurement data for all possible eccentricity
levels. Instead, we expect to have measurement data collected
during inspections, when eccentricity level is still low. A data-
driven model can be built based on these earlier measurements,
and used to predict the eccentricity level during subsequent
measurements where the fault is expected to become more
severe over time.

Such extrapolation task to unseen data is challenging for
all machine learning and deep learning models. For this task,
we assign the experiment data from the four smaller SE
levels with nominal SE levels 7.1%, 16.5%, 31.1%, 42.5% as
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Fig. 10. Violin plot for SE level estimation using k-NN model trained with
data from all SE and load conditions using (a) phase current data, (b) H0 Betti
sequences, (c) H1 Betti sequences, and (d) both H0 and H1 Betti sequences.

training dataset. Data from the two higher SE levels, namely
47.5%, and 57.3% are not used in the training, and are
reserved as test dataset, to check the prediction capability of
the trained models. Again, data from each test condition have
been segmented into 1170 samples of length 1024. Similar to
the previous task, we train models using data under each load
condition, as well as data from all load conditions, in order to
understand the capability of TDA. Again, four types of data,
namely raw TD data, H0 Betti sequence, H1 Betti sequence,
and combined H0 + H1 sequences, are used to train models
separately and their performances are compared.

To develop an effective regression model, we extract the
features associated with SE fault in the Betti curves identified
in Section IV: for H0 curve, we use the total area under
the curve; for H1 curve, we use the peak position of the
curve. For time-domain data, we extract the RMS value of
the phase current. Quadratic regression models are trained
respectively using these features. During training, we find the
coefficients of the quadratic function that best fits the training
dataset. The trained regression models are then tested on the
corresponding test dataset. The MAE for SE level prediction
of each trained model on test data is summarized in Table II.
For each load condition, models trained with TD data perform
poorly, with MAE over 27% for all cases. With H0 Betti
squence data the model peroformance is much improved for
all the load conditions. While H1 feature is not as effective
for the prediction task on new data, it is still better than using
raw TD data; and combining H1 with H0 data can achieve
similar result or further improve the result.

Depending on the application, a motor can operates at con-

TABLE II
MEAN ABSOLUTE ERROR (MAE) OF SE LEVEL PREDICTION ON UNSEEN
DATA FROM NEW SE CONDITIONS WITH REGRESSION MODELS TRAINED

ON TIME-DOMAIN (TD) CURRENT DATA AND BETTI SEQUENCE DATA
RESPECTIVELY, UNDER DIFFERENT LOAD CONDITIONS.

Load (N·m) TD H0 H1 H0 + H1

0 28.22 10.22 12.48 10.10
1.3 27.56 3.91 10.77 3.93
2.0 27.3 3.81 8.5 3.29
2.7 28.05 2.87 20.94 3.14
3.5 27.36 3.40 21.76 3.43
All 27.92 16.74 21.32 13.6

stant load conditions, or with mixed load conditions during the
life time. As shown in Table II, for constant load conditions,
the proposed method generally works better for eccentricity
level prediction. Fig. 11 shows the performance of regression
models trained on data collected at the same load condition
of 2.0 N·m with different input data type. With TD data,
the model essentially cannot distinguish data from different
SE levels. With converted Betti sequence data, the prediction
accuracy is much improved. With combined H0 and H1 Betti
curve data, the prediction RMSE is reduced to about 4% and
the MAE is even lower.

Among these tests, the mixed load condition, which corre-
sponds to the last row in Table II, is considered to be most
challenging, as the small differences in SE level is largely
masked by the varying load condition. The performance of
the trained models are plotted in Fig. 12. With TD data, the
model cannot distinguish data from different SE levels, and
the mean prediction value is far from the truth. With Betti
sequence data, especially H0 and combined H0 and H1 the
prediction is much closer to the true value.

C. Discussions

Compared with MCSA, which requires involved domain
knowledge and physical model to identify fault signatures,
no physical model for the fault is required in the proposed
method. In addition, the good prediction results can be
achieved with only a short segment of time-domain data. In
all the tests, the length of time-domain data is 1024 points,
or about 0.1s. In comparison, traditional spectral analysis
methods with MCSA often require tens of seconds or longer
data in order to accurately identify the fault components,
on top of the domain knowledge required to identify these
fault signatures. Although the paper focused on induction
motor eccentricity fault level prediction, these advantages of
TDA make it promising to be applied to a broad range of
fault detection tasks. A few applications and future research
directions can be envisioned and are briefly discussed below.

In practice, a number of faults can occur in induction
motors, such as bearing fault, inter-turn short circuit in stator
windings, broken bar, etc. When multiple faults exist in a
motor, fault classification is a desirable fault detection solution
especially for data-driven approaches. This task has a lot of
similarities to scenario I discussed in Section V-A. With TDA-
processed inputs, data cluster properly according to the fault
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Fig. 11. Violin plot of the prediction of SE level on unseen data from new SE
conditions for regression models trained on data from first four SE levels at
the same load condition of 2.0 N·m using (a) phase current data, (b) H0 Betti
sequences, (c) H1 Betti sequences, and (d) both H0 and H1 Betti sequences.

0 20 40 60
Truth

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n

RMSE =28.523 
 MAE=27.922

with Time-Domain Data

(a)

0 20 40 60
Truth

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n

RMSE =17.760 
 MAE=16.737

with H0 Data

(b)

0 20 40 60
Truth

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n

RMSE =21.882 
 MAE=21.323

with H1 Data

(c)

0 20 40 60
Truth

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n

RMSE =15.717 
 MAE=13.596

with H0+H1 Data

(d)

Fig. 12. Violin plot of the prediction of SE level on unseen data from new SE
conditions for regression models trained on data from first four SE levels at
different load conditions using (a) phase current data, (b) H0 Betti sequences,
(c) H1 Betti sequences, and (d) both H0 and H1 Betti sequences.

level, even the differences are subtle, as indicated in Fig. 9,
suggesting the feasibility of effective unsupervised learning
with TDA processed data for fault classification. Even under

various load conditions, where the topological features in
the measurement data are largely modified, such clustering
effect is still effective, as shown in subsequent tests shown in
Table I. In addition, each type of motor fault presents its own
characteristics in stator current signals (see [3], [4] for detailed
analysis), and the differences between different types of faults
are generally more significant than the difference between data
from different severity levels of the same fault condition. We
therefore expect that the TDA process can greatly facilitate the
distinction of data from different fault conditions and hence
fault classification tasks.

Another application is fault quantification when another
fault exists at the same time. For scenario I discussed in
Section V-A, where all conditions can be measured and used
to train a machine learning model, we expect good results
using TDA processed data. We have already added another
variable in load condition as shown in Table I, and the fault
level estimation remains excellent under various load con-
ditions. Such strong clustering capability of TDA processed
data remains even when another fault exists. For scenario
II discussed in Section V-B, which predicts fault level for
unseen data, things are more complicated. As can be seen
in Table II, while the results are excellent for fixed load
conditions with models trained with Betti sequence, the result
of the mixed load condition is much worse. This is because
the effective extrapolation of the regression model relies on the
monotonically increasing features revealed in the Betti curves,
and the varying load condition greatly modifies the features
associated with the curves. The existence of another fault adds
an additional variable, and can reduce the prediction accuracy.
How large the impact of the additional fault is to the prediction
accuracy depends on the fault type and severity.

As a future research direction, further theoretical and exper-
imental investigations are desired to validate the effectiveness
of TDA under these conditions. In addition, features extracted
with TDA can be used in conjunction with those extracted by
other methods to further improve the prediction accuracy of
fault detection tasks.

VI. CONCLUSIONS

In this paper, we investigated the method of using topolog-
ical data analysis for induction motor eccentricity fault level
prediction under various load conditions. The procedure of
extracting topological features of time-domain phase current
data and converting them into vectorized Betti sequence was
presented and applied to the analysis of measurement data
from different fault levels. We showed that this model-free
method is effective in extracting small topological features in
a data space and distinguishing data from different eccentricity
conditions that look very similar in the time-domain. We
applied a winding function based model to generate simulation
data at different eccentricity levels to exclude the impact of
potential noises in the experiment setup, and verified that the
extracted topological features are indeed associated with the
eccentricity fault. Experiment data of different eccentricity
levels from various load conditions were analyzed with the
TDA method and applied for data-driven motor fault detection
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and quantification tasks. We showed that the TDA processed
data can greatly improve the accuracy of machine learning
models for eccentricity level prediction with both interpolation
and extrapolation tasks under various load conditions. The
proposed method can be potentially applied to other data-
driven fault detection and classification problems.
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